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Energy 4'~tribution of yhotoexcited hot electrons in a quantI~~g magnetic field
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We calculate the distribution function of the electrons in the conduction band of a semiconductor that are
photoexcited by a laser. We assume extreme-quantum-limit conditions and we describe the recombination
processes by a relaxation time. This distribution function is" the solution of a Pauli master equation that we
transform by means of a Fokker-Planck analysis. We determine the change in shape of this distribution
function for difFerent values of. the mean energy lost by an electron during its lifetime and for difFerent laser
excitation energies ep. The influence of optical phonons is studied qualitatively. Using this distribution

function we are able to calculate the mean energy of the electron gas and are able to obtain its dependence
on c~, on the recombination time, and on the magnetic field.

I. INTRODUCTION

Recent experiments on hot electrons photoex-
cited in the conduction band of semiconductors al-
lom the measurement of the electron distribution
function (EDF) in the conduction band. This is in
contrast: with transport results, mhere the EDF is
averaged over all the carriers and hence can only
be obtained indirectly;

Photoexcitation experiments were performed
both in the absence and in the presence of a mag-
netic field B.' ' Without magnetic field, a theo-
retical expression of the KDF was predicted by
several authors. ' ' In this case electron-electron
collisions are in general important and it is quite
difficult to take these collisions properly into ac-
count, even approximately. In a preceding paper
me have already examined the influence af a very
high magnetic field. In the extreme quantum limit
(EQL) we made the simplest assumption, i.e., we
took for the EDF a Maxwellian distribution, char-
acterized by an electron temperature T,. By usual
arguments, based on the energy-balance equation,
me then calculated the dependence of 7, on the
laser excitation frequency, on the phonon temper-
ature T, and on the strength of the magnetic field
B.

The aim of the present work is to eliminate this
Maxmellian assumption. The exact RDF is ob-
tained as the solution of a general master equation.
We will deduce from this distribution function the
mean energy of the system and compare this new
result with that obtained in Ref. 9. It is only pos-
sible to accomplish this task if the following three
conditions are realized:

(i) We assume an EQL situation, that is, the
electrons occupy only the first Landau level; con-
sequently, tmo-body electron-electron collisions
cannot exist. Furthermore, me neglect three-body
collisions, '0 " like electron-electron-impurity or

electron- electron-phonon interactions.
(ii) We are able to transform the electron-

acoustical-phonon collision term of the master equa-
tion by means of a Fokker-Planck analysis.

(iii) Finally we choose the simplest model to de-
scribe the electron recombination, that is, we use
an electron recombination time with a convenient
energy dependence.

The paper is divided as follows: Section II is
devoted to the description of the model (including
broadening effects on the energy levels). In Sec.
III me transform the master equation into a
Fokker-Planck equation, the solution of which is
given in Sec. IV, where the shape of the EDF ob-
tained is discussed. In Sec. V the mean energy is
derived and compared to our previous results, and
finally, in Sec. VI the qualitative influence of opti-
cal phonons on the EDF is examined. Qur conclu-
sions are summarized in Sec. VII.

II. DESCRIPTION OF THE MODEL

It is mell known that the electron states in a
magnetic field B, parallel to the z axis, can be
specified by three quantum numbers: n, k„, and

A, summarized by v. If we neglect all phenomena
related to the electronic spin, the electron ener-
gies reduce to

e„=(n+ ,')k(o, +I'km/2m, —

where m is the effective mass of the parabolic
conduction band. Using the same model as in Ref.
9, me may write the stationary master equation,
obeyed by the EDF p„as follows:
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The first term of Eq. (2) describes the creation
of electrons by laser excitation to an energy 6'„
above the first Landau level of the conduction band.
As in Ref. 9, we assume that the electrons are
created by photoionization of impurities; n is the
absorption coefficient, I the photon flux density,
and g(e„) the density of states of the electrons.

The second term corresponds to the annihilation
of electrons by means of various recombination
mechanisms; we will assume that these mechan-
isms can be described by a recombination time;
more precisely, let ~, be the recombination time
of an electron in state v. We will assume that this
recombination time is energy dependent,

7, =7(~.)

