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We have studied the equilibrium properties of a one-dimensional model system whose displacement field
Hamiltonian is anharmonic and is representative of those used in the study of structural phase transitions.
For low temperatures, a new set of intrinsically nonlinear configurations which are not accessible via
perturbation theory play an important role. These "kink" configurations are solutions of the classical field
equations and represent clusters of locally ordered regions observed- in computer simulations. We have
successfully incorporated the multikink configurations in our analysis and have carried out an approximate
calculation of the partition function and the static structure factor. We find that the low-temperature and
small-wave-number behavior of the system is dominated by the kink degrees of freedom. At higher
temperatures and wave numbers the system is "phonon dominated. "

I. INTRODUCTION

Vfe have studied the static and dynamic proper-
ties of a one-dimensional model field theory whose
displacement field Hamiltonian is anharmonic and
is representative of those used in the study of
structural phase transitions. ' ' Computer simula-
tions carried out for this model independently by
Schneider and Stoll' and Koehler et al.~ show the
existence of clusters of locally ordered regions
which generate a "central peak" for small wave
numbers k and low temperatures in the dynamic
structure factor S(k, &u). These locally ordered re-
gions also lead to a damping and "softening" in the
phonon frequency as T- 0 and 0- 0.

A formal analysis of our model based on self-
consistent perturbation theory can describe the
damping of the phonons. It gives no information,
however, about the softening of the phonons and
the origin of the central peak. Furthermore, as
one expects, perturbation theory fails close to the
transition temperature T,= 0 as the displacements
of atoms relative to the reference lattice become
very large and highly correlated. It is consequent-
ly important at low temperatures to treat a new

.set of intrinsically nonlinear field configurations
not accessible via perturbation theory. These kink
configurations are solutions of the classical field
equations and represent the clusters of I.ocally or-
dered regions observed in the computer simula-
tions.

In this paper we develop new theoretical methods
for treating these local-field configurations. Using
these techniques, we will show in a second paper
how one can theoretically account for the central
peak in the dynamic structure factor as well as
the damping and softening of the phonons for small
wave numbers and low temperatures. Before dis-

cussing these methods, however, we want to indi-
cate how similar "excitation" are entering into
other areas of physics and how our problem inter-
faces with them.

The importance of local-field configurations in
understanding the properties of large classes of
field theories is becoming increasingly evident.
These local configurations are referred to in vari-
ous contexts as solitons, instantons, droplets, do-
mains, vortices, or the general term we shall use,
pseudoparticles. These pseudoparticles lead to
qualitative changes in the physics of a problem
from that predicted by the conventional perturba-
tive treatment of the same problem. In this sense
these configurations are generated by intrinsically
nonlinear processes missed by perturbation-theory
tr eatments.

Pseudoparticles appear to be important in three
rather different physical situations. It is well
known from the work of Langer' (and others' ')
that loca. l-field configurations (like droplets) lead
to nucleation in metastable systems. These drop-
lets drive the system to tunnel from a false vac-
uum or metastable configuration to the true vac-
uum or equilibrium configuration. A second and
related context in which these configurations be-
come important involves the method of asymptotic
estimates of perturbation theory expansions due
to Lipatov, ' and developed by Brezin, Leouillou,
Zinn-Justin, and collaborators. "" In this case
the structure of a perturbation-series expansion
(its asymptotic nature) is controlled by instabilities
that exist as one analytically continues the system
to unphysical values of the coupling in which one is
expanding. These instabilities are very closely
related to those which occur in the case of meta-
stability and therefore are characterized by local-
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field configurations like droplets. In the language
of Brezin, Le Guillou, and Zinn-Justin" "com-
plex pseudoparticles" with associated finite action
indicate that a perturbation theory is '-'Borel sum-
mable" and therefore useful. Finally there is a
third situation where pseudoparticles play a sig-
nificant role. This is in the case of systems with
degenerate vacuums. Ordinarily when one has a
system with degenerate vacuums and one lowers
the temperature, spontaneous symmetry breaking
will occur. This is the standard behavior in O(n)
symmetric y4 field theories for dimensionality
greater than 2. In lower-dimensional systems,
however, there can exist "real" pseudoparticles
which act to restore the symmetry. " They serve
as a mechanism for tunneling between the degen-
erate states. The existence of these real pseudo-
particles has been shown by Brezin, Leouillou,
and Zinn-Justin" to lead to non-Borel summability
of the associated perturbation theory. This is
manifested, characteristically, in the appearance
of terms like e "~~ in physical quantities, where

g is the nonlinear coupling constant and A is a
constant.

