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The dynamical properties of the impurity pinning of phasons of the charge-density wave are investigated for
two-dimensional electron systems in the presence of magnetic fields applied perpendicular to the system. The
effect of magnetic fields is treated classically. It is found that there exists a finite size of domains if the
impurity potential overwhelms the long-range part of mutual Coulomb interactions, and the
magnetoconductivity tensor is evaluated in such cases. The cyclotron resonance is shown to be shifted and
broadened. It is predicted that absorption of electromagnetic waves exists at the pinned-mode frequency
though the oscillator strength will be smaller by a factor of (w,7)~? than the cyclotron resonance if w.7> 1,
where o and 7 are the cyclotron frequency and the damping of the resonance, respectively.

I. INTRODUCTION

Electron systems formed at interfaces such as
metal-oxide-semiconductors (MOS) and electrons
on helium surfaces are now accepted as typical
examples of two-dimensional electron systems.'
In these, the electron number density can be var-
ied in a wide range by simply changing the exter-
nal electric fields. Consequently, these systems
" afford us the possibility of quantitative comparison
between theory and experiment on the effects of
strong correlations between electrons.

If mutual-Coulomb-interaction energies are the
main ones in determining electronic properties,

a Wigner crystal or a charge-density-wave (CDW)
state will be formed at sufficiently low tempera-
tures.> Moreover, the formation of CDW’s will
be encouraged by the application of strong magnetic
fields perpendicular to the surface,a"’ There are
recent claims that such ordered states have been
observed in MOS.® On the other hand, the exist-~
ence of short-range order of the Wigner crystal
has been beautifully demonstrated in electrons on
helium surfaces,”®

In view of the fact that observability is more or -
less within the present experimental conditions,
we investigate in this paper the response proper-
ties of such ordered phases to external electric
fields under the presence of a uniform magnetic
field, i.e., we examine the magnetoconductivity.
We focus our attention here on the dynamical
properties of the state at absolute zero, and the
response to an oscillatory electric field. We as-
sume that there exists a two-dimensional sinusoid-
al CDW in the system, with the charge-density
pattern of a square lattice. The periodicity is
assumed to be given a priori. This CDW is under
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the influence of static impurity centers distributed
randomly over space, which pin and distort the
CDW. The magnetoconductivity is determined by
the dynamical properties of the phase fluctuations
about this distorted CDW pattern.

In Sec. II we define our model, and the pinning
is examined in Sec. III. The magnetoconductivity
is obtained in Sec. IV, Discussions are given in
Sec. V, where we point out some possible rele-
vance of our theoretical results to the experimen-
tal results.

II. MODEL

We assume that there exists a CDW with the
following spatial variation of charge p(¥):

pE)=n+pglcos[Qr+¢,(F)]+cos[Qy +¢,®1}, (2.1)

where z is the average electron number density,
Po is the amplitude of the CDW taken to be con-
stant in space, and ¢ (T) (@ =x or y) is the phase
that is the only dynamical variable of the problem,
i.e., we focus our attention on the phase only., The
CDW [Eq. (2.1)], has a periodicity of a square lat-
tice with a spacing of 27/Q in each direction. Al-
though the lattice structure of the Wigner crystal
is known to be triangular in the limit of small
n,>° we assume a square-lattice CDW, since the
qualitative properties regarding pinning will not
be different between these two lattice structures,
and the calculations are simpler and more trans-
parent for the square lattice.

In the following we will define various kinds of
energy that determine the dynamics of ¢, We
restrict our consideration to the case where the
spatial variation is slow compared with the lattice
size, i.e., V¢, |« Q. First the kinetic energy
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K, associated with the temporal variation of the
phase ¢, is written

K=221—£% f dF (¢2+¢?) . (2.2)

Equation (2.2) is true since (4.)0(/217)(21I/Q) is the
local velocity in the ath direction and since nwm is
the mass density. Next there exists the elastic
energy coming from the spatial variation of the
phase, i.e., the local distortion of the CDW. We
assume this energy to be written

v=1c, § [ az (%f)z , 2.3)

where C, is a phenomenological parameter. In
Eq. (2.3) we assumed for simplicity that the lon-
gitudinal distortion, d¢,/dx or d¢,/dy [Fig. 1(a)],
costs the same energy as the transverse one,
de,/dy or d¢,/dx [Fig. 1(b)]. This assumption is
equivalent to taking the longitudinal sound veloci-
ty to be the same as the transverse one in the
absence of long-range Coulomb interactions. The
effect of the long-range part of the mutual Cou-
lomb interaction can be written