Finally we have introduced in Eq. (2) the variation
of p„due to the collisions. In our EQL case, the
elastic collisions on impurities do not contribute to
Bq„/Bt. Thus W„„, is the transition probability per
unit time to transfer an electron from state v to
state v' due to an electron-phonon collision. We
can write g „„,in the simplest form as

TV„„.= + Z (y (q))'[N, 6(e, —e„,+k&u, )
q

+ (1+M,}6(e„—e„-h(u, )]„

(4)

where N, is the thermal equilibrium phonon distri-
bution function at temperature 7.' and where

ly„„,(q)l'=c'(q))& vie'& 'iv &I'. (5)

In Eq. (5) c(q) describes the electron-phonon coup-
ling, its strength and its character. The two 5(e)
terms in Eq. (4) describe the energy conservation
when absorption or emission of a phonon occurs
during an electron-phonon collision.

%'e shouM be more careful in the description of
the electronic states: Eq. (1) does not take into
account any collision broadening effects. As is
well known, "both multiple scattering of electrons
on impurities and the fluctuations in the potentia1.
(produced by the random distribution of the im-
purities) lead to a broadening 1", as well as a shift
a, of each Landau level. Consequently, Eq. (4}
must be modified. We will replace each 6(e} term
by a spectral density A(c). If b, and I" are assumed
to be energy independent, A(e) has a Lorentzian
shape and the density of states

g(e) =Q A(e —e„)=Q g„(c)

is simply given by"

2g 2m ')'2
g„(E)=

~ g Be[f (n+—p)A(d

(6)

where A=I.' is the volume of the sample and 5
=(8'/m&, )'~' the cyclotron radius. Actually, in or-
der to obtain tractable calculations, we will neglect
the shift a and-replace A(e) by a Gaussian":

A(~) =(27f12)-~~28-~'~nr' (8)

and we will replace the density of states by

[2Q/(2v6)'](2m/ff')'~' [e (pg+ 2-)S(u, +I'] ' ' if e &(n+ 2)k(o,
g„(~)=

0 if e ~ (g+ 2)kru, . - (9)

One can easily check that we regain the undamped
density of states when I' =0. Although the approxi-
mations (8) and (9) are not entirely consistent,
they are necessary to avoid lengthy calculations.
We assume that they do not change the main fea-
tures of the results.

and

g(~) = f m/(2~6}'](2m/)I')'"(~+r) '", (10)

while

III. DERIVATION OF A FOKKER-PLANCK EQUATION

From now on we will assume that only the first
Landau level is populated (EQL). This implies
that 5, »AT and that the energy e~, to which the
electrons are photoexcited, is much less than ku,
(low-energy excitation). Under these conditions the
set of states v and v' of Eqs. (2) and (4) are re-
duced to vo and v,' such that g=pg'=0. The ener-
gies and the density of states in the EQL case be-
come

e„=—,'Sar, +lf'k', /2m = —,'k&u, + q

1(J)=$ )),„PJ -))'„„.P„,.I 0 '0 "0"o
't)

Since 8", „g takes into account interactions with

both acoustic and optical phonons we will write

(12)
J

e(~) =I"(~)++"(~).

In this section we will deal only with e (e); the
treatment of I'"(e) will be developed in Sec. VI.

In order to transform I"(e) into a differential

Let us focus our attention on the collision term
of Eq. (2),
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8s6 «k T,
where s is the sound velocity, we show in Appendix
A that the probability P(e, e') may' be written

P(e, e') =g(s}g(e')(P(e —e'), (16)

where (P(e —e') is given by Eqs. (A4) and (A6).
If we define the energy distribution function by

f(~) =g(~)p(~),

then (i) for energies large enough, typically, e

»Ks 6 ', and (ii) for functions f(e) varying slowly
enough over the range of d'(e- e'), the acoustical
collision term 6"(e) may be approximated by

d6"(e) = M~ + M2
dE'

(18)

M„ is the nth-order moment of 6'($) and is energy
independent.

The exact criteria of validity of Eq. (18) will be
obtained by using condition (ii) once the energy de-
pendence of f(e) is known.

The calculation of the moments is also done in
Appendix A. It is shown that the zero-order mo-
ment is simply related to the acoustic collision
time ~„(e) fEq. (A13)].