Within the context of stable systems where pseu-
doparticles are important, there appear to be two
rather different subclasses of systems. These
classes are distinguished by the nature of the in-
teraction between pseudoparticles and the energy
needed to create an isolated pseudoparticle. In the
case of the planar or ~-y model in two dimensions,
the relevant pseudoparticles are vortices which
interact via a long-range potential, and the energy
to create a vortex increases logarithmi, cally with
the size of the system. " This has the consequence
that at low temperature vortices appear only in

pairs. At high temperatures, however, the vor-
tices can dissociate leading to a metal-insulator-
type of phase transition. '4 The second subclass
of systems, including that studied in this paper,
are those with real pseudoparticles with a finite
"creation" energy and short-range interaction be-
tween the pseudoparticles. "

In high-energy theory there has been consider-
able study of pseudoparticles. In most of these
calculations" it is assumed that there is exactly
one pseudoparticle and one contructs a perturba-
tion theory about this single pseudoparticle. In
many solid-state contexts it is unphysical to talk
about just one pseudoparticle or even a constant
number of pseudopartic les. Landau's famous
argument" concerning the absence of phase tran-
sitions in one dimension is built on the existence
of a finite density of kinks in a system at low tem-
peratures. Indeed in all of the situations mentioned
above, stable and unstable, it is important to in-
vestigate the role of multipseudoparticle configura-

tions. In the case of the planar model, only multi-
ple-vortex excitations (bound pairs) are energeti-
cally allowed for low temperatures. " In the case
of metastable systems it is clear from the work of
Langer' and Callen and Coleman' that one must
treat multipseudoparticle configurations if one is
to produce the correct linked cluster or volume
dependences of physical syste'ms.

In the problem we are interested in here, es-
sentially a quantum-mechanical oscillator with a
double-well potential, it is clear from the work
of Krumhansl' and Schrieffer and Polyakov' that
multikink configurations are essential for an un-
derstanding of the low-temperature properties of
the system. Heretofore, however, the analysis
of this problem has been essentially heuristic. Our
objective has been to develop a systematic method
for treating multikink configurations. Thus we de-
velop a series of transforrnations which take us
from an initial problem of a field theory with a de-
generate double-well potential to a theory coupling
kinks and a field in a single-mell potential.

There are various advantages and disadvantages
in working on a one-dimensional system. The ad-
vantages are primarily technical in nature. (i)
There are no renormalization problems in one di-
mension. (ii) We can evaluate the static properties
of our model explicitly since we can do one-di-
mensional functi. onal integrals exactly. ' ' Thus
we have a check on our approximation methods.
This is, however, not true for- the dynamic prop-
erties of our model. (iii) Finally we know much
more about pseudoparticle solutions in one dimen-
sion than we do for higher dimensions.

The main disadvantage of working in one dimen-
sion is that one is skeptical about the generaliza-
tion of the results to higher dimensions. We note,
for example, that in one dimension the temperature
where the density of kinks goes to zero and the
"phase transition" temperature T, are the same.
This will clearly not hold in higher dimensions.
It does appear from molecular dynamics' thai there
are important contributions to the structure factor
due to "domains" in higher dimensions. It is not
at all clear, however, how one can introduce, in
a clean manner, "finite action" pseudoparticles in
higher dimension which look like domains and are
approximate solutions of the classical-field equa-
tions. It is also not clear that the central peak we
find in one dimension has anything to do with the
central peak found in scatttering experiments. "

In Sec. II of this paper we define the problem of
interest. In Secs. III, IV, and V we discuss what
is known about the problem using conventional per-
turbation theory and computer analysis. We intro-
duce our multikink approach in Sec. VI. We use
this approach in Sec. VII to analyze the thermody-
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namic properties of our model. We conclude with
a short discussion in Sec. VIQ.

[gL ]1 / 2 + [g-lL -3] (2.10)

H. DEVELOPMENT OF THE MODEL
It is clear that the dimensionless coupling constant
in this problem is

+& g dy
~&q] = dx — —+ U4]

2 dx
(2.1)

We will consider a continuum model' represent-
ing a set of oscillators in an anharmonic double-
well potential

e= +/Plc (2.11)

J!= -P 'lnZp, (2.12)

which, for arbitrary u, is small at low tempera-
tures. In calculating the free energy.

U(('p)= 2K (p-(x)+ 4M(p (x) ) (2.2) it is clear that in the thermodynamic limit
where our system has a length 2L = V and V)(x) is
a displacement field. i and u are positive con-
stants taken as parameters in our model.

We wil. l be interested in calculating the thermo-
dynamic properties of our system via the partition
function

Z, = mme ~"'"', (2.3)

where P = (ksT) ' is the inverse temperature. Our
definition of the functional integral in Eq. (2.3) is
given by

dry
Z = limlim IT

nr & o VJ. „„(2gl)~)'2
i=1

(2.4)

In the limiting process above we require that the
product Xl = V be held constant and that the fields
are periodic y, ,„=q, . With this convention we
have the result for Gaussian integrals

Z ~+ e-QA~(y ) e-/Fan/2
G

(2.6)

where

dy '
Ao = — dx —+ &u'(p'(x)

2 g dx
(2.V)

We will also be interested in the static structure
factor

(2.8)

and its Fourier transform

S(k) = J d(x —x')e'"* *'S(x —x'), (2.9)

which has been calculated in molecular dynamics
simulations. The parameters of our model have
the dimensions (E, energy; L, length):

[L ']

where the discrete version of A, is

((p' a
—A) & q'& + c (2 5)Pg = ~ 2P

—
2 +49'] ~

E= -P (eV)f(&),

where f is a function of e alone. This simple scal-
ing argument holds because we do not need to in-
troduce an ultraviolet cutoff in this one-dimension-
al theory.

