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Comyuter simn&ation of axis& channe&ing in monatomic and diatomic crystals.
Multistring model and its ayylication to foreign-atom location
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A multistring potential with the continuum approximation is used to simulate channeling of charged
particles in monatomic and diatomic lattices. Different quantities are calculated: the trajectories, the flux
distribution of channeled particles, the close-encounter probability, and angulm' distribution. The close-
encounter yield for foreign atoms present in the channel is also computed and application is made to the
lattice location of these atoms in the lattice. Results are given for various crystal types and in particular for
bcc, fcc, diamond, and zinc-blende structures. Comparison is made with other computer simulations and,
when possible, with experimental results. It is shown that the gross features are in agreement. The
discrepancies are discussed.

I. INTRODUCTION

Many theoretical studies of channeling exhibit
two dominant features: an investigation of the
phenomenon itself and generally its application to
the lattice location of foreign atoms in a single
crystal. These are the two aims of the computer
simulation described in this paper. The investi-
gation of the channeling phenomenon has already
been carried out in many cases. ' Nevertheless,
there are relatively few publications on diatomic
crystals. ' ' Our program has thus beeri designed
to study channeling in monatomic as well as dia-
tomic |attices, and to give the interaction yield of
channeled particles with interstitial or substitu-
tional foreign atoms.

The different types of computer simulations can
be classified with respect to the interaction be-
tween the particles and the lattice. Following this
classification, the principal models are presented
in Table I from the simplest (single-string analy-
tical model) to the most sophisticated (many-body
model), together with typical information displayed
by the programs. We are concerned essentially
with two results which can be compared to experi-
mental channeling data. First, the close-encoun-
ter probability with the lattice atoms g(g, , s) as a
function of g„ the angle between a crystallogra-
phic axis and the direction of incident particles
and the penetration depth z. This quantity is to be
compared to the yield as a function of energy
(spectra). Second, the spatial density n(r, e) of
the channeled particles which is of fundamental
interest in the interpretation of the lattice-loca-
tion experiments. It can be seen that the multi-
string model is the simplest one which allows one
to obtain both the close-encounter probability and
the particle flux as functions of the penetration

depth. It must be remarked that, contrary to
binary-collision or many-body models, the intro-
duction of thermal vibrations is not adapted to
the computational procedure. This problem is
discussed in Sec. III. The principles of the com-
putational procedure have been already described
in a preliminary communication' and more re-
cently such a model has been used to simulate
the axial to planar transition. ' There is some
evidence for the use of a similar simulation by
Hashimoto" "but to our knowledge no detailed
description of this program has been published.

II. COMPUTER MODEL

A. Classical mechanics and continuum approximation

Different criteria define the applicability of
classical mechanics to the motion of channeled
particles. Comparing quantum-mechanical dif-
fraction and channeling, the classical treatment
is found valid if the angular width of the Bragg
resonance 68~ is much larger than the Bragg
angle 8~." This condition can be written"

u = b, 8~ /Gs = 4m Z, Z,e'/~k'Nd'» 1,
where Z, and Z, are, respectively, the atomic
numbers of the incident particle and the target
atom, N is the atomic density, and d the inter-
atomic distance along a crystallographic axis.
In our case (protons or n's on Si, Gap, ZnTe),
the parameter u is of the order of 10'-10'. There-
fore, classical mechanics will be used for all cal-
culations described hei.e. A second type of cri-
terion proposed by Lindhard" concerns the as-
sumption that the continuum approximation is
valid. A,s a basic hypothesis for our model this
approximation is done and it is assumed that an
atomic row produces at a distance r an average
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potential U(r), the so-called string potential. In
this case a classical description is applicable if"
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This condition is fulfilled for all particles of mass
large compared to the electron mass.

B. Particle-crystal interaction: The multistring hypothesis

If U(z, y, z) is the potential experienced by a par-
ticle (M„Z,s) moving in an atomic lattice the clas-
sical equations of motion in a Cartesian frame
xyz, where z is para, llel to a channel axis, can
be written

dx U
M =- —=q8'dt ' ex

d' ~U
M +=-—= q,

8$

d'z &U
M, —— -q8

where x(f), y(t), z(i) are the coordinates of the
particle, g (b„.8„,8, ) is the electric field and
its components, and q=Z, e is the electric charge
of the incoming particle.