The expression of first and second moments are
given for two different kinds of electron-phonon
interactions: the deformation potential and the
piezoelectric coupling by Eq. (A19).

Finally, as long as we do not take into account
optical phonons effect, the master equation (2}can
be replaced by a differential equation satisfied by
f(e). From Eqs. (1V) and (18) we obtain

equation we follow the same line as in Ref. 15. We
define the new transition probability as

P(e, e') =, g(e)g(e') W„„. (14)
2n'5

As long as the average energy exchanged during a
collision is small compared to the thermal energy,
that is

gy. Nevertheless, under the EQL conditions and
when e~ & 5+„none of the electrons have an ener-
gy e greater than Aw, . For. convenient magnetic
fields and for a semiconductor like GaAs on which
many of photoexcitation experiments have been
performed, A~, is of the same order of magnitude
as the optical-phonon energy a+0 Thus in the
EQL there is no electron available to emit an opti-
cal.phonon and the temperature is sufficiently low
that one can neglect the absorption of an optical
phonon. This is the main reason that we can use
the solution of Eq. (19) to obtain a reasonable ap-
proximation for f(e).

~(~)g(~)=a ' (20)

The equation obeyed by f(e) is now reduced to a
second-order differential equation with constant
coefficients,

0= M, +M, , —af(e)+ 6(e —e~).df d'f eg
dE dc g(~)

(21)

We look for a solution of (21) which satisfies the
two following conditions:

IV. SHAPE OF THE DISTRIBUTION FUNCTION

In order to solve Eq. (19), it is necessary to
discuss a last physical point of our model: the
energy dependence of the recombination time &(e).
We know very little about this function when a mag-
netic field is present. In the absence of magnetic
field the Lax model"' of a cascade capture of the
carriers by shallow donors predicts that 7(e) in-
creases as a power of g. However, when c goes
to zero it gives a divergent recombination rate,
a result that is obviously wrong. To avoid this
spurious result, a cut-off Ep was introduced. In
the presence of B we will still assume an increas-
ing dependence of w(e) with e as well as the ex-
istence of a cutoff. Moreover, for the convenience
of the calculations we take 7(e) proportional to
(e+ e, )' ' and we will assume that eo is of the same
order as the level broadening I'. Under such an
assumption the product 7(e)g(e) is constant,

(19)
(i) f(e)-0 as e-~, (22)

The transformation of Eq. (2) into Eq. (19) is the
usual treatment of Fokker-Planck. We recall that
this js valid for q)) @s5, Ss5 « kT, and when
the optical phonons effects are neglected. This last
restriction will be dropped in Sec. VI.

For the present let us simply note that a Fokker-
Planck treatment cannot be valid for optical pho-
nons because the energy transferred between an
optical phonon and an electron during a collision is
far too large compared to the mean electron ener-

(ii) g(e)f (e) de = eg

0 0

This last equality results from the conservation
of the number of particles deduced from Eq. (2),

(24)

and from the assumption (20).
Let us define the three energy-independent pa-
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ram eters:

4M, a t kT ' T~(e) ' nt I"

(M, )' (tfs6 ' r(e) 2 (8's6

r = (M,/2+) [(1+&)'l2+ 1]

t = (Mi/2M2)[(1 +q)i ~ —1 j.
Equation (Al 9) of Appendix A leads to

M2/M, =kT[1+ 2n(I'/h—s6 ')']=kT„(,
with

(25)

(26)

(2V)

(28)

X(ks6 ')/[1+2+(ks6 ')];
hence the net energy lost during a coBision is"

As' '
if « i.

kT

But the number of collisions that an electron un-
dergoes during its lifetime is T/r„; so the total
energy lost by an electron during &is simply

and

T„,= T[1+—,'n(r/Ks6 ')']. (29)

Note that for I' = 0, M2/M, =kT, which is the
temperature of the thermodynamic equilibrium
distribution function. We shall see later that T,ff
is also the temperature of the thermodynamic
equilibrium EDF in the presence of collision
broadening.

Moreover, g may be easily understood in terms
of average energy lost during a collision. In each
collision an electron looses an energy of order
@s5 ' with the probability

[1+X(hs6 ')]/[1+2M(ks6 ') j

and receives the same energy with the probability

Finally, we note that for given B and T we have
the following two limiting cases: (i) q -0 corres-
ponds to an infinite recombination time and we ex-
pect the electrons to have a thermal distribution;
and (ii) g -~ corresponds to an instantaneous re-
combination, and we expect in this case a distri-
bution peaked around e = i~.