U,.=3(en/Q)*
of atar (e 8) 0 (2 gu)
(2.4)

where v(f)=1/7. Equation (2.4) is derived by the
following consideration. The spatial variation of
¢, changes the area of the unit cell (see Fig. 2) as
follows:

EQ+d2¢nx/dx Q+d2¢1:/dy = (%5[1 %(‘2‘ o )] :
(2.5)

Since the compensating background charge is uni-
form in space, the local accumulation of electronic
charge associated with the contraction of the
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FIG. 1. Schematic representations of the longitudinal
mode (a) and the shear mode (b).
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FIG. 2. Change of area of a unit cell by phase varia-
tion.

cell is then given by
en)<277>(£J£ d_¢2) (2.6)

Thus the electronic charge density per unit area
introduced by the phase distortion is simply given
by Eg. (2.6) divided by the area (27/Q)?. This
leads to the interaction of Eq. (2.4). Finally, the
interaction with impurity potentials will be writ-.
ten

V=eV,p, 2 {cos[@x; + ¢, (®,)]
i

+cos[Qy; +¢,([R)]}, 2.7

where we assumed that the impurity potential is
short ranged and is given by V,5(¥), and that R;
=(x;,y;) is the coordinate of the ith impurity.
There exists also another type of interaction of
the CDW with impurities that comes from the lo-
cal modification of the unit cell:

Vi=- QV}:(ﬁfw -——‘L> 5 (2.8)

Since V' in Eq. (2.8) contains only d¢,/dx, com-
pared with V, which represents the coupling of
¢, itself to impurities, it is not essential to the

_ pinning problem, and we discard V’ in this paper.

Equations (2.2)-(2.4) and (2.7) give the energies

of our model. By rewriting K in Eq. (2.2) in terms
of the variable P, which is the canonical conju-
gate to ¢, our Hamiltonian is written

H=Hy+U+U,+V, (2.9)
1

P — f at(p;+p3) , (2.10)

[P, (F), ¢s(F)]==iQ6F ~T)0,5 , (2.11)

[P (@), PsF")]= —inl=26(F —F)e 5 , 2.12)

where U, U, and V are given by Egs. (2.3), (2.4),
and (2.7), respectively.
Equation (2.12) represents the effect of magnetic



fields H applied perpendicular to the surface, and
l=Vc/eH is the cyclotron radius. The compo-
nents of the antisymmetric tensor €, are €,,=¢,,
=0, €,,=1, and €,,=-1. In Eq. (2.10) P, =Q 8K/9¢,
=nme ,/Q is the momentum density, and the com-
mutation relation of Eq. (2.11) follows straight-
forwardly. Equation (2.12) is derived in the Ap-
pendix. It follows from the commutation relation
of the canonical momentum variables of an elec-
tron in the presence of the vector potential A.

[P+(e/c)A,, P, +(e/c)A,]==il™2.

Equations (2.9)—(2.12) determine the dynamical
properties of the phase that will be investigated
in Sec. III.

|
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III. PINNING OF THE CDW

The dynamical properties are conveniently de-
scribed by the Green’s function, defined by

Dys@,3'; iw,)

‘ — 1 J' 8 iw,T r:1 r

'&__2_ 8 dTe'“n <Tr¢oc(q:T)¢ B(""q » ’ (3,-1)
where 8=T"" (kg=1), w,=2mnT, and T, is the

chronological operator. The Fourier transform
of ¢,(F) is defined by

1 PR
6u0= oy [ 36570, @, ©.2)
and ¢,(, 1) =e"¢,(§)e~"". Correspondingly, the

Hamiltonian H [Eq. (2.9)] can be written in terms

of ¢,@

o7 ) [y T P0P0+50 T, 020060 +3(2) (T .0 @) 2 Sast -0+ v,

H
(3.3)
where P (§) is the Fourier transform of P (), and Eqgs. (2.11) and (2.12) can be rewritten
- [P@, 05@")]=-in)Q5@+T")04s (3.4a)
[P,@),Ps@")]=-i2n)*nl 6 +q )e o5 - (3.4b)
The equation of motion of D, can easily be derived by use of Egs. (3.4a) and (3.4b):
C 2 27"71@2 ’ 1 B - -
WD s+ A 4D+ T LDy = 00 D ey || ATV, P D), 6 5(-D)
& (27)*6(d ' d"s, 3.5
"nm m A=q)04p » ( . )

where D, 5=D,s(@,q’;iw,), and e’ [V,P () ]e" " is abbreviated as [V, P,(d)](r). In the absence of the im-
purity potential V, Eq. (3.5) yields