If the continuum approximation is used the po-
tential has no dependence on z and can be written
U(x, y). Moreover, BU/Sz = 0 and the motion along
the z direction is given by s = v;i +s,. Then the
trajectory can be described by solving the equa-
tions of the projected motion on the xy plane.

The potential U(z, y) is calculated from the multi-
string method. Defining a string potential U(r - r, )
for an isolated atomic row located at position r&

in the transverse plane (Fig. 1), the total poten-
tial is the sum of the different potentials created

PartiC;le
4E

O No o e
Q

Q g

3&UK
FIG. 1. Definition of geometric terms used in the

formulas.
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'
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The values of S„and S„are thus re".""-""-'.t-n '

C. Method of calculation

The equations of the particle motion are
numerically with th f ll '

g
'e o owing initial

e position r(x 8
g

, y, ) and the velocity
„,v, j of the incident particles.
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tion of the particle motion
and the coordinate axes.
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(t+bt) is

x(t + at ) = x(t ) + v, (t )a t + (qh.„/2 M, ) (at )',

y(t+t t) =y(t)+v„(t)t t + (qg„/2M, )(~t)2,

z(t+ ~t) =z(t)+v, (t)~t .

The velocities are given by

v„(t + ht ) = v, (t) + (q8, /M, )b,t,
v, (t + at ) = v „(t) + (q8 „/M, ) at .

v, (t+~t)=(v.'(t) -2t E/M, )'/',

where b, E= (dE/dz), [z (t + ht) -z(t)], and

(d E/dz), is the energy loss of the channeled parti-
cles. The calculation is performed for 1300 parti-
cles uniformly distributed over the transverse
plane x, y. The area of the useful transverse zone
is equal to that of a unit cell (or one half of a unit
cell in the case of diatomic crystals).

The accuracy of the procedure depends on the
time integration step ht. In practice, 4f was
chosen as large as possible to save computation
time with the condition that the energy of particles
was conserved. This energy conservation has been
checked for many cases and it has been found that
the choice of At depends strongly on the particle
position. Defining the transverse energy by

Ei = ~M, (v„'+ v„')+ U(x, y),
and the relative error by

6E„/E~o = (E~ -E~o)/Exo,

where Ej, is the initial transverse energy, we
have computed b.E~/E~, for different initial im-
pact parameters y,. For example, the case of a
particles entering the (110) axis of a ZnTe crys-
tal has been treated. The n. E~/E~, cluantity has
been reported (Fig. 4) as a function of the para-
meters=1-y, /y&. In this latter formula, y, is
the position of the tellurium row located on the
y axis (see inset, Fig. 4) and y, is the initial posi-
tion of a particle on the same axis. It is remarked
that the smaller B (concerning a particle entering
the crystal near the row), the greater AE~/E~, .
To insure a good energy conservation it is neces-
sary to choose a time step as small as 10 "sec.
Such an order of magnitude for Af has been used
in computations.

D. Energy loss

c3
CC )p-1

LU)
fp 2

LU

tp-3 I

)p-'l6
i }i}l I

]0" (sec.}

is varying. Two relations are available to calcu-
late the energy loss of channeled particles. The
first, from Lindhard, "has a simple expression
but overestimates the energy loss. In the second,
from Appleton et a/. "many parameters must be
determined with specific experiments. The forma-
lism of Lindhard has been adopted but the expres-
sion of the energy loss has been modified to intro-
duce modifications suggested by Appleton et al.
This procedure leads to the formula

i(dE 2 Z,' (
2

+ (NZ, (x, y))„ln
2 mv''r

I
where v~ is the plasma frequency, 8,. is the num-
ber of valence electrons per atom, and(NZ, (x,y))„
is the mean electron density near the atomic rows.
This quantity is calculated from the density of an
isolated row, p(r), through the Poisson ecluation
using the Lindhard potential. In summing the con-
tribution of n rows we obtain the expression

n

(NZ, (x, y)),„= Q p[(x-x, )'+(y-y, )'] .
4=&

It is of interest to introduce into this formula
the random stopping power (dE/dz)z. When the
value of (dE/dz)„corresponds to the Bethe region
the channeling stopping power can be written

(dE t ~ dElt, / Z„C'a'

TIME INTEGRATION STEP

FIG. 4. Accuracy of the computational procedure as a
function of time integration step for various impact
parameters. The 8 quantity is defined in Sec. IIC.