We now come back to the solution of Eq. (21). A

straightforward calculation gives:

f(e)=Re "'+[nIa 'rt/g(e~)(r+t)]

x[B(f —e)e"' 'a'+ B(E —E' )e ' p']

with

e 'r —e"'&erfc[[r(e~+ I') ]'~']&Ia 'rt
g(e~)(r+ t) 1-erf[(ri")'~ ] w

~ (ep+I')' rt

—e "~ '"'"
~

—
~

—(erf[i [t(E +I')]'~'j —erf(i~tl')) ),
. ] (31)

(2M /M )x/2 (32)

Using Eqs. (A19) and (26) the above inequality is
equivalent to

(1+g)~~2+1 &&(2 n)&~2kT /@s6

For given values of kT/ks6 ' and F/kT the in-
equality (33) leads to a minimum value of the ratio

(33)

where B(x) is the usual step function and erf(x)
= 1 —erfc(x) is the error function. "

The final expression of f(e) varies essentially
in an exponential way characterized by the two pa-
rameters r and t. We need to remember that we
have obtained the Fokker-Planck equation (21) only
if f(c) is a slowly varying function in the range of
6'(s —s') defined by (16). A typical energy range of
f(s) is r" or t ', whereas the energy range of
6'(s -&') is of order (2M,/Mpt'. Then the small-
est of r ' and t ', i.e., r ', must satisfy the con-
dition

r/7„, below which our results are no longer valid.
Let us now examine the change in the shape of

f(e) with the parameters g, e~/kT, and I'/kT.
In Figs. 1(a)-1(c)we have plotted the dependence

of the reduced distribution function

q (x) =f(~)/f(e&)

on the relative energy x= e/ep in the case of GaAs
at 8=5 T, T=10K.

With regard to the influence of the collision
broadening, Figs. 1(b) and 1(c) show that for the
two values of I'/kT choosen, the general features.
of the curves are quite similar. However, as ex-
pected, the curves at the larger value of 1" are
flatter than at the lower value of I.'. Let us now
discuss the change of qr(x) at fixed values of e~/
kT for different q. On one hand, as rt and r/r„
are increased the distribution function departs
more and more from the MMvvellian because the
number of collisions suffered by an electron dur-
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p(~).
On the other hand, Eq. (34) shows that for 1 a0

a heating for the electron gas appears (T,«&T}.
This result can be recovered directly from the
master equation and detailed calculations can be
found in Appendix B. We mention here that the
mechanism leading to this heating is exactly the
same as that discussed in Ref. 15 for the electric
field action. The electric field blurs the energy
conservation, as does the collision broadening, "
and we know that as a result the electron temper-
ature must rise.

Another interesting feature of the behavior of
f(e) can be noted on Figs. 1(a) and 1(b): at con-
stant () the discontinuity of the slope increases with
~~/kT. This can be explained by remembering that

g
' is the average energy lost by an electron dur-

ing its lifetime (measured in units of kT,«). As
e~ increases, the ratio of this average energy to
e~ decreases so that the dispersion of the electron
energies becomes less and less important. An
equivalent way to express this is to say that the
initial 5 distribution becomes more and more
weakly broadenedby acoustical phonons interaction
and hence the slope discontinuity becomes larger
and larger.

It is possible to calculate this discontinuity; we
get immediately

(d 'i d
(d~ j.=&+ d»g=( f(eQ)g(ep)

(35)

FIG. 1. Dependence of the reduced distribution function

f(e)/f (e I,) on the reduced energy e/er for different
values of the ratio y =E'p/kT Magnetic field B=5 T,
temperature T=10 K, sound velocity s =3.8x103
msec . {a) 1/kT =1, 7/7„=10, g =0.576; {b) F/k T
=1, 7/y~, =10, g=57.6; {c) I'/kT =2, v/v~, =10, g=19.2.

ing its lifetime is lowered, and hence the thermal-
ization of the electrons is diminished. On the
other hand, when g decreases the. memory of the
initial photoexcitation at e~ disappears and a Max-
wellian shape emerges.