2
Ds@, 4’5 i) = (2rF0@G~)-2 1 sreiraid -l o)
ws(@,q; tw,) = (27 ﬁ(q-Q)n—me

2
29xqy 2 2 29
w, q2 —w,We wn+wt+w/ﬂ?

We shall define D,,(q,q";iw,) = (2m)?6@G - §')D3,(@, iw,) . (3.6)
I
In Eq. (3.6) w,, w,, and w, are defined as follows: Wi 2w W/ 20, W_NWw,/ /W, . (3.10)
2 = 2 2
w; = (CoQ"/mmlq” @3.7) We see that w, is essentially the same as those of
wj = (2mne’ /m)q , (3.8) a Wigner crystal, the only difference being that

wi=3{wi+wi+20ix [(i+w)) + 4020?77}, (3.9)

-where w, is the eigenfrequency of the phase ex-
citation in the absence of both magnetic field and
the Coulomb long-range interaction. On the other
hand, w, is the plasma frequency. In the limit of
the small wave vector ¢, we have

C, here is an arbitrary parameter whereas in the
Wigner crystal w, is explicitly determined.®

Next we will determine the effect of the impurity
potential, Even in pure systems the existence of
long-range order is impossible, in a rigorous
sense, at finite temperatures for our model sys-
tem, since 7', 273 D}, iw,) is logarithmically
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divergent.'* However, this divergence is extreme-
ly weak and in a finite system it is possible to
think of the system as possessing long-range ord-
er. The existence of impurities will destroy the
long-range order,'? and the density correlation
function will decay at large distances. We can de-
fine'® the characteristic distance L, of the varia-
tion of the phase, i.e., ld¢,/dxy|~ L3'. (The phase
variation will be the same in both x and y direc-
tions.) This implies that the phase in the ground
state, ¢2(), is distorted over a distance of L, If
the magnetic field is treated classically, it does
not affect static properties like the correlation
length L,. This L, will be determined, following
Ref. 13, by minimizing the energy gain per unit
area 6E(L,) with respect to L,:

C, 4 1 5 4 (L) 2
SE(Ly) == = +—(2L-) (27 Ly) 78 eVopo@-‘—i—
0

T2 12 72\@ L2
=2C,/ L%~ [eV,poVn; — 4n(en/Q)° /L, ,
(3.11)

where »; is the impurity number density. From

Eq. (3.11) we see that, if e V,pvV7; > 4n(en/Q)?, L,
i

v=-L0a 3 feoslQx, + 620 WAR,) + cosl@y, + 63 WEE)

Ll ) f e vanwsa-oresoncosa-ol,

where () is the Fourier transform of ¥ (%), and
S,(@)=eV,p, Z PR cos[@x; +p%(R;)]. (3.15)

By use of Eqs. (3.14b) and (3.5) we find that the
Green’s function D, 4 redefined in terms of §,(q)
instead of ¢,(g) in Eq. (3.1) obeys the following
equation of motion:

D@8 = @n?6@ ~ )05 o@ + 050D gy

X fd‘c]”sa(a” -39D,:@",q" . (3.16)
We treat the second term on the right-hand side
of Eq. (3.16) perturbatively. In order to deter-
mine the Green’s function averaged over impurity
configurations, (D), we define the self-energy
function of the phason, II, by

(D 8@, Moy =2m)*6 @ -F") (D) = ]}
=(2m)?6(d - §")D, s, iw,) . (3.17)

The first two contributions to II are shown in Fig.
3(a) (IT4,) and 3(b) (I ,), where the wavy line and
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is given by
Ly=4Cy[eVyp,Vn; — 4m(en/Q)*]" . (3.12)

