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We use the atom-jellium model of chemisorption to study the properties of an atom bonded to the surface
of a simple metal. Beyond the jellium sipulption of the metal substrate and the Kohn-Sham local-density
description of exchange an'd corre)ation, we make no significant approximations: our solutions are parameter
free, wave mechanical, arid fully self-consistent. We solve this model for a set of adatoms exhibiting a
variety of chemical behaviors. Properties studied include the electron-density distribution, the state density,
the dipole moment, and the Peat of adsorption. We discuss also tQe reintroduction of the discrete lattice
structure of the substrate using perturbation theory.

I. INTRODUCTION AND MODEL

The chemical bond formed between an atom and
a metal surface has been the subject of much
recent theoretical attention. Brief critical revi, ews
of the various approaches employed have been
gipen by a number of authors. ' ' In the present
treatment, we employ the density-functional meth-
od of Kahn, Hohenberg, and Sham' ' because of
its basic structural simplicity and its success in
a wide range of-problems in the study of sur-
faces, '" atoms and molecul. es,"and solids. "
The analyses of chemisorption which employ this
method can be divided into those which use a mod-
el for the substrate that has a continuous spec-
trum of eigenstates {in particular a semi-infinite
substrate)" "and those which use a model that
has a discrete spectrum (a small cluster of sub-
strate, atoms). " A discussion of the adequacy of
the cluster simulation, as welf, as a prescription
for combining features of both types of.substrate
simulation (cluster embedding) has been given by
Grimley. '"

The present study considers a single atom
chemisorbed On a semi-i@finite metallic sub-
strate. " The substrate is represented using the
uniform-background (jellium) model, which has
given good results for the ground-state properties
of the surfaces of simple (s-p bonded) metals. """
This treatment is not intended to apply to chemi-
sorption on transition metals, which have a more
complex density-of-states structure and a greater
ability to exhibit directional bonding. An impor-
tant reason for the study (both theoretical and

experimental) of chemisorption on simple metals,
in addition to its intrinsic interest, is to assist
in understanding which of the aspects of chemi-
sorption on more complex metallic substrates
result from this greater complexity, and which
result only from the fact that the substrate has a
continuous energy spectrum.

The aim of the present analysis is to obtain, us-
ing the Kohn-Sham local-density description of
exchange and correlation, ' self-consistent nu-
merical solutions for the properties of a simple
model without the use of any other significant ap-
proximation. We confine our consideration to
chemisorption systems in which neither important
spin fluctuations nor permanent moments are
expected to be present, "and we thus use the
spin- unpolariz ed form of the m ethod of Kohn and
Sham. ' The only input to our calculation is the
adatom nuclear charge Z and the positive back-
ground density of the substrate (specified by r, )."
%e introduce no adjustable parameters, no as-
sumed variational forms for the wave functions,
and no assumption of spherical symmetry near the
nucleus. All of the adatom core states are corn-
puted self-consistently, including polarization ef-
fects. The care taken in the treatment of the mod-
el permits us to bring out its full physical and
chemical content, and allows us to understand the
final results (quantities accessible experimentally)
by examining the internal structure and inter-
mediate results in the calculation.

Other self-consistent studies in the literature
of the chemisorption of a single atom on a simple
metal, which we can compare with the present
treatment, are as follows: One group of studies
is represented by thy work of Smith, Ying, and
Kohn, "which treats the same model, for the case
of hydrogen chemisorption, but employs two
significant approxj. mations not used in the present
work: an extended Thomas-Fermi treatment of
the kinetic energy, and the assumption that the
substrate cgn be taken to respond linearly to the
adatbm nucleus (proton). Although the equilibrium
distance obtained is similar to that found here,
the approximations do not appear to permit an
adequate description of the dipole moment, elec-
tron density near the nucleus or heat of atomic
adsorption (see Ref. 14 for details). The work of
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Gunnarsson, Hjelmberg, and Lundqvist, ' again
only for hydrogen chemisorption, uses the same
model and approach as the present work, but
employs a different analytical framework. 7he
results given for the equilibrium distance, density
of states and heat of adsorption are similar to
those described here and in Ref. 14. The work of
Harris and Painter" for oxygen chemisorption
on aluminum exemplifies the cluster approach.
For metal-adatom separations other than those
corresponding to incorporation of the oxygen by
the Al lattice, the results for the energy spectrum
are very similar to those found in the present
work, whi. ch in turn resemble the results of mea-
surements for the Al(111) surface (see Sec. III
below). On loosely packed faces of Al, however,
the oxygen appears to be incorporated into the
surface, and the cluster calcul. ations of Messmer'
and Sal.ahub ' indicate that in this ease, local
molecular bonding effects not present in the atom-
jellium model can play an important role.

II. METHOD OF SOLUTION

X @N)L( I) (2.1)

The supers'cripts M and MA refer, respectively,
to the bare metal and the combined metal-adatom
system. Equation (2.1) embodies the notion that
electrons in stationary states of the semi-infinite
metal [4' (r}] impinge on and are scattered elasti-
cally by the potential 5v,«(r), which describes the
difference between the perturbed (combined metal-
adatom) system and the bare metal.

The Schrddinger differential equation correspond-
ing to Eq. (2.1) can be solved exactly by direct
numerical integration outward from the adatom
nucleus. Solutions 4, (r) obtained in this way are
characterized by their angular behavior near the

We ppovide here a description of the theory use/
to obtain the results discussed in Sec. III. We
begin with an outline of the logical structure of
the theory; we do this for two reasons: first, for
readers not interested in the theoretical details,
the outline offers a description of the theory suf-
ficient to understand the result. s, and second, it
provides a guide to the more detailed discussion
which follows.

The entire analysis is based, as noted above,
on the density-functional theory of many-electron
systems, which requires the solution of effective
one-electron, Schrodinger-like equations. The
present analysis casts these single-particle equa-
tions into scattering-theoretic (or Lippmann-
Schwinger) form

V'""(r) = V")r) + f rt'r'O")r, r')Vv. „tr')

nucleus and do not in general satisfy the boundary
conditions embodied in the Lippmann-Schwingeg
equation; the desired solution is, however, a lin-
ear combination of these fundamental solutions,

(2.2)

where the coefficients C& are obtained by sub-
stituting Eq. (2.2) into Eq. (2.1).

The remainder of this section is devoted to the
details of the procedure just described; these
can be grouped as follows (in the order in which
they appear in the text): (i) Specification of the
differential equations and the effective one-elec-
tron potential provided by our use of the local-
density approximation within the density-func-
tional framework. (ii) Replacement of the volume
integration in the Lippmann-Schwinger equation
by the equivalent surface integral, in order to
reduce the number of coordinate values r' at
which the bare-metal Green's function G"(r, r')
must be evaluated. (iii} Further manjpulationrs
of Eq. (2.1) aimed at improving the numerical
accuracy of the calculations by, for example,
focusing directly on the difference @ (r) —%'"(r).
(iv) Specification and construction of the bare-
metal functions 4'"(r). (v) Calcul, ation of the
fundamental solutions 4', (r). (These are con-
structed in a spherical coordinate system cent:ered
on the nucleus, and are represented gs radially
varying combinations of spherical harmonics. )

(vi) Specification and construction of G"(r, r'). '
(vii) Discussion of the particular way in which we
have treated the r dependence of the equation ob-
tained by substituting Eq. (2.2) into Eq. (2.1), in
order to obtain independent equations specifying
the coefficients C& whil. e mririimizing the number
of coordinate values r at which G "(r, r') must be
evaluated.

The formalism of Kohn and Sham, as indicgted
above, reduces the many-body problem for the
ground-state density distribution n(r) of an in-
homogeneous system of N electrons in a st&tie
external potential v(r} (due here to the adatom
nucleus and the positive background) to the self-
consistent solution of the equations (we use Ryd-
berg units, with ~s ~

= 2m = h = 1)

(2.3a)

(2.2b)

where n& indicates the occupation of the ith (ortho-
normal) orbital. In the metal-adatom system,
n, =1 if E, is less than the Fermi energy (we labei
the two members of a Kramers-degenerate pair
by different i values), and n, =0 otherwise. The
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v„, [n; rJ= v(r)+2
n(r')

[ i ]

potential in Eq. (2.3a) is given by

(2.4)

Eq. (2.7b) (and its boundary conditions) for the
continuum states is given above as Eq. (2.1},
where G"(r, r') (the outgoing-wave Green's func-
tion for the bare metal, from which we omit the
label E for now) satisfies the equation

where v„,[n; r] is an exchange-correlation po-
tential, the "local-density" approximation to
which is

(V'+ E —v„,[n"; r])G "(r, r') = 5(r —r'),
and where

(2.8)

( ~)) dna„(n)
C&l f1 =Pg(1 )

3 '~'
~),~, dna, (n)

dn „„(-,) . (2.5)

[The factors of 2 appearing in Eqs. (2.4) and (2.5)
arise from the use of Rydberg energy units. J Here
e„(n) is the exchange-correlation energy per
particle of a uniform electron gas of density n

and e,(n) is the correlation part. (The expression
for &, used in the present study is that given by
Hedin and Lundqvist. '0) The total energy of the
system in this case is

I

E„,= QE»n» — d'r v,«[n; r]n(r)
S

+ d'r z„(n(r))n(r) +E.. . (2.6}

(V' + E —v„,[n"; r])4 "(r) = 0

(~2 + E v [ tel. r]}@»»t»(r) 0

(2.7a)

(2.7b)

The Lippmann-Schwinger equation equivalent to

where E„ is the total electrostatic energy of the
system.