In particular, when () =0, f(e) is exactly Max-
wellian,

f(e} e E I«r«(( (34)

On one hand in the absence of collision broadening,
we would have expected, from the principle of de-
tailed balancing, that p(e) -e ' «r rather than the
result of Eq. (34), f(e) =p(e)g(e)-e ' ' . How-
ever, this is not very important because our cal-
culations have always neglected the dependence of
g on e as compared to the exponential behavior of

Since this expression depends only on q at given Ij,
T, and e~, it is possible to deduce a value for the
ratio ~/7 „from it.

V. MEAN ENERGY

In a previous work' we have derived an expres-
sion for the mean energy per electron (or elec-
tronic temperature) by assuming a Maxwellian dis-
tribution function and by using an energy balance
equation. We will now compare the results of this
simplified model with the results obtained by us-
ing the preceding expression for f(e}, as given in
Eq. (30).

In the case of low-energy excitation, where we
neglect optical phonons effects, we obtain

J,
"

ef (e)ds
(e) =

I", f(s)de.

1 B+re~+I-r/t+[r /t(r+t)je "&
r B+(r+ t) '(r+ t- re "J')

with B=Ag(ep)/nIa 'r, where A is given by Eq.
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(31).
The dependence of (e)/kT on ep/kT is plotted on

Figs. 2(a)-(c) where the broadening I' is, respec-
tively, taken equal to zero and to 2kT.

As expected, Fig. 2(a) shows that the mean en-
ergy increases with the laser excitation energy e~
and that for energies e~ smaller than kT the mean
energy per electron is smaller than the equilibrium
thermal energy kT. It is also obvious, in the same
figure that this heating (or cooling) becomes more
and more important as the ratio v/7„ is lowered.
If this ratio is lowered the electrons are able to
exchange less and less energy with the phonon
thermal bath during their lifetime, and thus depart
more and more from thermal equilibrium. As for
the influence of the magnetic field, Fig. 2(b) shows
that it cools the electron gas. The interpretation
of this feature is the same as given in Ref. 9: the
power lost via acoustical phonons is enhanced by the
presence of B. Although these features are similar
to those predicted in Ref. 9, a more precise com-
parison between the present and previous results
is not possible, since the distribution function and
the relaxation-time energy dependence are not the
same anymore.

The influence of a level broadening is shown on
Fig. 2(c}; in this case, as pointed out in Sec. IV,
the thermal equilibrium temperature is no longer
T but T,«as defined by Eq. (29). T,« is equal to
3 T in the case plotted in Fig. 2(c). This explains
the overall increase of the mean energies in Fig.
2(c), as compared to Fig. 2(a). Also when the ex-
citation energy ~~ is equal to AT,« the mean energy
per electron is nearly equal to kT,« independent
of the ratio ~/7„.

Except for this scale variation of (e) due to the
change of T into T,ff we find the same features of
the curves at I" =0 and at I' = ,'kT; that is, (s—)in-
creases with e~, it reduces with 7/7„ for e~
& kT,«, and increases with r/7„ for op & kT,«.

We may also note that at a given ratio r/7'„, (e)
increases faster with &~ at I' =0 than at 1 = 2kT;
this is not surprising if we remember that the dis-
tribution function flattens as I' is increased [see
Figs. 1(b) and l(c}]and so will do the curves (e)
versus E'~

10
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VI. INFLUENCE OF OPTICAL PHONONS

In this section we extend our results qualitative-
ly in order to include optical phonons and their
relaxation processes. We will discuss the simple
case of a zero collision broadening (I' =0); de-
tailed calculations performed for the case 1"0
are presented in Appendix C.