If eVopoVn; < 4m(en/Q)?, Eq. (3.11) implies that
L,=, which in turn will mean that the density
correlation function does not decay exponentially,
but probably with some power. In the following
we will focus our attention on the case of Eq.
(3.12), i.e., the impurity potential is strong enough
so that

eVopovn; =4n(en/Q) . (8.13)
In order to determine the spectrum of the excita-
tions above such a distorted ground state, we use
the method employed in Ref. 13 and write the
phase as ¢ ,(F) = 93 (F) + ¥, (F), where ¢ describes
the ground state and y, the small fluctuations.
Corresponding to this separation of the phase
variable, we expand the potential Ulg ]+ U,[¢]
+ V[g]in terms of 3, (r). Since Uand U, are qua-
dratic in ¢, (7), their functional forms are the
same as Egs. (2.3) and (2.4), except that ¢, (F) is
replaced by y,(F). On the other hand, the nonlin-
ear potential V should read

(3.14a)

(3.14b)

{
the dotted lines are D and S, respectively, and the
cross represents impurities. The first one is
given by

%8 =~(e VopoV;/ L)b s (3.18)

where we assumed that the pinning potential is
weak,'? since

<So¢(a»av=eVopo(\/h_i/Lo)(z'”)zé(a) o (3.19)

Equation (3.18) gives the following excitation spec~
trum:

Q= Hwi+wi +2(wi +9?)

2 [(@F+w)) + 4wl (@] +1°17 (3.20)
where y is given by ‘
v=[(eVopoVm/ L) (@ /nm) ]2 . (3.21)
At g=0, Eq. (3.20) yields
Q=102+ 2022 w (W + HA) V2] =2, . (3.22)

This is shown in Fig. 4, as solid lines, as a func-
tion of w,/y. This spectrum has a gap at ¢ =0,
which represents the effect of pinning. The g de-

pendence in the small-g region, where w,, w,<vy is
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X PN FIG. 3. Diagrammatical
: RN representations of the con-
1 i N tribution to the phason
' self-energy in the first or-
Ty T2 der (a) and the second or-

der (b) of the impurity po-
tential.

(a) (b)

satisfied, depends on whether w, is zero or not.
I w,=0, Eq. (3.20) results in

(3.23a)
(3.23b)

However, if w.#0 and if ¢ is small such that w,,
w;<w,, ¥, then

2 2
Q=Y +wi+wl

2 .2 2
Q_—'}/ +TW; o

From Eq. (3.24) we see that in the presence of

a magnetic field, i.e., if w,#0, 2, is quadratic in
q as g~ 0 as long as the Coulomb interaction U,
exists. ‘

The modes , given by Eq. (3.20) are actually
damped due to the random distribution of impuri-
ties, This is seen by looking at IT ;, of Fig. 3(b),
which is written

H?z?(iw,,)%as—‘—f—;ﬁ’)—gﬂl— qu D@, iw,) . (3.25)

This is due to the fact that
<Sy(q)sy'((i'»av

=38,y(eVopo)n; 2m)*6@ +q’) (3.26)

2 _ 2 17,2 2 21-1/2
2,= %0+ 2 (w,+2w,){li [1+40/woPT% In estimating Eq. (3. 25) we can replace D° on the
+wh/4wi[1+4(y/w )?]V2. (3.24) right-hand side by (D°” -H(l,) , €.8.,
i
vx - W +w‘+w,,q,/q +97
Irg) iw, )_ (eV"p"Q) 2 )2 Id (w? +Q 2) w2+ Q°)

n , 1 1 w?
=ﬁ(ev"p°Q) (2m)? f dq(w ot Wi+ Q2 T (wi+ Q) (w2 0 ))

=%\ (w,) =1 5, (w,) .

From Egs. (3.23) and (3.24) we see that the g in-
tegration in Eq. (3.27) is convergent as long as U,
#0 and w.#0. Even if U, =0, this integration is
only logarithmically divergent, in contrast to the
case of quasi-one-dimensional systems.'*-** This
weak divergence is simply removed by renormali-
zing y? by

Y [1-1I (2)(iw,,)(nm/Q2)]

Qs /¥
R | X1
st
,r’ Q¢0
“f Jos
\\\\ A—
2+ S
<. Q.
! B
2 4 6

We/¥

FIG. 4. Magnetic field dependences of the collective
modes at ¢=0, 9,,, Eq. (3.22) and the spectral weights
A,, Eq. (4.4b). (Dashed lines refer to the right-hand
vertical scale.) The straight line through the origin re-
presents the cyclotron frequency to which @, ; tends as
w, /v increases.