The energy loss depends on the impact para-
meter because the electron density in the channel

&(g[(x —x, )'+ (y —y, )'+ C'a'j
4~1 )
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~e advantage of this formula is to allow the use
of the (dE/d z)„experimental values.

E. Information displayed by the program

After each step of the program the particle coor-
dinates x-y in the transverse plane are available.
From these quantities are deduced:

(i) the particle trajectory in the whole space and

in the transverse plane;
(ii) the number of particles in a surface element

AS of the transverse plane which leads to the par-
ticle density in the channels(x, y, z).

(iii) the close-encounter probability P(x, y) cal-
culated from the distribution of atoms inside a
channel. The expression introduced by Barrett"
was used:

eosg / (x -x, )'+ (y -y, )'l,

where u', is the mean-square one-dimensional vi-
brational amplitude;

(iv) the close-interaction yield X(z) deduced from
the close-encountex' probability through the formula

}t(z)=Xf f P(x, y, z) dx dy,

where K is a normalization constant and S the
channel area;

(v) the total yield y within a depth 1:

})=f,'}t(z)dz; and

(vi) the yield of close-interaction processes
from impurity atoms.

If x~, yz are the coordinates of the mean posi-
tion of the impurity in the transverse plane, the
value of the yield at a depth z is given by

Xi(z) =X~ f fzP~(x, y, z, )e(x, y, z)

xn(x, y, z) dxdy.

Pz (x, y, z) is the spatial probability distribution of
the impurity.

If C(z) is the macroscopic concentration profile
and assuming a Gaussian distribution in the trans-
verse plane centered at the x~, y~ position,
Pz (x, y, z) can be obtained,

Pi (x, y, z) =C(z)f (x-xi, y -yi),

with

where uz is the mean-square one-dimensional vi-

brational amplitude of the impurity atoms.
The quantity o(x, y, z) is the nuclear cross sec-

tion and following Carstanjen and Sizmann is given
by18

o (x, y, z ) = e (z )5(x -x, )6 (y -y, ),

where o(z) is determined by the values of o(E)
(excitation curve) and (dE/dz), (energy loss).

(vii) The total interaction yield curve obtained
within a fixed depth is

Xr =foXs (z)dz.

From specifications (v) and (vii) the angular dis-
tributions relative to the substrate and to the im-
purity are calculated by varying the incident angles

q and/or e.

.HI. PROBLEM OF THERMAL VIBRATIONS

The displacement of atoms from their equili-
brium sites by thermal vibrations influences the
trajectories through a modification of the net po-
tential and of the close-encounter probability.

A. Influence of thermal vibrations on trajectories

Following the method adopted by Andersen and
Feldman" with a Thomas-Fermi-Moliere potential
it has been assumed that the thermal vibrations
lead to an averaging of the one-string potential
obtained by convolution of the I.indhard potential
with the displacement probability distribution of
the atoms f (p')

-2p'r cos 8) d 8,

where p' is the distance between the dynamic posi-
tion and the rest position of the atom. If one ap-
proximates f (p') by a Gaussian probability with a
variance u,', one obtains

f (p') = (2 p'/u', ) exp(-p" /u', ) .

The integration is performed numerically except
for r = 0. In this case V(0) can be obtained analy-
tically:

V(0) = g,Z,e'/d) lnt zu + Ei(zv ) e + y ) .

= 3a'/u', , y is the Euler constant, and Ei the ex-
ponential integral. Results for a ZnTe crystal are
shown in Fig. 5. However, the significance of this
approach is questionable. Indeed, in comparing
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FIG. 5. String potential of zinc and tellurium roars
in a ZnTe crystal, taking account the thermal vibrations
of the lattice atoms.

the minimal period of thermal vibrations to the
transit time of particles, it is clear that the parti-
cles are moving in a static lattice of which the
atomic rows have light curvature corresponding
to the phonon propagation. The potential depends
on the penetration depth and the equations of mo-
tion are modified from one given depth to the fol-
lowing. There is no simple way to take into ac-
count such a potential modification by thermal vi-
brations for which the convolution method is not
realistic. Thus, in a first approximation this
phenomenon will be neglected in our calculation.