We will use the three following assumptions that
are derived from the EQL condition and from the

FIG. 2. Dependence of the reduced mean electron en-
ergy (e)/kT on the ratio eJ/k T for different values of
v/v„; T =10 K, s=3.8x 10 m sec . (a) I'=0, B =5 T;
(b) F=O, B =8 T; (c) F=—kT, B =5 T.

fact that 5~0 is large compared to the mean ener-
gy of the electrons. (i) The temperature is suf-
ficiently low to allow us to neglect the absorption
of optical phonons. Hence in the expression (4) of
W„, the term proportional to N, may be neglected,
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d qc q e

& 5 q, +~ @, I [We —v'(e —k&, )]

(38)

We may recast e' (e) into the equivalent form,

(e) =- e(e —h~, ),p(~)
&„(e)

where

7.,(e) =W '(e) . (4o)

Thus the influence of optical phonons amounts to
add the term (39) to Eq. (21); this term is nonvan-
ishing only for energies larger than the phonon

energy . It has exactly the same structure as the
recombination term, p(c)/r(c). However, it dif-
fers from it by its energy dependence. Thus the
introduc tion of optical phonons reduces the hf c-
time of the electrons by a factor &(e)/[ge) + &Op(e) j ~

Qualitatively we may say that this is equivalent to
increasing the parameter q 7/ f7or -energies e

such that e ~ k~p. In that region, and always with
the assumption of 1ow- energy excitation, the dis-
tribution function behaves as f(e)-e "' (for e & e~)
so that the appearance of optical phonon relaxation
processes leads to a slope discontinuity at c =h wp

and to a more rapidly decreasing distribution func-
tion for higher energies. This result can be com-
pared with that of Ref. 18, where f(e) is crudely
taken equal to zero for c &5 (op ~

A finite collision broadening I' does not change
those qualitative results (cf. Appendix C), except
that the emission of an optical phonon can now oc-
cur at an energy lower than 5+0 (of order h &u~ —I').
Also, the sLope discontinuity of the distribution
function at e =8 (op will be smeared out and the
change of slope spread over a region of width I'
around 8cop .

whereas 1 +N, is reduced to 1. (ii) The density of
states decreases when e increases. (iii) Of the
two electronic levels differing by 8„only the
lowest is occupied with an appreciable probability.

Due to assumptions (ii) and (iii) the term
g „,p„,W„,„ofEq. (12) gives a negligible con-
tribution (see Appendix C) and will be omitted.
Under these conditions,

6 '(~) = W(-c )p(e) e(~ ka—,),
with

6~L
w(e) = g(e -5 &u, )

VII. CONCLUSION

In this paper we determined the distribution func-
tion of electrons photoexcited by a laser in the
conduction band of a semiconductor. Vfe assumed
EQL conditions and modeled in a crude way the
recombination processes .

This electron di stribution function is a solution
of the Pauli master equation in which the collision
term with acoustic phonons is transformed using
a Fokk er- Planck analysis. The influence of optical
phonons is shown to be damped by the EQL condi-
tion and by the assumption of low- energy excita-
tion. This is discussed qualitatively at the end of
the paper.

We give a detailed discus siorr of the energy de-

pendencee

of the energy distribution function that
was obtained . As the ratio between recombination
time and acoustic collision time (i.e. , 7/~„) is in-
creased, the distribution function passes continu-
ously from a sharply peaked shape around the ex-
citation energy e~, to an almost Maxwe 1lian func-
tion which exhibits only a slope discontinuity at

c~, where it remembers the initial distribution.
The value of this discontinuity is related to the
ratio r/v „and hence can be determined experi-
mentally .

The interaction with optical phonons leads to a
second slope discontinuity at e =K(uo (phonon ener-
gy) corresponding to the appearance of energy re-
laxations processes caused by the emission of
optical phonons.

Using the obtained electron di strib ution function
we calculated the mean energy per electron and
studied its variations with e~, ~/v;, , and the mag-
netic field in the absence as well as in the pres-
ence of collision broadening. As expected, (e) in-
creases with e~ and decreases with 7/~„. More-
over, the magnetic field acts to cool the electron
gas. These last conclusions are qualitatively the
same as those obtained in an earlier paper' by u s-
'ing a Maxwellian shape for the electron distribu-
tion function.
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APPENDIX A

Let us first derive an expression for P(e, e') in
the case of acoustic phonons. From Eqs. (4), (5),
and (11) the transition probability from the state
pp to the state vp can be written
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W = e "~/25 5
2' 2 2

Vp"p A'~2A'g+ qg Ay, Ay+ qy

x c'(q)[N, A(e —e'+hsq)

I2T,20 hence due to the condition (A2) the range of
(P(() is of order hs6 '. By comparing Eqs. (16)
and (A4) we may write