(3.27)

in ©,, and solving Eq. (3.27) self-consistently for
H(z,(iw,,). (This is the self-consistent Born ap-
proximation.'®) The result is that the existence
of I ,(fw,) introduces an imaginary part that is
essentially independent of frequency. The phason
self-energy function is now written

W(w,) ypli, >wrio==0ap-t—7*[1 +ia sgn()], (3.28)

aﬂnm

where g is a constant of order unity.

Thus we determined the phason Green’s function
[Eq. (3.17) with Egs. (3.28) and (3.21)] in the pre-
sence of pinning. In the following Sec. IV we will
investigate the transport properties based on the
result obtained here.

IV. MAGNETOCONDUCTIVITY

In this section we will evaluate the frequency-de-
pendent conductivity tensor in the presence of im-
purity pinning at absolute zero. As has been shown
in Ref. 15, the conductivity tensor is given as fol-
lows, in terms of the phason Green’s function:
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Uaﬂ(w) :f wdt e-iwt<[‘]a(t)’ PBD

(4.1a)

=iw(%>2j;wdt eivt
x{[¢alg=0,1), p5lg=0]) (4.1b)
=iw<%‘) Dy slg=0,w+i0), (4.1c)

where J, and P g are the total current operator
—(en/Q) [ d’rq'ba, and the total polarization operator
—(en/Q)f dr ¢ 5, respectively. In Eq. (4.1)
D, (g, w+i0) is the Green’s function defined by
Eq. (3.17). We have a word to say about the equal-
ity of Eq. (4.1c) regarding the local-field correc-
tions due to the long-range part of the Coulomb
interactions. Physically, the conductivity is to
be defined with respect to the local electric field,
whereas Eq. (4.1c) represents the response to
the external electric field, since D, is deter-
mined in the presence of the long-range part of
the Coulomb interactions U,. However, in con-
trast to the case of three-dimensional systems,
the uniform (g =0) polarization field is absent in
the present case of two-dimensional systems for
any finite frequency. Thus o defined by Eq.
(4.1c) can be considered as that with respect to
the local electric field.

In the absence of impurity scattering, Eq. (4.1c),
together with Eq. (3.6), yields'®

(4.2a)
(4.2b)

These are the same as those for noninteracting
systems, as they should be. If y#0, we obtain,
by ignoring damping of the collective modes,

0, () =0, (W) = e’ /m)iow/ (W - o) ,

0, (w) = e /mw /(W — w?) .

Zl_gi iw(w? —y?)
m (22 - w?) (@, - w?)

o) =0, (w)==

(4.3a)
(4.3b)

=o(w) ,
0., () = = (ne’w /mw?/ (22, - w°) (2%, - %) ,

where Q,, is given by Eq. (3.22). As w~-~ 0, we see
that not only o,, and o,,, but also o,, tends to van-
ish. This is the pinning of the CDW at absolute
Zero,

The real part of o(w) has & functions at Q_, and
Q,, whose weights are

Reo(w) =1’—f§’ [A_8(w—-9Q_y) +A 8w —R.9)],

(4.4a)

A= H1: [1+40/w, Y% . (4.4b)

These two weights, A,, are shown in Fig. 4 as
broken lines. These two peaks of Reo(w) corre-

spond to the absorptions due to the pinned mode
(2_,) and the cyclotron mode (2,,). In the case
where w, >y is satisfied, Q,, and A,, take the
forms

Q—0~72/wc’ A-"’ (Y/wc)z ’

Dio~w, Y Wy Ar~1=(y/wy).

(4.5a)
(4.5b)

If we include the effect of damping of the collective
modes, Eq. (3.28), the 6-function of Eq. (4.4a) is
changed into Lorentzians, i.e., 6(w - Q,;) = T,/7[(w
- Q,0)°+T?2], with T', given by

(4.6a)
(4.6b)

We see that the absorption due to the pinned mode
is broad and weak, since @_,~T'_and A_«1. On
the other hand, the cyclotron resonance is sharp
and strong as ,,>T, and A, ~1. An interesting
and important fact on the cyclotron resonance in
the presence of pinning is that the cyclotron mass
gets lighter by the amount §#:

om/m=—(y/w,)? . (4.7)

r_~Ya/w.,

r.,~ya/w, .