We wish to solve Eqs. (2.3) self-consistently
for the atom-jellium model introduced above,
consisting of a semi-infinite uniform positive
background, a nucleus of charge Z, and the gas
of interacting electrons. Now the metal screens
out the effects of the adatom on the charge density
and potential, except in the adatom's vicinity.
(The disturbance in the individual single-particle
wave functions is not short-ranged, however. )
It is this locality of the disturbance in the po-
tential that is conveniently exploited, for the con-
tinuum states (i.e. , states above the bottom of the
metal band}, by using the Lippmann-Schwinger
integral equation corresponding to Eq,. (2.3a).

Let us call the electron number density in the
metal-adatom system n""(r); and let us denote
the corresponding density for the bare metal by
n (r) The eigenf. unctions 0""and 4'" will be
specified by an energy eigenvalue E and other
labels, but we omit these for now. Thus, we write
the differential equations satisfied by these eigen-
functions

5v,«(r) = v,«[n; r] —v,«[n; r]. (2.9)

Equation (2.1), together with Green's theorem
and the fact that

'5v ff(r)+ (r}= (V' +E —v„«[n; r])@~(r)

implies

dSt . [@MA(rl)V G»»(~ rr)

(2.10),

—G "(r, r')v„C m(r') J = 0 "(r) (2.11)

for r within the (closed) surface S. (S can be any
surface outside of which 5v,« is negligible. ) We
recognize the above surface integral as the opera-
tor which projects out of a scattering solution the
unscattered wave. For computational accuracy,
it is better to work with an equation for just the
scattered wave 64 =—4 —+", and so we proceed
as follows: Since Eq. (2.11) is true for any 5v,«,
in particular 6v,ff 0, we can obtain another equa-
tion by replacing 4~ by 4" on the left-hand side.
Subtracting this from Eq. (2.11) then yields an
equation satisfied by 64:

yazd S' ~ [54(r') V„.G "(r, r'}

—G "(r, r')V, ~54'(r')] = 0, (2.12)

ez, (r) =e' ~J„(»»p)uz"„(z),

whose normalization is given by

(2.13)

d'r(e, „(r)]*+,". .„.(r)
= 5(E-E')5(»»- »»')5, . (2.14)

The functions uz", (z) (with E below the vacuum
level) decay exponentially in the vacuum (z-~),
and are oscillatory deep in the metal (z- —~):

where r is within S.
In addition to the two-dimensional translational

symmetry of the bare surface which makes the
computation of G "(r, r') tractable, the most im-
portant symmetry in the problem is the cylindrical
symmetry of the charge density and potential in

the atom-jellium system. In accordance with this,
we introduce cylindrical coordinates p, Q, z, with
the origin taken at the position of the adatom
nucleus and the s axis along the outward surface
normal (see Fig. 1). The eigenfunctions of Eq.
(2.7a) for the bare metal can then be written using
this coordinate system
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@ ff(w)( ) Q & ff(x) @ ff(w)( )
j'= Iml

(2.18)

VACUUM

With 5n=e~ —a" and 64'=4'""—4', we can write
(omitting the E,m subscripts common to all
quantities),

Z=-d
{POSITIVE

BACKGROUND
EDGE)

NUCLEUS)

FIG. 1. Cylindrical and spherical coordinate systems
used here have a common origin at the adatom nucleus,
which is a distance d to the right of the positive-back-
ground edge. The background fills the z & —d half space.

uz"„(z)- w '«'~'(2k) 'f" sin[kz -'y(k)],

where

k=(E —K —E) /

(2.15)

(2.16)

with E,= v,«(- ~) the value of v„, deep in the metal
(i.e. , the bottom of the metal band). The quantum
numbers E, ng, and I(." reflect the quantities con-
served by the symmetry of the bare model sur-
face: energy and the two components (angular and

radial) of transverse momentum.
The continuum eigenfunctions 4'""(r) for the

chemisorbed system, which are solutions to the
I ippmann-Schwinger equation (2.1) will, via this
equation, have the same labeling (E, m, «) as the
4", even though of course a no longer refers to a
conserved quantity. These solutions will also have
the same normalization as the 4'" [given by Eq.
(2.14)],"a fact which facilitates the calculation of
the electron-density distribution and the state
density.

Within the surface S, we write the eigenfunctions
kz""„(and 4'z"„, as well) in terms of solutions
@'z, (4'z" f) of the same differential equation
(2.7b) [(2.7a)] with the same E and m, but which
are labeied by their behavior at the origin (the
position of the adatom nucleus):

6e„(r)= Q [u„"f.6ef.(r) + 6n„i@@'(r)J;
j =Iml

(2.19)

We can use Eq. (2.18) io determine the coefficients
e„", that appear here, in view of the facts that
4f" (we continue to omit E, m) is known from the
numerical integration mentioned above and that
+, can be obtained from the self-consistent cal-
culations for the bare surface described by Lang
and Kohn. " This leaves only 6n« to be deter-
mined in order to specify 54„, since 4 j~ and
~+j + j + j are known by numerical integra-
tion. In actually using Eq. (2.19) for 64'„, we
will make the completely controllable approxima-
tion of replacing the upper limit of the 'l sum by
an l,„(l „=6was found to be entirely sufficient
in the present work). We are able in this way to
find the continuum eigenfunctions 4'," (= if „"
+5@ )

33

We now discuss the determination of the co-
efficients 5n in Eq. (2. 19). Substitution of Eq,
(2. 19) (with l,„as the upper limit on the l sum)
into Eq. (2.12) yields an equation of the form
(omitting E,m, K)

ax

A f.(r)6ef. = &(r) .
j'= Imi

(2.20)

Equations sufficient in number to determine the co-
efficients 5aj could be obtained by taking r to have
Nf (=—l,„+1—~m ~) arbitrary values within the
volume bounded by the surface 8. A more con-
venient treatment of this r dependence, however,
is suggested by the structure of G (r, r'), which
enters both A, (r) and B(r).

By virtue of the completeness of the sets of
functiohs J'„(«p) and e'", we see from Eq. (2.8)
that we can write

lj.m x (2.17)

where M(ffi) means either I or MA. (The functions
+&"j are the fundamental solutions referred to as
4'f in the outline above. } In describing these func-
tions we use the spherical coordinate system
x, 8, Q shown in'Fig. 1. 4'z~f and 4'z"„f can be
found by direct numerical integration of the dif-
ferential equation out from the origin (seeAppendiz
A) using the method of Williams and Morgan. "
We write

«d«J' (KP)

xZ ( )«up(zz) &u(zz )W&'„,z
(2.21)

where z& (z&) is the lesser (greater) of z and z'.
The functions u and u" satisfy the equations

(2.22)
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As mentioned earlier, the regular solution u -0
as s-~." In the limit 2-- , u" has the sine
wave form of Eq. (2. 15) when k'&0 [see (2. 16)j
and increases exponentially when k'&0. On the
other hand, the appropriate irregular solution
I increases exponentiaHy as z- and is propor-
tional to exp(-ikz) for z- ~, with argk=0 for
k'&0( and argk =&w for k'&0. The Wronskian W„
that appears in Eq. (2.21), defined by

„( )
du "(z) „( )de�"(z)

(2.23)

(omitting the E and x subscripts common to all
quantities), is independent of z.

The structure of the bare-metal Green's function

just described is most conveniently exploited in
the following way. Multiply both sides of Eq. (2.20)
by r 'I')d' (0) (with l taking values from ~m) to l,„),
integrate over solid angle 0, and then let r-0.
(The fact that the Green's function to which this
limit procedure is applied is given in cylindrical
rather than spherical coordinates, and that fur-
thermore its z dependence is known only numeri-
cally, means that special care is required in tak-
ing the limit —see Appendix B.) For convenience,
we take the surface 8 to be a sphere of radius R
(with R large enough that 5v,«=0 outside the
sphere); the equation for 6o. (2.20) then becomes
(omitting the E,m subscripts common to all
quantities, and with r' and r interchanged)

&max
1

6o(„,. d cos 8 G f(r, 8) )l),~(r, 8—) —y g~(r, 8)—G f (r, 8).
&max

1E u„", dr888(I',8(r, d) —.Ild, (r, r) —88, (r;8)—Gf( 8))8 (2.24)

where

ei lt)y d(' )(r 8) 48 (d( ){r)

and

{2.25)

Gz, (r, 8) = limr' ' d cose' d(y —y') Fy (O')

&(ei)88((Gd((r rd)

(2.26)

We use here the periodicity of Gs(r, r') in ((t) —(l)')

and the symmetry in r and r' that is evident from

Eq. (2.21). (The detailed form of Gs", is given
in Appendix B.) Equation (2.24) is fundamentally
the spherical harmonic decomposition of Eq.
(2.20). It is a system of linear equations (in l,„
and l') which determines the coefficients 5o(z „,;
using these coefficients as described above, we
obtain the continuum states in the metal-adatom
system 4'~~, . The calculation of the discrete
states 4z~ (with E, the energy eigenvalue, "which
will in ge~neral depend on m) is described in Ap-
pendix A.