B. Influence of thermal vibritions on the close-encounter

probability

The definition given in Sec. IIE holds. Indeed,
the close interactions occur in different channels
at different times and there is no correlation be-
tween the atomic displacements and the depth
where the close process is oeeurring. " The
atomic displacement probability can be chosen
as a Gaussian with a variance u', centered on the
mean position of atoms.

C. Determination of the mean-square deviation

1. Nonatomic crystals

The mean-square deviation of the atomic dis-
placement probability can be deduced from the
measurements of the Debye temperature e~, as
it is usual in channeling computer simulation. '
The O~ values given by the neutron or x-ray dif-
fraction experiments are preferred to those given
by the specific-heat measurements because the
frequency spectrum is weighted in different ways. "

2. Diatomic crystals

It is said by Hosemann and Bagchi" that the for-
mula defined in Sec. II holds when a lattice cell
consists of different atoms possessing different
displacement statistics. In this case they write
the mean-vibrational amplitude

where the subscript i =A+ indicates the type of
atom. It appears that we need two characteristic
temperatures O„and e~, but only one is available
from experimental data. These authors give an
example where they assume a common value 8&
=6~ for the two atomic species and where only
M, is varying in determining &u, &. This is the
procedure followed by Morgan and Jackson, ' and
in the same way we give the example of ZnTe in
Fig. 6.

Another way to introduce the vibrational ampli-
tudes is to use values published in the literature,
either experimental or theoretical from lattice
dynamical models. This procedure has many dis-
advantages. . the lack of exper-imental data and the
differences between results of theoretical models
for the same crystal. This is illustrated in Fig. 6.
In order to avoid these problems and to be able to
compare the computer simulations with one another
we have calculated the thermal vibrations using a
simplified model.

3. One-dimensional model

The model is the simplest one: the one-dimen-
sional lattice of which a detailed study is found in
the treatise of Brillouin and Parodi. " Let

u,„„=X„exp[i(at—(2n+1) qdj,

u, „=X~exp(i &ut —2nqd),
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(a):
assume that the displacement is given by the one-
dimensional model but we calculate the number of
vibration modes for a three-dimensional solid,

10-18

(u', ) =sN J x,'n(q) 2, i ii=B,,

N is the atomic density, q„ is the maximal value
of q, and n(q) the Bose distribution;

n(q) =-,'+ [ exp(h ~/AT) -1]

-17
0 I I I I I I I I I I I ' I I

10 I i I I I I I I I I I

0 500 1000 T( 'K)

The integration is performed numerically. Re-
sults concerning ZnTe are shown in Fig. 6 together
with experimental data and results from lattice-
dynamical models. The values obtained for the
one-dimensional model are in good agreement
with those obtained from the others (model of
rigid ions, MRI24; second-neighbor-ion model,
SNl").

10

I I I i I I I I I I I

0 500 1000 T( K)

FIG. 6. (a) Zinc thermal vibration amplitude in a
ZnTe crystal as a function of temperature. UNIDIM:
one-dimensional model; DEBYE: Debye model, MHI:
modified rigid-ion model; SNI: second-neighbor-ion
model. Experimental points (o). are also indicated. {b)
Tellurium thermal vibration amplitude in a ZnTe cry-
stal as a function of temperature. Definitions of sym-
bols as in (a).

be the displacements of A and .B type atoms. In
these formulas q is the wave number and d the dis-
tance between two closest identical atoms. The
cited authors determine the amplitude ratio

X~ M~-Ms a[(M~+Ms)2-4M~Ms sinmqdj'~
2M„cosqg

The amplitudes X„and X~ can be found from the
energy conservation law

', (M~„'+MsXge' =—h v,
yielding

2k 1
&u M„+Ms/8',

2k 1
X~

To determine the mean-square displacement we

IV. RESULTS AND DISCUSSION

Due to its nature, the multistring model can be
applied at a given axis of a given crystalline struc-
ture. Computations were performed for the follow-
ing axes shown in Fig. 7: (i) monatomic crystals:
(110) axis of fcc and diamond structure, (100) axis
of fcc and bcc structure, C axis of hexagonal
structure; (ii) diatomic crystals: (110) axis of
zinc-blende structure. These axes are easily
treated by the same program because the (110)
diamond structure axis is constituted of two (110)
zinc-blende structure axis.