Moreover, we see from Eqs. (4.6b) and (4.7) that
(T./we)/(om|/m)~a~0(Q1) . (4.8)

V. SUMMARY AND DISCUSSIONS

We investigated the phase pinning of the CDW in
the presence of magnetic fields at absolute zero.
We assumed random impurities for the pinning
force. We found that the phase is distorted in the
ground state, and we determined the characteristic
distance over which the phase is correlated. This
distance is independent of the magnetic field, since
this is solely determined by the static properties
of the system on which the magnetic field has no
influence in the classical limit. However, the ex-
citation spectrum is affected by both the pinning
force and the magnetic field.

Based on the excitation spectrum, we evaluated
the conductivity tensor and found the following re-
sults: (i) 0,,=0, and 0,,=0 at w=0. (ii) Reo,,(w)
has peaks at the frequencies of the pinning mode
and the cyclotron resonance. (iii) The cyclotron
mass gets lighter in the presence of pinning. The
absolute magnitude of this shift and the width of
the resonance are dependent not only on the scat-
tering potential but also on the electron number
density, and they satisfy the relation of Eq. (4.8)
as long as the pinning frequency in the absence
of magnetic field is smaller than the cyclotron
frequency.

We will discuss these findings in the following:

(i) The absence of static conductivity is the re-
sult of pinning.
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(ii) The frequencies Q,, [Eq. (3.22)] are depen-
dent on carrier density, scattering potential, and
magnetic field. Above all, the carrier number de-
pendence will generally be complicated, since not
only p, but also @ will depend on n. Though we
assumed elastic impurity scattering for the exist-
tence of finite Q_, (or y), dimples in the electron—
helium-surface system' and lattice distortions in
the MOS will also lead to finite y as far as these
can be treated adiabatically. They will act like a
commensurate pinning force. Actually, Shikin'’
obtained similar results as Eq. (3.22) by consider-
ing the effect of dimples on the Wigner crystal
in the electron-helium surface system. However,
in such a case of a classical Wigner crystal, the
pinning energy y will be independent of carrier
density,'” since the average distance between elec-
trons is much larger than the width of dimples.

(iii) The possiblility of a negative mass shift
of the cyclotron resonance is itself not new. Such
effects are well known in doped semiconductors
where the ground Landau state at an impurity site
is more localized than the first excited state.'® A
similar effect is also demonstrated recently by
Cheng and Platzman'® who treated dimples in the
electron-helium-surface system in comparison
with the experiment of Edelman.*® In these in-
vestigations only single-particle effects are con-
sidered and then the mass shift is independent of
the carrier density n. If the CDW or Wigner crys-
tal is formed, the mass shift will be in general
dependent on z through y. However, the shift due
only to static dimples is independent of # even if
the Wigner crystal is formed since y is deter-
mined locally as is discussed in (ii).

In the case of MOS, Kennedy ef al.’ found the
negative mass shift that is independent on both
carrier density and magnetic field. They found
that if the carrier density is low, n;~10" cm™2,
the width of the cyclotron resonance (77*) and the
absolute magnitude of the negative mass shift in-
crease as the magnetic field is decreased. These
results are qualitatively consistent with ours of
Eqgs. (4.6b) and (4.7), though the present semiclas-
sical treatment of magnetic fields might not be
completely appropriate in this case of relatively
strong magnetic fields.

In conclusion, we investigated the conductivity
of the pinned CDW in the presence of magnetic
fields. The direct consequence of the existence
of the CDW is that Reo, (w) has peaks not only at
w~w,but also at the pinning frequency, though the

oscillator strength' might ndt be appreciable in the
pinned mode. In the CDW state the cyclotron reso-
nance is also expected to have a particular shift

and width. However, in the present stage we could

not make detailed comparisons between theoretical
predictions and experimental data.
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APPENDIX

Here we will derive Eq. (2.12). We assume that
the Hamiltonian of the electronic system that
forms the CDW state consists of kinetic energy
and interaction energy independent of momentum.
The former is written as follows in the presence
of uniform external magnetic fields:

1 2
HO=Z 27n'(pi+%A,> , (Al)

where ¢ is the particle index. In order to define
the momentum density per unit area P (7), we
first divide the whole system into cells with area
AS whose size is larger than the unit cell of the
CDW and is smaller than the characteristic length
of the spatial variation of the phase, i. e., within
AS the phase can be taken as constant in space.
Thus P,(r) is given by

- _ 1 e
=5 T(pie2a,), (82
where the summation is over all electrons in the
cell where the coordinate T is located. Equation
(A2) leads to the following commutation relation:

[P, (), Py(r")]==i[N,/(AS)*]eH/c , ©(A3)

if » and 7’ are in the same cell and [P,(7),P,(r')]
=0 otherwise. In Eq. (A3) N, is the number of elec-
trons in the cell. Ignoring the fluctaution of the
electron number in the cell, we put N;/AS=n, On
the other hand, (AS)~! can be considered equiva-
lent to 6(» — #’) in the limit of small size of the

cell, since we are interested in the slow variation
of the phase, i.e., |V¢ /@« 1., Consequently, Eq.
(2.12) follows.,




6252 HIDETOSHI FUKUYAMA AND PATRICK A. LEE

*Summer visitor at Bell Laboratories, Murray Hill,
N. J. 07974 in 1977.

'For example, Surf. Sci. 73, 1 (1976); 73, 1 (1978).

’R. S. Crandall and R, Williams, Phys. Lett. A 34, 404
(1971); R. S. Crandall, Phys. Rev. A 8, 2136 (1973);
P. M.Platzman and H. Fukuyama, Phys. Rev. B 10,
3150 (1974); R. W, Hockney and T. R. Brown, J. Phys.
C 8, 1813 (1975).

3YuT E. Lozovik and V. I. Yudson, Pis’ma Zh, Eksp.
Teor. Fiz. 22, 26 (1975) [JETP Lett. 22, 11 (1975)];
H. Fukuyama, Solid State Commun. 19, 551 (1976);

M. Tsukada, J. Phys. Soc. Jpn. 41, 1446 (1976);
H. Aoki, Surf. Sci. 73, 281 (1978); thesis (University
of Tokyo, 1977) (unpublished).

4The possibility of a CDW at high density was suggested
by H. Fukuyama, P. M, Platzman, and P. W. Ander-
son, Surf. Sci .73, 374 (1978) and (unpublished).

SYu. P. Mona.rkha and V. B. Shikin, Zh, Eksp. Teor, Fiz.
68, 1423 (1975) [Sov. Phys.-JETP 41, 1710 (1976)].

83,1 Kawaji and J. Wakabayashi, Surf, Sci. 58, 238 (1976);
T. A. Kennedy, P. J. Wagner, B, D. McCombe ‘and

D. C. Tsui, Solid State Commun, 21, 459 (1977); D. C.
Tsui, ibid. 21, 675 (1977). -

’C. L. Zipfel, T. R. Brown, and C. C. Grimes, Phys.
Rev. Lett. 37, 1760 (1976).

8N. Itoh, S. Ichimaru, and M. Nagano (unpublished).

18

9G. Meissner, H. Namaizawa, and M. Voss, Phys, Rev,
B 13, 1370 (1976); L. Bonsall and A. A. Maradudin,
ibid. 15, 1959 (1977).

107, V. Chaplik, Zh, Eksp, Teor. Fiz, 62, 746 (1972)
[Sov. Phys. JETP 35, 395 (1972)]; H. Fukuyama, Solid
State Commun, 17; 1323 (1975).

U M, Rice, Phys. Rev. A 102, 1889 (1974); P. C.
Hohenberg, Phys. Rev. 158, 383 (1967).

127,, 3. Sham and B. R. Patton, Phys. Rev. B 13, 3151
(1976); Y. Imry and S.-K. Ma, Phys. Rev. Lett. 35,
1399 (1975). -

13H, Fukuyama and P. A. Lee, Phys. Rev. B 17, 535
(1978); P. A. Lee and H, Fukuyama ,zbid. 17 542
(1978).

Up_ A, Lee, T. M. Rice, and P. W. Anderson, Solid
State Commun. 14, 703 (1974).

15y, Fukuyama, J—Phys Soc. Jpn. 41, 513 (1976).

16, Fukuyama, Surf. Sci. 58, 320 (‘976)

17y, B, shikin, Pis’ma Zh. Eksp, Teor. Fiz. 22, 328
(1977) [JETP Lett. 22 154 (1975)].

18gee, for example, R. Kaplan, J. Phys. Soc. Suppl. 21,
249 (1966).

197, Cheng and P. M. Platzman, Solid State Commun,
.25, 813 (1978).

%Y, S, Edelman, Pis’ma Zh, Eksp. Teor, Fiz. 24, 510

(1976) [JETP Lett. 24, 468 (1977)].