Given these functions we will calculate (within
the sphere of radius R)"

88(r d) =8 g e(d -d ) dr[(8' „(r)l*—Id "„(8)I'( 8 g )8' „(r))8(d —d)) .
)0 C

(2.2'I)

The factor of 2 is for spin degeneracy (recall that
we use a spin-unpolarized formalism). Note that

6n(r, E) is independent of Q (i.e. , is cylindrically
symmetric}. The difference in electron density
between the metal-adatom system and the bare
metal is

F
6n(r) =n (r) -n (r) = dE 5n(r, E), (2.28)

where E~ =E, +kr' [kr =—(Qw j4)'~'/r, J. The electron
density in the metal adato-m system (n } is
evaluated as n"(r) +6n(r) with n calculated di-
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rectly as described in Ref. 25. This is then used
to reevaluate v,«using Eq. (2.4); and a self-con-
sistent density distribution for the metal-adatom
system is obtained by iteration. " (The way in
which charge disturbances outside the sphere of
radius 8 a re taken into account is described in
Appendix C.")

It is convenient also to define a difference of
eigenstate density as Adatom @q(bohrs) &Z, (eV)

TABLE I. Equilibxium distance d (adatom nucleus to
positive-background edge) and atomic binding energy hE,
for adsorption on a high-density (&,= 2) substrate. The
changes that occur in these quantities when the discrete
lattice is reintroduced using perturbation theory are dis-
cussed in Appendix 0 (see also-Befs. 15, 16, 18, 19, and
46). (Note that the outermost substrate lattice plane lies
half an interplanar spacing behind the background edge. )

6s(E) = ~'r6 (r, E).

The adatom dipole moment p, is defined as

p, = — d'r s5g r

(2.29)

(2.30)

H

Li
0
Na
Si
Cl

1.1
2.5
1.1
3,1
2.3
2.6

1.5
1.3
5.4
0.9
3.0
3.'6

(recall that s-~ is in the vacuum). Since @=0 is
at the nucleus, the nuclear charge does not ap-
pear in this formuI. a. The atomic binding energy
4E, is the difference in total energy between the
metaI. pl. us the separated atom' and the metal
with the atom chemisorbed on its surface. The
energies are calculated using Eq. (2.6); note that
the difference in the first term in this equation
(g E,n~) between the metal-adatom system and
the bare metal can be evaluated simply as

dE 6s(E)E.

III. SELECTED RESULTS AND THEIR INTERPRETATION

We present calculations for a representative
set of adatoms (H, Li, 0, Na, Si, Cl) which ex-
hibit a variety of chemicaI. behavior, chemisorbed
on a high-density metallic substrate [v', =2, which
simulates such simple (i.e. , s-P bonded) metals
as Al (r, =2.07), Zn (s, =2.30), and Mg (r, =2.65)].
Some results are included for r, =4 (-Na density)
in order to illustrate the dependence on this
parameter. The reader should recall that r, and
the adatom nuclear charge Z are the only param-
eters in the atom-jellium model. The equilibrium
distance d~ between the adatom nucleus and the
positive background edge is obtained by minimiz-
ing the calculated total. energy.

Table I gives d,q
for these six atoms, along with

the corresponding value of the atomic binding
energy ~,. We note in this connection that the
positive-background edge from which d is mea-
sured is to be considered to be half an inter-
planar spacing in front of the outermost lattice
plane of the substrate being simulated, by con-
struction of the jellium model. ' (We defer to the
end of this section a discussion of the rel. ationship
between these results and experimental measure-
ments. )

.= l.0—
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,
-lo . -5

ENERGY RELATIVE TO VACUUM (eVI

-l5

FIG. 2. Change in state density 6n(E) due to chemi-
sorption. Curves correspond to metal-adatom distance
d which minimizes the total energy (Table I). High-
density (x~=2) substrate. Note that the lower Si reson-
ance corresponds to the 38 level of the atom; for Cl this
is a discrete state below the band edge.

The difference of eigenstate density 5n(E) de-
fined in Eq. (2.29) is shown in Fig. 2 for the atoms
Li, Si, and Cl. The location of the resonances
in this figure relative to the Fermi level (Ez)
determines the degree of occupation', the three
cases shown exhibit the range of possible be-
havior. The 2s resonance of Li I.ies primaril. y
above E~ and the SP resonance of Cl lies bel.ow,
providing clear examples of positive and negative
ionic chemisorption. The direction of charge
transfer is consistent with the magriitudes of the
electronegativities of Li, Cl, and a high-density
metallic substrate (such as Al). [Approximate
integration of the atomic-difference density shown
in Fig. 3 (discussed below) suggests that the Cl-SP
resonance, despite its energy position beIow F&,
contains less than six electrons. This is apparently
a refI. ection of an effect discussed by Pendry" in
which a portion of the spectral weight of such re-
sonances is spread over a wide energy region.
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LITHIUM SILICON CHLORINE

I
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~O
aK+ UJ
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FIG. 3. Electron-density contours for chemisorption on a high-density (rs =2) substrate. Metal- adatom distances
shown minimize the total energy. Upper row: Contours of constant electron density in (any) plane normal to the
metal surface containing the adatom nucleus (indicated by+). Metal is to the left-hand side; solid vertical line indi-
cates positive-background edge. For computational convenience, contours are not shown outside the inscribed circle
of each square. Contour values are selected to be vlsumly 1nformatlve. Center row: Total electron denstty minus

e superposition of atomic and bare-megal electron densities (electrons/bohr ). The polarization of the core region,
shown for Li, has been de]eted for S~ and Cl because of its complexity. Bottom row: Bare-metal electron-density
profi]. e (shown to establish physical distance scale). (For reference, the bulk metal density is 0.03 electrons/bohr .)3

Another example of this effect is the fact that the
d bands of metallic Cu contain only 9.6 elec-
trons. '] The energetic cost of completely filling
or emptying the Si-3P resonance results in its
self-consistent partial. occupation; this l.eads in

turn to a clearly discernible covalent bond charge
(see below).

The spatial manifestation of the three types of
behavior exhibited in Fig. 2 is given by the charge
density, contours of Fig. 3. An important reason
for considering such density maps is that they
provide a spatially detailed picture of bonding
which is independent of the analytical approach
employed. Further, the existence of comprehen-
sive analyses of electron densities in related mo-
lecular systems ' makes it possible to compare
the chemical trends in these extensively studied
systems with those in chemisorption. (This com-
parison is also relevant to the adequacy of simu-
iating surface complexes with smail clusters ).

Contours of constant density are shown in Fig. 3

for both the total electron density in the metal-
adatom system (upper row) and the total minus
the superposition of bare-metal and free-atom"
electron densities (center row). The outermost
closed total-density contours surrounding the Li
and Cl nuclei are more nearly circular than those
for Si, which show a more prominent projection
of charge into the bond region'. The metal con-
tours in these total-density maps deflect toward
the I.i and away from the Cl, indicating the ionic
attraction (Li) and repulsion (Ci). The relative
rapidity with which the contours regain their bare-
metal form outside the immediate vicinity of the
adatom is an illustration of the effectiveness of
metallic screening.

The difference contours in Fig. 3 show clearly
the displacements of electronic charge which
accompany bonding. In Li, we see that charge is
transferred from the vacuum side of the adatom
toward the metal. The kidney-shaped depletion
contour on the vacuum side, and even the reverse
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dipole contours in the core region, are very simi-
lar to those found by Bader and co-workers" in
the LiH and LiF mo'iecules. The nearly empty
Li resonance of Fig. 2 suggests that the trans-
ferred electrons are to be thought of as residing
in "metal" states. (It should be recalled that our
calculations do not define distinct atom and metal
states. ) Note also that for Li, as well as for the
other two cases, the sequence of contours con-
tinues into the metal in the form of Friedel os-
cillations induced by the perturbing atom. The
difference contours for Si show a depletion of
charge near the nucl. eus and accumulations on both
the bond and vacuum sides. The same general
behavior is found in all of the diatomic molecules
studied in Ref. 42 which exhibit P-orbital covalent
bonding. The difference contours for Cl provide
a picture of a pol. arized negative ion similar to
that found for H and F in the molecular calcula-
tions just mentioned. .