+ (I+N, )A(e —e'- ll sq)],
P(E, 6 ) =g(E)g(E )(P (6 —E') . (A 7)

Ss5 '«kT (A2)

(A1)

where A(e —e') is given by Eq. (8).
By using the momentum and energy conservation

laws it is possible to show '2 that, if the condition

With the help of Eqs. (12) and (14) and neglecting
the variation of the density of states g(e) over the
range of (P(c- e') we may rewrite the collision
term in the form

8 (f) fdE' [f(E )tP(f' —E)-f(E)tP(E —E )], (Aa)
0

is fut. filled, the component q, of the wave vector
q is negligible compared to q~[=(q2, +@2,)'/2]. Then
we may write

where

f(~)=g(»)p(~). (A 9)

2n'6

4~6 ~ e q~() /2 2( )
Cg

For energies q much larger than As' ' and due to
the short range of (P(e —e') we may replace the
lower limit of the integral by -~. Moreover, if
we suppose that f(e) is a slowly varying function
compared to (P(e —e'), we may expand f(e) in a
Taylor series and obtain

[N A(E'- E +Isfli)

It is then obvious, from Eq. (A3), that
g» W„„, is dependent on the difference e —e'

VpV p
only. It can easily be brought into the form

2@56'(q —e') = 2/2 W„„

(A3)

d2I "(e)=Ml +M2
dE'

Where M„ is the moment of order n of (P($),

M„=, Jt $"6'(f)d$ .

I et us recall that Eq. (A10) is valid only if
(l) e»KS6'

(ii) nS6 ' «I27',

(A 10)

(A 11)

—xAxdx ~ (A4) (iii) the range of f(s) is much larger
than that of (P(c —. 2').

6'(e —e') appears as the convolution of the broad-
ened spectral density A(x) with the "transition
probability" (P (E' —6') Rt I' = 0. Tllis 1Rst quantity
can be written

(P'(~ - 2') = g e '~' ' C'(q)
2m' 2 2

Cg

&& [N, 6(e —e'+hsq~)

+(1+N, )6(e-e' —Ksqi)],

(A5)

which is transformed into
g2 g 2/2 g2 P

p 2g e
(P (5) =

@ 1 8 2/»r-

Before calculating M, and M2 ba, sed on the de-
formation potential and on the piezoelectric cou-
pling, let us stress that the moment of order zero
~p is related to the acoustical collision time of an
electron in a state of energy e„. Nore precisely,

Vp

'=Q W„~ i = Jt dt'g(E')t (6„—t')
0 0

=g(e, )M, , (A13)

so that the quantity l „(e)g(e)=M0' is energy in-
dependent,

We may also note that by using the form (A4) of
(P(e —e') the moments M „of tP(e —e') can be easily
expressed in terms of the moments MP„of
6' (e- e '). For example,

I e(5)+ c'( —
P
e(- 5) ~(8 s] ( ks] (A6)

M0 = M00, Ml=M0l, and M2 =M2+ 2I' M0. (A14)

Equation (A6) shows that the range of (P0($) is of
order ks6 '. On the other hand, the range of A($)
is I', so that the range of (P($) will be the smaller
of these two quantities. In practice 1 is of order

In what follows we shall first calculate M„and
then obtain M„.

For the deformation potential, with the same
notation as in Ref. 9, we have
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M, =4vt rD(')/@'s,

Mi =Me(hs6 ') /kT &

M, =M, (as6 ')'[I+r'/2(as6 ')'].
(A 16)

c'(q) =D'"q. (A15)

By using Eq. (A11) together with the fact that f
=ks5 '«kT we obtain

such that (P (t) and E($) have their three first mo-
ments (Mo, M„M, ) equal. In the limit M, /Mo
«{M,/MD)'~», F(g) can be written

2

(B3)

Thus Eq. (B2) reduces to
For piezoelectric coupling

c'(q) =
p(e)/p(e ) = exp[-(Mi/M2)(e —e )].