A. Trajectories

A preliminary computation was carried out for
1.5-MeV a particles entering the (110) axis of a
Gap crystal (zinc-blende structure). The parti-
cles initially located on the $110) plane parallel to
this axis (the projection of this plane on the trans-
verse plane is the a-b line seen in Fig. 7) were
considered for comparison with other computa-
tions. The results reported in Fig. 8 exhibit the
oscillating character of trajectories, and we can
deduce a wave-length & depending on the 'initial
distance to an atomic row. This dependence with
the initial impact parameter has been traced for
particles initially located on the f110) plane al-
ready defined. It is seen in Fig. 9 that the general
form of the curve is in qualitative agreement with
the one calculated by Abel et a/. "in a planar case.
It is noteworthy that the wavelength of trajectories
initiated near the channel center tends to a limiting
value &„which does not correspond to the harmonic
limit given by the Van baliet formula, "

—'&„=&r',l $,CaMn,
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FIG. 11. Variation of the o,-particle flux in the (110)
channel of copper as a function of penetration depth.
Comparison between the multistring and the binary
collision model results.
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FIG. 10. Variation of the n-particle flux as a function
of penetration depth in (110) channels of ZnTe and GaP
(initial conditions: 80= cpa= 0 ).

&/4, which can be compared to the values ob-
tained in the preceding section. We find that
X & A.„(X= 0.86K„ for Gap and & = 0.94 &„ for
ZnTe). This is explained in defining the mean
wavelength with the formula

A. = 2 A.(yi )2 s'yi dye,
77rp p

where r, is the initial distance to the channel cen-
ter. If we assume cylindrical symmetry and a
parabolic variation of &(y, ) with y, , the & value
is of the order of a(&„+& ).

Moreover, as a test of the validity of the method
we have computed the flux for 1.5-MeV e particles
in the (l10) channel of copper. We have compared
our results with the results obtained by Alexander
and Poate using a binary collision model in the
same conditions. " Figure 11 shows the values of
the two fluxes at the center of the channel. The
gross features of the two fluxes are in relative
agreement, i.e. , the maxima occur for neighbor-
ing depths. However, two principal points can be
made: (i) The maximum of the multistring pro-
gram occurs at a greater depth than for the binary
collision model; and (ii) After the first peak, the

8=O 8=-0.25 8=-0.50'

200 A 1200 A 1200 A

I)
+

X Q4~ +A+
s+ I

, ,8ooA
i"I

4oo A

q~ ~ ~O ~ Oa ~ y+ ~
'4 ~ ~ ~ ~ ~ ~ O

~ ~ ~ ~ ~ ~ +~ ~~ ~ ~ ~
~ ~ ~ ~

I ~ I

800 A 800 A

~ y
~ 0 ~ P ~ ~ ~

I I

4oo A 4oo A

X

+i
'

/+I+
'1P

~ ~ ~ ~ ~
~ ~ ~

+~+

X (A) X (A) X (A)

FIG. 12. Variation of the 2-MeV o.-particle flux
(computed over the dashed area) in a (110) channel of
a ZnTe crystal, as a function of the incident angle and
the penetration depth.

flux of the multistring program shows a very ra-
pid falloff, whereas the flux computed from the
binary collision model stays at a rather high level.

The first effect seems due to the choice of the
potential. Indeed, the Lindhard potential is more
flat bottomed than the Moliere potential used in-

the calculations of Alexander and Poate. If we
approximate the two potentials with a harmonic
one we find that the Lindhard potential leads to
a lower value of the k constant, and thus to a
greater value of ~. The second difference is not
clearly understood but could be due to neglecting
multiple scattering in the multistring model.