The connection between the covalent bond charge
seen for Si in the contour maps and the partial
occupation of the valence resonance is exhibited
in Fig. 4. Contour plots of 6n(r, E) are shown for
four values of E: one value each fromthe low-
energy and high-energy parts of both valence
resonances. %e identify these two valence re-
sonances as arising from the 3s and 3p atomic
levels. There are two basic interactions of in-
terest in this case: the interaction between each
atomic level and the metal, and the intra-atomic
mixing of the two levels (3s and 3P,) due to the
asymmetry of the surface potential. . The inter-
action with the metal broadens each level into a
resonance, whose lower part adds charge to the
bond region ("bonding" ) and whose upper part
subtracts charge from this region ("antibonding").
The interaction between the levels provides an
overall polarization to the charge distributions
associated with each level —into the bond region for
the "38"charge distribution and into the vacuum
for the "3p" charge. Note that the two effects tend
to work in opposite directions in the cases labeled
"antibonding s" and "bonding P" in Fig. 4, par-
ticularly in the latter case, as seen in the contour
plot. The fact that the upper part of the 3P re-
sonance is unoccupied means that the negative
contribution it would make to the charge density
in the bond region is not present, and that there
is a net accumulation of bond charge from the
states that are occupied. [If, in calcul. ating I)n(r),
we fill the 3p resonance to just below the vacuum
level, without recalculating the states, and add
this 6n(r) to the bare-metal density, then the
corresponding total-density contour map no longer
resembles that of Si in the upper row of Fig. 3,
but instead resembles that of Cl. ]
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Vfhil. e our calculations predict an equilibrium
metal-adatom separation, the results of calcu-
lations performed for other separations provide
theoretical insight into the distance dependence
of the metal-adatom interaction; of particular
interest are the variations of the state-density
difference Iin(E) and the dipole moment g.

fn Fig. 5, dn(E) is shown for a chemisorbed
hydrogen atom at three different distances. At
the largest distance, the metal-adatom interaction
is not strong, and the resonance that is present
below the Fermi level is relatively narrow. When
the atom is moved closer, this interaction in-
creases, and the resonance widens considerably.
It also moves further below the Fermi level,
showing a tendency to follow the bare-metal sur-
face potential. %hen the atom is moved stilI.

FIG. 4, Upper part of figure reproduces the state
density curve from Fig. 2 for Si chkmisorbed at its
equilibrium distance on a high-density (x,=2) substrate.
The two peaks correspond to the 3s and 3P atomic states.
The lower part of the figure shows the density contours
Icontours of 6n(r, E)] associated with the four shaded
regions in the state density curve. (See caption of Fig.
3 for details of such contour maps. ) Solid lines corres-
pond to positive contour values, dashed lines to negative
values. The same set of contour values was used for all
four c ases. The crescent-shaped contours in the two
"bonding" maps correspond to maxima in the density.
(Contours near the nucleus have been deleted for clar-
ity, }
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closer, the broadening due to increasing metal, -
adatom interaction is overtaken. by narrowing due
to the decreasing density of metal states seen by
the resonance as it moves down toward the bottom
of the metal band, and the resonance narrows
again. 4' 44

We find qufte generally that the energy positions
of adatom valence resonances tend to follow the
bare-metal surface potential as the atom is moved
into the surface. This is true as well for the dis-
crete states of the adatom that belong to the same
principal quantum-number shell as the valence
resonance, such as the 3s state in Cl. Let us
consider briefly why this should be true. It is
simplest to think of the case of the discrete states
for this discussion.

Consider a state in the free atom with eigen-
function 4'& and eigenenergy E& [cf. Eq. (2.3a)],
which remains discrete (below the conduction
band) when the atom chemisorbs, with eigenenergy
E, + 6E, (d). By first-order perturbation theory,

i)E, (d) =(~ l~vl~;&,

with

Av(r) = ,vf[rn; rl —v rr [n ";r],

(3.I)

(3.2)

b v(r) = v„[n";8]+hv„(r),
with

av„(r) = v„[n"+n"; r] —v„[n";r],

(3.3)

(3.4)

where n"(r) is the density in the free atom. (The
atomic nuclei for'the cases on ji"~ and n" are
imagined to occupy the same spatial position. ) Let
us take n""(r)=n"(r)+n"(r) here (This cr.ude ap-
proximation ignores charge transfer. ) Then

0—
1

t I I

-I5 -IO —5
ENERGY RELATlVE TO VACUUM (eV)

FIG. 5. State density change &~(E) due to chemisorp-
tion of H on a high-density (t', =23 substrate, Curves
are shown for.three different metal-adatom distances
d. Ax'low gives value of bare-metal potential ver l „.&]
at adatom nucleus; zero of potentiiQ is set so 'that

arrow falls under peak of resonance for largest distance.
This shows the way in which the resonance position
roughly follows the surface potential-see text. gf the
arrows had been drawn for vis instead

ofhce~,

the
arrow in the bottom panel wc5uld have been to the right
of the peak, indicating as expected from the discussion
in the text, that the actual calculated behavior of the
resonance is intermediate between the two potentials. )

and with v„[n";z] the electrostatic potential in
the bare metal. Now in determining (4';.lb, vl4', ),
let us consider two limiting cases: one in which,
over the spatial region important to evaluation of
the expectation value, n"(r)»n "(r), and the
opposite case with n (r) «n "(r). We expand
6v,~(r) in powers of n "(r)/n "(r) (or n "/n"), using
the fact that in the local-density approximation
v„[n; r] = v„(n(r)), and v„(n) varies roughly as
nr, with y positive but iess than unity (y & &).
Doing this, and then taking (4', jb, v[4&)- Ev(0), (re-
call that the adatom nucleus is at x=a=0 in our
coordinate system), shows that the limit n"(r)
»n "(r) (over the relevant region) gives 5E;(d)

v rf [n"; 0] and the opposite limit gives 6E&(d)- v„[n;0]. It is in this way that we understand
the statement that the adatom valence states fol-
l.ow the bare metal "surface potential. "

Figure 6 shows the changes with distance in
the position and width of the valence resonances
for chemisorbed Si and Cl, The Si-3s resonance



18 THEORY OF ATOMIC CHEMISORPTION ON. SIMPLE METALS

2.5 2.7 2.9 3.I

. . : '. .::-:;-::.: ': .X..'".;~ '"&' ~y

EF .. ::::.". .'. ::::.:;~":~.:~m,

: ] -'::$I .3pjjgx x';ix'. ~

0

l~
Q -IO

$] 3s

0

0

&- -5
49

UJ

4J

-l0

I.O

METAL 8AND EDGE

I;5 2.0 2.5
d (a.u.}

3.0 I/r
an~ ~~~~+

VACUUM

FIG. 6. Characteristics of Si and Cl resonances (cf.
Fig. 2) as a function of metal-adatom separation.
High-density (&~ =2) substrate. Boundaries of shaded
regions indicate half-maximum energies. Lower
axis d is separation of adatom nucleus from positive
background edge (a.u. —=bohr). The plane through the
outermost nuclei of the substrate represented by this
background is half an interplanar spacing behind the
background edge. Thus d, the crystal structure of
the substrate, and the adsorption site determine an
adatom to metal-atom bond length b. The upper axis
provides & for a threefold site on R (ill) surface of
Al as an example. Dashed curves show peak positions
for e ( =0) and ~ (m =1) components of Si-3p reso-
nance. (Not shown for Cl.) Curve V gives effective
one-electron potential (v,«[n;3] ) cf bare inetal (dis-
placed downward for pictorial reasons).

shows particularly clearly the narrowing at both
small and large distances discussed in connection
with hydrogen. The asymmetry of the surface
potential Splits the m = 0 (o) and m = l (m) compon-
ents of the P resonance (recall that m is a good
quantum number in the calculation). This splitting
is given in the figure for Si. At shorter distances
(not ihown) the splitting decreases to zero and

changeS sign.
%e expect this reversal of sign of the o'-m split-

ting with distance to be a general occurrence. If
we simply treat the bare-metal surface potential
as a perturbation on the free-atom o and m orbi-
tals (cf. discudsion above), then it is seen using
first-order perturbation theory that the splitting
is proportional to the second derivative of this
potential. (The second derivative enters because
the 0'-orbital samples the potential at s values on '

either side of the adatom, whereas the m-orbitals
sample it for z-0. The difference (&rjv,«~o)

1 I

0
d (BOHR~

1

6

FIG. 7. Simple perturbation: calculatian of distance
dependence of 0'-71 splitting, usi5g free-. atom Si or-
bitals. The figure shows the energy Positions'of the
otherwise degenerate Sp~ and 3P~ states insofar as
they are shifted to first or'der by the surface potential
(v,ff tn+;a) ) of a high density. (r,-=2) metal. The zero
of energy for these states has been displsced upward
for pictorial convenience. Because of the simplicity
of the Calculation, these curves are usehil only for
illustrative purposes; in particular they reproduce
the actual results shown in Pig. 6 only qualitatively.

(Il ~v « ~«) is therefore a type of finite-difference
approximation to the second derivative. ) . The
second derivative of the potential changes sign, "
and thus the sign of the v-m splitting can be ex-
pected to reverse when the adatom is intheyicinity
of the inflection point'. of the potential.