Hence the solution

(B4)

w11ere gD is the screening length. Then Qsirlg
again Eqs. (All), (A14), and the approximation
qg«1, we get

nr(I. ( /2)[r /(es6-*) ]} .
Let us note that from Eq. (30) we obtain

(B5)

2'('~aT
Mp= 2 2 Q, (A 18)

ur f1+(a/2) [r'/(hs5 ')']} (B6)

with e = in(2/c62q2~ ), where inc is equal to Euler's
constant. Then we have

(Rs6 '}'
p

In the limit case, where we neglect the variations
of g(e) as compared to the exponential decreasing
of p(e), Eqs. (B5) and (B6) are equivalent.

(as6 ')' (( u r'
0 o. ~ 2 (as6 ')'& '

In both cases the relation between M„M„and
Mo has the form (AI9), where n=1 for deforma-
tion potential and o.' = ln(2/c5'q D) for the piezoelec-
tric coupling.

APPENDIX B

In the limit g =0 the electrons stay an infinite
time in the conduction band and hence they reach
thermodynamical equilibrium. The distribution
function must then obey the principle of detailed
balancing, that is,

APPENDIX C

The following is an evaluation of 6' (e). If we
neglect the absorption of optical phonons, the
transition probability at finite I' reduces to

2S 2 2g2/2W„„.= c (q)e '& 6»» „f)»"o"o y» y+ Cy g» g+ Qg

&& A(e„—e„&—5(do) &

where A(e) is given by Eq. (8) and c'(q) =D"'/q'.
Then the calculation of the new transition probabil-
ity as defined by Eq. (14) leads to

P (e& e') =g(e)g(e )q)(t& e ) (x4e t —Ro(&) & (C2)

(B1)p„S'„„=p„~TV„.„.
As we want a spatial homogeneous distribution

function, p„must be independent of k,'. By sum-
Pp

ming Eq. (B1)over k„' and using the definition (A4)
we obtain

with

w HD('&
(p(Ee) =

@
'e ( '

)E&( o(&E, e ))'
where

(C3)

p(e)/p(e') = (('(e'- e)/6'(e —e') (B2)
o.(e, e') =, ( we —v'e' )', (C4)

In order to find p(e) we may in the above equa. -
tion approximate 6'&. ..&

by the function E(e- e'}
and where E,(y) is the exponential integral func-
tion." This result on P' (e, e'} allows us to write

Let us first note that the values of x that contrib-
ute significantly to the above integral are of order
I' («R&oo). For c & ha&0 both terms of the integral
contribute to I'~; but the first one is negligible
compared to the second because it involves

e-x /mr
2 2

8'"(x)=Jdx &,„, [e(x&IIx, &x)»(x &I&tx, +x, x)II(x+I&x, & x)&(x&I&x, +x)

—e(e-a(u, —x)q)(e, e- Sa&, —x)g(e-h&, —s}p(e)]. (C 5)
l
p(z+k&u, —z), which is vanishingly small compared
to p(e). On the contrary, for e & S(do only the first
term exists; it accounts for the transitions of elec-
trons from states with energy e+S&p to states
with energy e, the former states being populated
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with the probability p(e+k&uo). Again this proba-
bility is much smaller than p(e) and the contribu-
tion of the first term of 6'~(e) to the master equa-
tion will be much smaller than the variations of
the distribution function, due to the interaction
with acoustic phonons. Under these conditions,

(2mr')'"

X (p(E, E —g(do —X)

g(e —5&0 —x) .

By noting that cp and g are slowly varying functions
of x, we obtain

6 (E) = —p(E)&i&(E& E —k(00)g(C —A~o)$(E —8~0)&

(C7)

with

y(~-I~, ) =-.' 1+erf~ /E —k&&& /~

E r i
&& [e(~-s~, )- e(na, —&)]J (C8)

For I'=0, P(s- Sruo) reduces to a step function,
which means that only electrons of & larger than
two may relax their energy via an optical phonon.

At finite I", (I&(e-k&uo) is a smooth function of
~-A&„varying from 0 to 1 around e =S&0 over a
range of order l". We find, as expected, that an
electron having an energy around 8~0 —I' can emit
an optical phonon.

In all cases,
6"(s) = p(~-)/&.~( s),

where T,~(e) is nonvanishing only for s &8&v —Z'.
The result (C9) is formally the same with and

without colhsion broadening so that the discussion
of Sec. VI, performed in the case I'=0, can be re-
peated for the case I' 0.
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