In the study of the impurity location in a lattice,
the incident angle is varying. Figure 12 shows the
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effects of such a variation on the flux distribution
over the transverse dimension x of the channel.
The dependence of the impurity close-interaction
yield with depth, the incident angle and the impur-
ity position is clearly seen.
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FIG. 13. Close interaction yield calculated as a func-
tion of depth for 3-MeV c. particles entering a (110)
channel of a silicon crystal.

C. Closewncounter yield

The close-encounter yield )((z) = ffPo(x, y)
x n(x, y, z) Cxdy has been computed for different
incident angles (y„8,). The integration is per-
formed with the two-dimensional grid already used
for the flux. The program allows one t,,o treat
monatomic as well as diatomic rows. In this latter
case, adiatomic row made up of A and J3 atoms
is considered as a string with an average charge
a(&„+&s). For channels bordered by different
monatomic rows the program computes separately
the contribution of the A. or B rows and displays
the two yields )(„(z) and Xs(z). The results pre-
sented here concern essentially the (110) channel
of diamond and zinc-blende structure crystals.
The silicon case has been considered, and the
depth-dependent interaction yield is represented
in Fig. 13. Large variations of the yield are seen
which can be related to backscattering spectra.
In contrast, the weak amplitude oscillations are
not representative of a physical effect but are due
to the simplicity of the model which does not take
into account the smearing of the flux due to the

8= -12
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I 1
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0 250 500 {A)

FIG. 14. Close interaction yield calculated as a func-
tion of depth for 1.3-MeV protons entering a (110)
channel of a ZnTe crystal.

D. Angular distributions

The variation with 8 (for fixed p) of the inter-
grated yield )(=f,')L(z) dz is called the angular dis-
tribution. The only results presented here con-

multiple scattering. Also in Fig. 13, the angular
dependence of the yield is shown. From such
curves we can deduce the angular distribution
X(8).

For diatomic compounds characteristic curves
have been extracted from our results. In Fig. 14
we show the close-encounter yields relative to
zinc and to tellurium for 1.3-MeV protons entering
the (110) axis of Zn Te with the initial conditions
@=90 and 6=+1.2'. It is apparent that, for
8=1.2 and near the surface, the close-encounter
yield relative to tellurium is greater than that
relative to zinc, whereas for 8= -1.2 the yield
relative to zinc is greater than the yield relative
to tellurium. This balancing behavior can be ex-
plained if we consider the (110}plane which cor-
responds to the scanning angle y = SO' (Fig 17). .
Indeed, we can see that particles incoming with
an angle + 8 of incidence relative to the (110
axis have a greater probability to strike an A row
than a B rom and conversely for particles with
-8 incident direction. This result, which is called
the phenomenon of the preferential interaction,
has been verified by experiment. " It must be ob-
served that this phenomenon occurs for particular
tilting angles and thus, the close-encounter yield
relative to the A or B atomic species is depending
on the choice of the scanning direction.
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FIG. 18. Calculated angular distributions relative to
a substitutional impurity in a ZnTe crystal. --+—Bi
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FIG. 17. Calculated angular distributions of integrated
yield for 1.5-MeV e particles in gallium phosphide. The
entrance angles and the tilting plane are chosen to ex-
hibit the preferential interaction.

particles in a (110) axis of GaP, an asymmetric
dip is obtained if a scan is performed at y=90
(Fig. 17). Moreover, for an angle 0~1', the P
curve exhibits an enhancement mhich corresponds
to a slight decrease of the Ga curve and vice versa
for 6~ -1 . We can explain this behavior in noting
that for 8~ 1', the incident particles interact in
preference mith the P rows and for 8~ -1'with
the Ga rows, as already evidenced for Zn and Te
rows of ZnTe.

E. Application to lattice location of impurities

It has been already shown that complete angular
scans should be done in plotting the yield X~ of
close interactions specific to the impurity to lo-
cate this impurity in a lattice. " The program
computes the yield Xz for one or more foreign
atoms inside the channel. Many cases have been
considered and tmo typical examples are given

1. Substitutional impurity in a diatomic lattice

As shomn by Mertz et al. , if an impurity is in
substitution of a given atomic species the angular
distribution relative to this atomic species and
that relative to the impurity are similar. " To
verify this conclusion and also to interpret an ex-
periment on the lattice location of implanted Bi in
zinc telluride, "yield curves for Bi impurities in
Zn and Te sites were calculated for (110) axis.
The mean vibrational amplitudes were chosen in
defining a Debye temperature for the impurity
with the formula used by Sigurd and Bjorkvist.

where Mg ls the impurity atomic mass~ M the
averaged mass of zinc and tellurium, and 8~ the
Debye temperature.