Figure 7 gives the. result of Such a simple per-
turbation calculation, using the total. effective
bare-surface potential v,«[n", zJ and free-atom
Si 3p orbitals. Part of the reason why the splitting
in this figure remains perceptible at larger dis-
tances than it does in Fig. 6 is the fact thai at
these distances, it would be more correct in the
perturbation calculation to take the surface po-
tential to be only the electrostatic part of v,ff
(this ii the n"«n" limit, discussed above), whose
second derivative drops to zero more rapidly
with distance than that of v,«[if v,", -e ', then
Vl&. e

" 83/3J

This iplitting (and its reversal of sign) is also
observed in Fig. 8, which shows the 0' and m com-
ponents of the oxygen 2P resonance for two dis-
tances. At the larger distance (which is greater
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FIG. 8. The 0 (m=o) and n (m=1) components of the
state density change 5n (E) due to chemisorption of
oxygen on a high-density (r~=2) substrate. Curves are
shown for two different metal-adatom. distances d.
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FIG. 9. Dipole moment as a function of metal-adatom
distance d for Na, Si, or Cl atom chemisorbed on a
high-density (r~=2) substrate. The sign of the dipole
moment is defined so that a negative moment corres-
ponds to an increase in substrate work function [see the
definition of the dipole moment in Eq. (2.30)].

0

the value of )J. '(d). This point is discussed in the
context of diatomic molecules by Matcha and

King. "'"
Figure 10 shows the way in which the energies

of some of the important features of 6n(E) for
chemisorbed oxygen vary with distance. The po-
sitions of the two discrete levels (which corres-
pond to the Is and 2s core levels of the free atom)

than the atom-jellium equilibrium distance), the
resonance components are relatively narrow.
The n resonance is at a slightly higher energy,
as in Si, but the splitting is very small. Closer
in, the components broaden, the sign of the v-n

splitting changes, and its magnitude is con-
siderably i@creased. ~ A splitting of this order
persists to d--2 bohrs [the outermost lattice
plane for Al(111) would be at d = —2.2 bohrs].

Ne now discuss the dipol. e moment as a function
of distance; this is shown in Fig. 9 for Na, Si,
'and Cl. (It is useful in thinking about Fig. 9 to
keep in mind the density difference maps in Fig.
3.) One can define a "dynamic" charge on the
adatom as the slope of such a curve [i.e. , p, '(d)].47

For distances in the central part of the graph,
p, '(d) is -+0.4 for Na, --0.5 for Cl and -0 for Si
(units are the magnitude of the electron charge).
These numbers however do not provide a good
measure of static charge transfer because of the
importance of other contributions, such as the
distance dependence of polarization effects, to
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FIG. 10. Variation of the energy positions of the ls
and 2s eigenstates and the peak in the 2P resonance
[in ~n(E)] with metal-adatom distance d, for oxygen
chemisorbed on a high-density (r~=2) substrate. Shown
for comparison are the bare-metal potentials ~,8[n;s]
and &s,zz[n;z] evaluated at the position of the adatom
nucleus. All curves have been shifted in energy so that
they have zero value at the right-hand edge of the
graph.
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and the position of the peak in the valence re-
sonance (which corresponds to the 2P level of the
atom) are exhibited. As discussed below, the
discrete eigenvalues do not give directly the ener-
gy to remove an electron from the corresponding
state. However, the difference in such excitation
energies between the free atom and the chemi-
sorbed atom can be decomposed into a chemical
(initial-state) shift and a relaxation (final-state)
shift, ' and the chemical shift is given as the dif-
ference in energy eigenvalues between the chemi-
sorbed and free atoms. For these cases, there-
fore, the curves show the variation with distance
of the chemical shift.

The 1s levt. l exhibits much less dependence on
metal-adatom separation than the 2P resonance,
with the 2s level intermediate, though closer to
the 2P, as we would expect from the fact that they
have the same principal quantum number. Two
important factors affect the distance dependenc e
of the levels, each of which individually would
lead to the ordering of the curves seen in the
figure. The first arises from the fact that the
deeper in energy an orbital lies, the higher is its
associated electron density. As discussed earlier,
the higher the electron density in the region of a
given orbital, the more the orbital eigenvalue
will tend to foll. ow the bare-metal electrostatic
potential v„[n";z] rather than the total bare-metal
potential v,«[n.";zL; and v„does not drop as
rapidly going into the metal. as v,«does. The
second factor is a consequence of the fact that as
the atom moves into the metal and the valence
(2P) resonance drops further below the Fermi
level, the charge transfer into the valence shell
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FIG. 12. Comparison between state-density changes
6n(E) for Si chemisorbed on high (r, =2) and low (r~
=4) density substrates. Both curves shown are for an
atom taken at a distance d=1.5 bohrs. The portions of
the curves above the Fermi level are not shown. Note
that the 3s resonance present in the high-density case
becomes a discrete state in the low-density case. The
shift of the Fermi-level position relative to vacuum
corresponds to a change in the work function when r~ is
changed from 2 to 4 (see Ref. 25).
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FIG. 11. Variations of the deep core eigenenergies
with metal-adatom distance d, for Na, Si, and Cl
chemisorbed on a high-density (r,= 2) substrate. The
variations of all of the deep core levels of a given atom
are rather similar; the curves actually shown are for
the 1s level. Included for comparison is the bare-metal
potential ve~ ['n;z] evaluated at the position of the ada-
tom nucleus. All curves have been shifted in energy so
that they have zero value at the right-hand edge of the
graph.

can'be expected to increase. Simple electrostatic
considerations indicate that this added charge will
raise the electrostatic energy of orbitals concen-
trated near the nucleus (ls) more than it will
raise the electrostatic energy of orbitals com-
parabl. e in size to the valence shell (2s, and 2P
itself).

In Fig. 11, we exhibit the variation of deep-core
eigenenergies with distance for Na, Si, and Cl.
In contrast to the Si-3s resonance in Fig. 6, the
deep Si core levels do not drop as the atom is
moved closer to the metal but in fact rise slightly.
We ascribe this difference to the effect of in-
creased charge transfer into the Si 3P shell as the
atom is moved closer (which occurs because the
3P resonance moves gradually down through the
Fermi level, as seen in Fig. 6). As noted above,
this charge transfer affects the positions of deep
levels most strongly. It is apparently large
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enough to counterbalance the effect of the drop
in bare-metal potential over the range of dis-
tances shown. This discussion suggests that the
rather different behavior of CI. arises simply from
the fact that since its valence resonance is always
well below the Fermi level (Fig. 6), there is
rather little change in charge transfer with dis-
tance.

Finally, we show in Fig. 12 an example of the
effect of changing the substrate density. ' The
top part of the figures gives the state-density
difference bn(E) for Si on an r, = 2 (-Al density)
substrate for energies between the bottom of the
metal conduction band and the Fermi level. (The
adatom is placed at a distance d=1.5 bohrs. ) The
bottom part of the figure gives 5n(E) for Si on an

r, =4 (-Na density) substrate, over the same
energy range and with the distance d' unchanged.
Since the density of metal states seen by the Bp
resonance is so much lower in this case, the
resonance is much narrow er. Furthermore, the
metal band edge lies above the state, so this
state is no longer broadened, but remains dis-
crete when the atom chemisorbs, as the deeper
core states do.

We conclude this section by discussing some of
the important considerations that arise if we wish
to compare the results calculated using the atom-
jellium model with experimental data for low-
coverage chemisorption. The first important
point is that on an actual metal surface, the metal-
adatom separation at favorable adsorption sites
will be somewhat smaller than the value obtained
in the atom-jellium model. This fact is suggested
by a simple hard-sphere model of the substrate
atoms (recalling that the positive-background edge
is half an-interplanar spacing in front of the outer-
most lattice plane); and it is demonstrated in

Appendix D, in which the discrete substrate lattice
is reintroduced using first-order perturbation
theory. The perturbation 6v(r) in this case is the
difference between the total lattice pseudopotential
and the potential due to the semi-infinite positive
background.

The atomic binding energy 6E, associated with
the most favorable adsorption sites is in general
somewhat larger than the value for the atom-
jellium model, as seen in Appendix D. Although
the change in energy of the adatom core (which
is concentrated spatially and often has several
units of net charge) due to the perturbation 5v(r)
can be large, the effect of this perturbation on
individual electron states, particularly when it
is averaged over the relatively diffuse valence
orbitals, is usually quite small, Because of this,
we expect that 5n(E) for the adatom in the pres-
ence of the pseudopotential lattice will be similar

S1 ON AX(111)

0$

1.0 1.5
!

2.G ,

d (BOHR)

FIG. 13. The dashed curve gives the atomic binding
energy (see definition in Sec. II) as a function of dis-
tance for Si chemisorbed on an r, =2 jellium substrate.
The solid curves give the binding energy when the pseu-
dopotential correction 6 ~, [Ecj. (D7)] is added to the
result for the atom-jellium model. These corrections
are computed for adsorption on the (111) face of Al at
three possible sites: on top of a substrate atom (A),
bridge position (B), and centered position over a hole
in the second layer of atoms {C). Note that the outer-
most plane of substrate nuclei lies half an interplanar
spacing behind the positive background edge (corres-
ponding to d=-2.g bohrs in the present case). The
equilibrium position for adsorption in the centered
site C corresponds to an Al-Si bond length of 2.6 A
(see text).

to 5n(E) for the atom-jellium model evaluated at
the reduced metal-adatom separation. Graphs
such as Figs. 5 or 6 are appropriate for this
evaluation. INote that the top half of Fig. 12 gives
6n(E) for Si evaluated at the centered-site (C)
equilibrium distance shown in Fig. 13.] Instead
of obtaining the metal-adatom separation from a
total-energy evaluation as described in Appendix
D, it could of course be estimated using hard-
sphere radii (Appendix D also gives an example
of this). or, e.g. , obtained from the analysis of
a low-energy electron diffraction experiment. The
dipole moment appropriate to the reduced metal-
adatom separation can be estimated from atom-
jellium values (shown in Fig. 9 for Na, Si, and

Cl), but this neglects further polarization of the
adatorp charge distribution by the discrete lattice
potential.

There is a further point to be made concerning
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the relation between the eigenvalues E& of Eq.
(2.3a) [the change in spectral distribution of which
gives 5n(E}] and actual excitation energies that
would be measured in a photoemission experi-
ment. Now it is rigorously true that these eigen-
values are derivatives of the total energy of the
system with respect to orbital occupation numbern;"". E, = &E„,I&n, . The eigenvalue for a dis-
crete state is therefore not an actual excitation
energy, but can be thought of as the. energy re-
quired to remove an infinitesimal fraction of an
electron to vacuum. This difference is quite
important for the very localized deep-core states,
but it becomes less and less important as the state
becomes delocalized. In particular, the difference
appears not to be large for valence resonances of
the type shown, e.g. , in Fig. 2, and currently
available evidence suggests that the peaks in the
5n(E) defined in this paper should correspond
reasonably closely to peak positions observed in
photoemission, especially in the case of re-
sonances which are not extremely narrow. '"

We note in this connection a somewhat unusual'
property of the 3s state shown in the bottom part
of Fig. 12. In this case, the (negative of the)
energy eigenvalue and the directly computed ex-
citation energy are nearly identical: the eigen-
value (as seen in the figure) lies 9.2 eV below the
vacuum level, while the energy to remove an
el, ectron is 9.4 eV. In general. , the excitation
energy is given by the (negative of the) average of
E~ as it varies with removal of an electron from
the state. " In this case, the metallic screening
charge distribution built up is similar to that of the
Ss electron removed, and thus the total electron
density does not vary appreciably vrith this remov-
al. The eigenvalue is therefore approximately un-
changed, and equal to the (negative of the) excita-
tion energy. The similarity of the electron density
being removed to that being replaced by the
screening process exemplifies the ideas developed
in Ref. 16; in the present context, they suggest
that the screening charge is well described by the
density distribution of a Si 3p orbital, which in
turn is very similar to that of a Ss orbital.
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APPENDIX A OBTAINING +~ ~ AND +~
EmI E~

Tlie fundamental solutions 4'z"~(}(r) appearing
in Sec. II were constructed using the phase-function

technique described by Williams and Morgan. "
These solutions are represented as an r-dependent
linear combination of free-particle solutions (we
will drop the superscripts M and MA here):

'h' (0 )J d)) )' ()))d'r

x 5,ff[n; r]C'& &(r}, (A2)

with a similar equation for-S in which h, is re-
placed by —j&~.

" Second, the defining behavior
at small r [Eq. (2.11)] is easily specified as an
initial condition for outward radial integration'.

C@ igt(0) = (2l'+ 1) ( !p 5ii Sg ii t(0) = 0 ~ (A3)

Let us now consider the calculation of the ada-
tom core states 4& ~ within this framework. At
sufficiently large radii R» ((E,~')", the core-state
wave function is unaffected by the details of the
potential, and so w'e can set v„,=-0 for r&R in cal-
culating these states. The core-state energies
are then taken to be the energies at which

det[Cs, ~» (R)] =0, (A4)

where the determinant is taken with respect to the
I, V indices (~m ~

& l, I' & I„,„}. This condition states
that at the energy E, there exists a linear com-
bination of the fundamental sol.utions 4&

es „(r)= Q Ps „,4's, (r), (A5)

(with the sum limited to l,„ in the actual calcula-
tion), which is exponentially decaying in all di-
rections at large r. (That is, the admixture of
functions j, in 4~ drops to zero at large dis-
tances, leaving only functions I(),'i. ) The core-
level energies are found by counting the number of

+s ~ (r) = Z [Cs„„.(r)j, (Pr)

+Ss„,(.(r)h,' (pr)]F, . (&). (Al)

Here P=~E, and j, and h', are the spherical
Bessel functions described by Messiah. " A ref-
erence energy with respect to which core-state
energies are negative is convenient; we take the
vacuum level as our reference; In this case,
j$ (pr) grows exponentially at large r and h,

' (pr)
decays, for E below the vacuum level. Just as the
l sum of Eq. (2.19).is limited by an l,„(-6}in the
actual calculation, so also was the sum in Eq.
(A1) limited (using the same value of l,„).

Representing the solutions as in Eq. (Al) has
several implications, First, as seen in Ref. 32,
each single-particle equation (2.3a) takes the
form of a system of coupled first-order linear
ordinary differential equations" for C and S:
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times the quantity

det[cz~, g. (r) ]

N N f
+Earl ~l~+&~

gt-p
(B6)

passes through zero in the course of the outward
radial integration (from r = 0 to r =R) and locating
the energy E~ for which this number of nodes in-
creases by one.

with a similar relation for n" in terms of u.
To obtain an explicit expression for F, (p, , X),

we use a result due to Gegenbauer, as given by
Watson:"

APPENDIX B: REDUCED BARE-METAL GREEN'S

FUNCTION G (r, 0)

Let us substitute expression (2.21) for Gzz(r, r')
into the definition of Gz, (r, 8) [(2.26)]. (Since
these equations show that only the sign of G&"

g

is changed when m is replaced by -m, we will
consider just m & 0 here. } Then we see (using the
coordinate systems of Fig. 1) that'

Gz, (z, 8) = — dz tcJ (ursine)Wz„'
7l 0

x[0(e ——,'~)u,"„(rcose) ~ ".„,

+8(-', w —e)ug„(r cose)u~"„„,]

(B1)

(with 0 ~ 8 «z}, where the coefficients o."are
given by

0

xC„"(cose)sin'"~'ede

i"sin" '~'+„'(cosg)J„,„(z). (B7)

With appropriate changes of variable, and use of
the explicit form of the Gegenbauer polynomials'
and the binomial theorem, we have (recalling the
relation between the Gegenbauer polynomials and
the associated Legendre function")

[(r -m) y2)

(~ y} Q Q g il2k+m) l ln 2k (B8)
n =0 &=0

where [x] is the greatest integer in x and where

(-1) ' +"(2E—2n —1)!!
BS)2" '(2l+ I)!!(I-m —2n)!(n —0)!0!

a~ „,=gr limr' '
rl~p

d cose'PP(cose')

xJ (xr' sin8')uz"„(r' cos 8')

(B2)

with (-1)!!defined to be unity.
We see therefore that

[(l -yg)/2] n

N ~ z. 2~+~
n=0

with a corresponding expression for + ~ in terms
of u™.The coefficient c, here is

dl -m-2A

zl -m-2A uzK (z }dz gl -p

c „=[&(2I+I)(&-m)!l(l+m)!]'~'. (BS)

0 g e 8 gl p

[It is easily seen that the nz™„above is identical
to the corresponding coefficient in Eq. (2.18).'"]

We now write a Taylor series for u~„and u&"„

about the origin:"

(B10}

and similarly for n" in terms of u". These ex-
pressions for a" and 8 permit the most con-
venient numerical evaluation of Eq. (Bl) for
Gz"„,(r, 8). Second and higher derivatives of uz"„(z)
were obtained, using Eq. (2.22), from the values
of u~'„(0) and due"„(z)/dzI, , and derivatives of the
bare-metal potential (similarly for u ). The in-
tegral in Eq. (Bl) was carried to large enough
values of K to yield convergence. '

—= exp z, u~~
gl 0

F, (p, A, ) = i!mr '
, dcosee"'"

r~p 1

xJ„(p.r sin8)P P(cos 8) .

Then we can write

and similarly for u". Now define the function

(B4)

(B5}

APPENDIX C: LONG-RANGE CHARGE DISTURBANCES

As described in the text, the electron-density
distribution in the metal-adatom system is com-
puted only within a sphere of radius 8 about the
nucleus. There are, however, long-range charge
disturbances outside the sphere which, while
small, must be at least approximately taken into
account in the calculation of quantities such as the
dipole moment which emphasize charges distant
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from the adatom nucleus.
These charge disturbances have both a direct

and an indirect effect on the values of the various
computed quantities, in the following sense: The
charge disturbance outside the sphere makes a
contribution of its own to (for example) the dipole
moment that should be added to the moment cal-
culated for the charge within the sphere, and in
addition makes a contribution to the potential felt
by the electron distribution within the sphere
which in turn affects the dipole moment of this
disturbance when it is included in the self-con-
sistency cycle.