The impurity yield curves (Fig. 18) are very
close to those of the suhstrate (Fig. 15), verifying
the statement of Mertz et al.

2. Interstitial impurity

The (100) yield curves for interstitial deuteri-
um atoms in tungsten were calculated in order to
compare our results with those of Picraux. ' In-
deed, 15-Ke7 implanted deuterium has been found
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lateral peaks depends on the value of the scanning
direction (y angle). This position varies with the

y angle in our calculation, whereas it is averaged
on the all cp angles in the statistical equilibrium
multistring model.

V. CONCLUSIONS
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FIG. 19. Calculated angular distribution relative to
interstitial deuterium in a tungsten crystal. Experimen-
tal points from Picraux (Ref. 7). Theoretical curves:
left-hand side, from Ref. 7; right-hand side, from the
multistring program; y = 0; ———y = 20'.

experimentally in tetrahedral sites by Picraux
and an interpretation of the experimental curve
with a statistical equilibrium multistring model
has also been given by this author. In our calcu-
lus, deuterium impurities have been assumed to
have a Gaussian concentration profile and their
tetrahedral interstitial positions in the (100) chan-
nel are seen on the Fig. 19. Two scanning direc-
tions (y =0' and y =20') are chosen to denote their
influence on the yield curve. Qur results are seen
on Fig. 19 together with experimental points. The
theoretical curve from statistical equilibrium
multistring analysis' is also shown. It can be
stated that our theoretical curves present a fairly
good agreement with experimental points. The
structure of our calculated curve can be analysed.
The central peak is due to the contribution of the
impurities located at the channel center (0 site)
while the two lateral little peaks to that of the im-
purities located on peripheric sites. The two theo-
retical curves present two differences: the ampli-
tude of the central peak and the position of the two
lateral peaks. The central peak of the Picraux' s
curve is lower because at the statistical equili-
brium the flux is averaged over the whole depth
and there is no flux peaking effect with depth
which enhances the yield. The position of the two

A model has been presented to study the inter-
action of particles with atomic rows and with for-
eign atoms in a crystal. This model is essentially
based on the two following assumptions: (i) the
'actual periodic potential of an atomic row is re-
placed by an average potential (continuum approxi-
mation); and (ii) the total potential is the sum of
many continuum potentials (multistring model).
Calculations were performed in solving the classi-
cal equation of particle motion in a channel. The
oscillatory character of computed trajectories
leads to the concept of mean wavelength ~. This
wavelength is also evident in the calculation of
the flux distribution of particles in the channel.
Comparison of this flux distribution with other
computer simulations shows that as a function of
depth two differences arise: the first flux peak
occurs at greater depth due to the use of the Lind-
hard potential, and after this peak the flux falls
to a smaller value due to neglect of the multiple
scattering effect. The close encounter yield as a
function of depth has been calculated and, in the
case of zinc-blende structure lattices, the pre-
ferential interaction of particles with one row type
rather than the other has been evidenced. This
effect is also shown in the angular distribution of
the integrated yield. The model is used to locate
foreign atoms in the lattice. For impurities on
substitutional sites in a diatomic crystal, the con-
clusion of Mertz et al. has been verified, and for
impurities on interstitial sites the results are in
agreement with calculations from other models.

In summary, the main advantage of the model
is its relative simplicity compared to its possi-
bilities. Indeed, it is the simplest one which al-
lows one to obtain the flux and the close-encounter
yield as functions of the penetration depth of parti-
cles. The limitations of the model are in neglect-
ing the effects of the multiple scattering and of
the thermal vibrations on trajectories. However,
taking account of the multiple scattering and the
modification of the potential by thermal vibrations
diminishes the analytic character of the formulas,
which leads to a greatly increased volume of nu-
merical calculations.
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