- We have dealt with charge disturbances outside
the sphere in the following approximate way. We
have identified what we believe to be the two
dominant components of these disturbances, ap-
proximated them by analytic forms, and used
these forms to obtain the effect of these distur-
bances on the quantities of interest. The indirect
effect is generally found to be somewhat less im-
portant than the direct effect, but it is included
by using the analytic forms to approximate the
contribution of the charges outside the sphere to
the potential within the sphere that determines the
electron wave functions. We can test our pro-
cedures by examining the stability of our results
with respect to changes in the sphere radius R.
This test both confirms the necessity of taking
into account the long- range charge disturbanc es,
and shows that our approximate treatment is of
adequate accuracy to do this. " The two dominant
long-range components of 5n(r, 8) are the Friedel
oscillations extending into the bulk of the metal
which are induced by the presence of the adatom,
and a charge distribution confined to the surface
that can be considered to be induced essentially
by the dipole field in the vacuum arising from the
distribution of charges within the sphere. " We

describe below the analytic forms we have used
for these long-range charge disturbances, and
discuss their direct contribution to the dipole
moment, since it is for this case that their in-
clusion is found to be most important. The cal-
culation of the direct contribution to the force on
the nucleus, and to the potential within the sphere
(which in turn produces the indirect effect men-
tioned above on all computed quantities), proceeds
in a similar manner. We also note briefly the
calculation of the direct contribution to the adatom
binding energy, which in leading approximation
does not depend on the actual form of the long-
range charge disturbances, but only on the total
charge contained in them.

An asymptotic analysis of Eq. (2.1) in conjunction
with Eqs. (2.27) and (2.28) indicates that the lead-
ing term in the Friedel-oscillation contribution
to the density disturbance outside the sphexe
should have the form' '"

A (8) cos[2k~r + n(8)]
(2k r)'

xe(z~ —r cos8)e(r -R),

where we will consider for discussion just the
case -R & zF &0. The first step function in this
equation is inserted to restrict the use of the ap-
proximate expression for the density disturbance
to a region where it is theoretically justified.
This implies the neglect of contributions from the
immediate surface region to the (already small)
effect. The amplitude A(8) and phase n(8) were
obtained by fitting this form for 5nj, (r, 8) to the
actual computed 5n(x, 8) just inside the sphere
surface on each iteration. The contribution of
this charge to the dipole moment defined in Eq.
(2.30) is given by

lim d'r zion&(r, 8)

«F /R
lim A(8}cos8sin[2k„R+n(8)]dcos8

«~ oo F/R

. t 2u, ~„A(8) cos8sin ~ "+n(8} dcos8eose

0 24FZA(S)cosiisio +o(ol dcos8) .
1 icosa (C2)

In accordance with the fact that we have taken only
the leading term [in powers of (2k') '] in the
expression for 6n~(r, 8), we drop the second term
on the right-hand side of the above equation, since
it is easily seen to be O((2k') '}relative to the
first term. The third term vanishes in the limit
&--, and thus

'

«F/R
A(8) cos8sin[2k~R+n(8)]dcos8.

F -1
(c3)

We see from this the necessity for taking p, j, into
account —simply making R very large does not
cause p, F to be small, since the magnitude of gF
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does not decrease as R increases (it only oscil-
lates). "

Now let us discuss the surface-region charge
distribution 6n, (r, 8) outside the sphere induced
by the electrostatic field due to the charges within
the sphere. We consider that R has been taken
to be large enough compared with the thickness
of this surface charge distribution" to justify
neglect of the thickness, and thus we can take
6n, (r, 8) to be confined to a plane at z = z, (the
location of the computed center of gravity of
screenirig charge induced on a jellium surface
by a uniform weak electric field. ") We take for
purposes of discussion only the case —R & z, & 0
and z, (z„(the location of the center of gravity
of the electronic charge within the sphere). We
also consider that R has been chosen large enough
that R» (z,g (.

Let us now consider the perpendicular compon-
ent of the electric field on the plane s=~, at a
distance r ()R) from the nucleus, due to the
charges within the sphere. These charges con-
sist of the nucleus of charge Z and a distribution
of Qa electronic charges. If we perform a multi-
pole expansion for the field due just to the elec-
tronic charge within the sphere about its center
of gravity, there will be no dipolar field and if
we drop higher multipoles, then this charge will
give rise to a field component 2Q„(z« —z, )
x (r' —2z«z, +zing) '~'=2Qz(z« —z,)/r'. (The
factor of 2 arises from the use of rydbergs~. The
nucleus contributes a field component 2Zz, /r'.
Since the surface charge distribution 6n, (r, 8)
screens out the field within the metal, the Gauss
theorem implies that'

6 .(r, 8) =—,[Zz, Q„(z, —z„)]
1

x 6(r cos8 —z, )e(r -R) . (c4)

Note that if the nucleus were replaced by a weak
point charge far from the surface, we would have
z„=~„causing the second term here to vanish,
and 6n, (r, 8) would reduce to a simple image form. '
The contribution to the dipole, moment defined in
Eq. (2.30) that is associated with 6n, is

d'zz@g, y, 0 = —' Zz, —Q~ z, —z„. C5)

We now briefly consider the direct contribution
of the charge disturbances outside the sphere to
the calculated atomic binding energy 6E, (the in-
direct contribution is taken into account by inclus-
ion of the potential due to Qs~ and n, in the self-
consistency loop). Since the sphere is chosen
large enough to insure that the charge q in dis-
turbances outside the sphere is small, we consider

corrections to the energy' of O(q) only, dropping
those of O(q'). Then it can be shown" that the
correction to the calculated atomic binding energy
(with the vacuum potential taken to be the zero
when the electrostatic part of this energy is cal-
culated) is

AE,' =q4, (c6)

where 4 is the bare-metal work function. Since
q = Z —Q~ (because the nuclear charge is completely
screened at large distances), this leading correc-
tion to the atomic binding energy has the conven-
ient simplicity that it can be computed without
using the forms for the charge disturbances out-
side the sphere.

APPENDIX D: REINTRODUCING THE DISCRETE

SUBSTRATE LATTICE

We discuss in this Appendix the reintroduction
of the discrete lattice of the substrate into the
atom-jellium model, using pseudopotential per-
turbation theory. Consider a model of the sub-
strate in which the ions are represented by
pseudopotentials situated on the sites of a regular
semi-infinite lattice. "' l,et 6v(r) be the difference
between the total pseudop'otential and the potential
due to the semi-infinite positive background em-
ployed in the atom-jellium model to represent
the ionic lattice. We will use first-order pertur-
bation theory to calculate the change in energy
(relative to the value obtained in the atom-jellium
model) due to the perturbation 6v(r).

The new value of the total energy now depends
not only on the metal-adatom separation but also
on the lateral position of the adatom. The spatial
position which minimizes the energy will generally
correspond to a metal-adatom separation smaller
than that found for the atom-jellium model, and the
atomic binding energy will be somewhat larger.

By employing first-order perturbation theory,
we avoid the difficult problem of solving the truly
three-dimensional single-particle equations ap-
propriate to the metal-adatom system with a dis-
crete lattice. "'" Perturbation theory has been
used in this way by Lang and Kohn" to study work-
function anisotropies and surface energies in
simple metals. It is generally successful for
relatively close-packed surfaces, "failing only in
a case such as Pb, which is known to have a
particularly strong pseudopotential. " The im-
portance of discrete lattice effects in the present
context was recognized by Gunnarsson, Hjelm-
berg, and Lundqvist. "'"

We will use the local ion pseudopotential pro-
posed by Ashcroft, ' whi:ch has the form'

v~(r) = —(2Z;,„/r)e(r —r,),
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X, = (na)-'x- C„,
&, = (Pa'} 'y —C„,
Z„=(ya) 2z —C„,

(D2}

where a is the lattice constant, and where n, P, y,
and the constants C are such that when r is at a
lattice site, (X, , F„,Z„)= (l, m, n) (with l, m, and
n taking on the range of values noted 'above). For
the fcc (111)case, for example, n = —22) 6,
P =-,'2(2, y=v8.

c

where Z;,„ is the ionic charge and s, is a cutoff
radius determined for each metal. to give a good
description of bulk properties. (The factor of 2
arises because of the use of rydbergs. )

We now describe the computation of 6v(r) using
this pseudopotential; the substrate lattice will be
assumed to be cubic. Let A, be the number of
rectangular sublattices in each substrate lattice
plane; and let N~ be the number of inequivalent
planes [for fcc (111), e.g. , W, =2 and N~=S]. I et
us label the successive equivalent planes by the
integer n, running from - 1 for the pl. ane closest
to the surface to —~; and let us use an index v

(running from 1 to N~N, ) to label each of a given
one of the N, sublattices in a given one of the N~
inequivalent lattice planes. To label the sites on
each two-dimensional rectangular sublattice, we
use the integers L' and m, running from — to
+ ~. The positive background which represents
the ionic l.attice in the atom-jellium model fills
the half space z&-d (see Fig. 1); the outermost
lattice plane of the ionic lattice represented by
this background will then be at z = —&D -d, where
B is the (smallest) interplanar spacing. '

In terms of the coordinates of a point r = (x, y, z),
let us define

It is convenient to split the perturbing potential
into a pure Coulomb part and a part representing
the pseudopotential cancellation in the cores:

6v(r) =5vc,„,(r)+6v „,(r),
where the two terms are then given by

(D3)

5vc.„,(r) =—
s W'p

)s)n g g g R 2
(

(D4)

with v, (r) the electrostatic potential due to the
semi-infinite positive background and

R, „„—= [n'(l —X„) +p (m —F„) +y (n —Z„) ]22'

and by

(D6)

6v,...,(r) =
1

The change in atomic binding energy is

6~Z. = Z6v,.„,(O) — d'r 6 (r)6v(r),

(D6)

(DV)

where Z is the adatom nuclear charge and 5n(r)
is given in Eq. (2.28).

For a given r, at most one term of the summa-
tion in Eq. (D6) will contribute, "and so the dif-
ficulty in evaluating 5v(r) is isolated in the pure
Coulomb sum in Eq. (D4). The evaluation of
5vc,„,(r) proceeds in the same way as the evalua-
tion of the Coulomb sums in Appendix C of Ref.
25 and thus we only give the result, in terms of
the functions E, 6, and H defined in that Appendix:

Ns gp
2'"..()=- . Z Z Z F( (f-X.),P( -F.),y( -Z, ), ~)

V =1 -g, ~= a

I
s(2o)3) ' E cos2s)x„cosssm Y„G Y(o —x„),—,—,2)'n 'p'

+(np) '0(yln —Z. I, r)) —4~n(I&I —-&)'6(-~ —d), (D8)

where n is the positive background density and A,

is the distance to the nearest lattice plane, and
where the prime on the summation in the second
term indicates the exclusion of the E=m =0 term.
The quantity g is a convergence parameter which
is chosen for equally rapid convergence of all

terms (rf -w) Including only. the first few terms
in the infinite summations generally gives quite
accurate results.

As an example of binding energy curves that
include the lattice pseudopotential correction,
we give in Fig. 13 results for Si adsorbed on the
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(111)face of Al." The most favorable adsorption
site is seen to be the centered site (over a hole in

the second layer of atoms), "which seems in-
tuitively reasonable. " Note the way in which
the distance d for adsorption at this site is de-
creased, and the atomic binding energy increased,
relative to the atom-jellium model. Recalling
again that d is measured from a point half an
interplanar spacing in front of the outermost
lattice plane, ' we find the Al-Si bond length for

0
adsorption at this site to be 2.6 A. Marcus
et al."suggest, from analysis of experimental

data, that the bond length for a case such as this
should be the sum of the covalent radius of the
adatom and the metallic radius' of the substrate.
For Si-hl, this is 2.60 A,"which indicates that
our calculated bond length is reasonab1. e. The
first-order pseudopotential calculation appears
to give generally reasonable results, but there is
evidence that it is not adequate in every case:
this treatment shows that for Cl-AI(111), site A
in Fig. 13 is energetically more favorable
than site ~, ' which seems intuitively
unlikely. "
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used to calculate &E~.)
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sterdam, 1961), Vol. I, p. 489.
The integration over azimuthal angle P can be done
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~GIn the numerical solution of these equations, . com-
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taken to be zero when l' &l+2 and ~& 0.2 bohr. This
eliminates a potential instability in our numerical
procedure. [Small errors in C&~». (r), the coefficient
of j; ( px), introduced at small radii are amplified at
large radii by the enormous increase in j&.(px) for
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5~It is more convenient for numerical reasons to evalu-
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~ Since we use this series in evaluating Eq. (B2), we
are assuming that there are no singularities in the
bare-metal potential in the vicinity of the origin.
In the special case in which the adatom nucleus is
at the positive background edge, however, . this is not
true, because the second derivative of this potential
is discontinuous there, which implies a discontinuity
in the fourth derivative of the wave function, This cir-
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exponential from these wave functions and numerically
integrate only the differential equation for the re-
maining factor.
The potential due to the charges outside the sphere is
included when solving Eq. (A2) (and the corresponding
equation for S), but we continue to truncate the inte-
gral in Eq. (2.1) at the sphere boundary, implying in
particular that we use Eq. (2.24) in the form it is given
to evaluate the coefficients e&~„&, because the frac-
tional error introduced thereby into, e.g, , the dipole
moment can be shown to be O((2k&R) ).
We give some examples illustrating this point for. Si
and Na chemisorbed at their equilibrium distances on
a high-density (rs =2) substrate. (Sphere radius A
= 6 bohrs. ) For Na, mhen the charges outside the
sphere are fully taken into account, the dipole moment
p, =3.2 D; when no account is taken of these charges,
p=2.7 D. (If only the direct effect is included, p
= 3.4 D, which exemplifies cancellation between direct
and indirect effects. ) For Si, when the charges out-
side are fully taken into account, p= —0.9 D; when no
account is taken of these charges, p= —1.1 D. (If
only the direct effect is included, p= —0.7 D.) When
A is increased from 6 to 7 bohrs (an increase of-

3 Friedel wavelength), the computed value of p, when
the charges outside are fully taken into account is.
stable to 0.05 D (Si).
Although this charge distribution decreases monotoni-
cally with distance along the surface, there is in fact
also an oscillatory distribution that is confined to the
surface, as discussed by T. B. Grimley, Proc. Phys.
Soc. 92, 776 (1967). The amplitude of this distribution
decreases much more rapidly with distance however
(-R"~), and so we take no account of it here. See also
T. L. Einstein, Crit. Rev. Solid State Sci. (to be pub-
lished).
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and A. Magnaterra, Nuovo Cimento 8 68, 230 (1970).
The analysis indicates that's ir, E)-$8 ($, e)r sjn( &t~t

x [2r+P ($, &)1} for large r, and r cosH in the region
where Eq. (2.15) is valid, with ( =E—Eo (Eo is the
bottom of the metal band) and B and P —constants
(which can be 6 dependent) as ( 0. Integration of this
over $ from 0 to Ez—Eo gives Eq. (Cl) to leading
order in (2k&r) . Integration over r outside the sphere
gives a correction to that state density change Bn(E)
which would be calculated from Eq. (2.29) by integrat-
ing only over the sphere. The parameters in this
correction can be obtained by fitting to computed re-
sults at the sphere surface, just as in the case of
Eq. (Cl). This correction, it is found, would gener-
ally not be visible in graphs of 6n (E) of the type pre-
sented in this paper, except in the case of hydrogen
(Fig. 5). Failure to include this correction in that
figure would have led to the presence of a small addi-
tional hump in the curve. (This is seen in Fig. 2 of
Ref. 14, which does not include it, and remnants of
such humps are seen in Fig. 2 of Ref. 19.) Note, how-

ever, that we have mot included in the figure any con-
tribution to i5n (E) associated directly with the dipole-
induced surface charge outside the sphere, since we
expect this contribution to be rather structureless

(and small).
z& can be taken to be the position of the positive-back-
ground edge.
Choosing R so as to make p& zero is not convenient,
since this value of R could change as the iteration pro-
ceeds, and it certainly changes when the adatom is
changed, whereas we want to evaluate the bare-metal
Green's function [as it appears. in Eq. (2.24)] only
once for a given R (and d), and not have to evaulate it
again. Furthermore, an A value which corresponds
to a zero dipole-moment correction might correspond
to the maximum value in the correction to some other
quantity.
N. D. Lang and W. Kohn, Phys. Rev. B 7, 3541 (1973).

9Bugnick (Bef. 65) discusses a charge distribution of
this type also,
We obtain a perturbative correction to the atomic
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together with Eq. (3.1) of Ref. 9, gives the result shown.
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spacing at the surface (and other possible distortions)
both in the case of the bare metal and in the case of
the metal-adatom system, because such changes are
generally found to be small for the closest-packed
crystal faces, to which our discussion is most appli-
cable. For Al(111), for example, the spacing of the
outermost two lattice planes in the case of the clean
surface is found to differ from its bulk value by
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5The pseudopotential cores do not overlap.
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The centered adsorption site over an atom in the sec-
ond layer is found to give a binding energy —

~ eV
smaller than that for the centered site over a hole in
the second layer.
This is also the usual experimental result. See, e.g. ,
F. Forstmann, W. Berndt, and'P. Buttner, Phys. Rev.
Lett. 30, 17 (1973) [In re I-Ag(111)]; J. E. Demuth,
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We use the value for the covalent radius given by
L. Pauling in The ChemicaL Bond (Cornell University,
Ithaca, 1967), p. 136.
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