In Secs. IG-V we will discuss what we can learn
about our model using a variety of techniques. In
most of these sections the work we discuss is not
our own, but we include it here since it is impor-
tant to understand why one has to introduce special.
methods if one is to understand the time- and
space-dependent correlations in this sytem. We
will also try to draw out the differences between
this model and apparently similar models where
direct methods work to explain the statistical-me-
chanical properties.

III. IDEAS FROM PERTURBATION THEORY.

Let us investigate in this section what we can
learn about our "simple" one-dimensional field
theory using a direct perturbation theory analysis
in the quartic coupling u. Of course one cannot
proceed directly because the coefficient of the
quadratic term in the potential Uf(p] is negative.
Consequently the zero-order propagator in a di-
rect perturbation-series expansion is given by

G(q)=(q'-x') ', (3.1)

(p(x) = (('p)+ )((x), (3.2)

where ((p) is the spontaneously generated nonzero
value for the field. In the one-dimensional case

which is clearly unacceptable since the pole at q
= ~ is unphysical. We can circumvent this difficulty
through the usual shifting procedure that is used
to treat Ginzburg-Landau theories below a conven-
tional critical point. In this case one recognizes
that at low temperatures the oscillators want to sit
at the bottom of one of the double wells. We keep
in mind that in two and greater dimensions the
symmetry between the wells mill be spontaneously
broken and we made the shift
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A ———+y =&, + dx — —+& X'

+ IcWuX + —X (3.3)

the symmetry cannot be broken, (y) = 0, but we
can choose to ignore this "small" point and expand
about y(x) =+ x/v u+ y(x) (where xv u is the value of

y at the bottom of one of the wells) anyway. We
then obtain the new action

TABLE I. First six terms of the perturbation-series
expansion of the free energy.

fn

-0.707
+0.25
0.199
0.348
0.865
2.693

where

E„=-x4V/4u (3.4)

is the vacuum energy. The zero-order in u propa-
gator is

G'(q) = (q'+ 2x2) ', (3.5)

and we can treat the cubic and quartic terms in X

as perturbations and calculate the free energy as
a power series in the dimensionless coupling &:

f(e)= gf„&".
n=O

(3.5)

We list in Table I the first few terms in this ex-
pansion. It is abundantly clear that this expansion
is of dubious merit for finite coupling E. Recently,
however, techniques have been developed for ana-
lyzing the nature of such obviously asymptotic per-
turbation-expansion series and for finding ways of
extracting useful information about observables
for finite values of the coupling. It is useful for us
to use these new ideas in order to understand the
nature of the perturbation series discussed above.

Let us begin the discussiori with an analysis of
a model more general than that defined in Sec. II.
Let us a,ssume that U{y}is a polynomial of the
form

d'q, (x)
dg

(3.11)

If we write U{p}=-V{q}we see that this reduces
to Newton s law if we identify p, with position and
x with time. We are all familiar with the method
for constructirig a general solution to Newton's
law in one dimension. The "energy"

1 d(itic (3.12)

lowest-order terms in EK using Feynman graph
methods. ~ Recently, however, using methods due
to Lipatov, ' Brezin, Le Guillou, and Zinn-Jus-
tin" "have shown how one can compute I'K for
large K. To a large extent the nature of the per-
turbation-series expansion is controlled by the lo-
cation of stationary points of the action A{@}in
function space. Thus, for large P, small e, one
expects the functional integral Z„ to be dominated
by those portions of function space satisfying

M{y}/5y(x) = 0 . (3.10)

This is, of course, in simplest terms a general-
ized steepest descent argument. ~ Using our form
for the action (2.1) we obtain from the variational
condition the Euler -Lagrange equation

U6o}=—.IV{gq}
1

(3."t)
is a constant of the motion so we can solve for

W4'}= 2P +O(P ), (3.8)

where y= 0 is a minimum of the potential and we
normalize about p= 0 such that

' " =+{2[E—V(x)]}'~2.
dg

If y,' is a turning point satisfying

E= V4:},

(3.13)

(3.14)

g is the coupling constant and the difference (1/
g') tv{gal}--,'q' is treated as a perturbation. The
second term in Eq. (3.3) can be written in this
form if we choose g'= 1,u=g'. One can now go
ahead and carry out a direct perturbation theory
expansion for the free energy

F= -P ' I.nZ„

then we can integrate to obtain

(3.15)
@c dy

„.{2'-v(y)/}'" '

where xo is a constant of integration. It is useful
to note that the action A corresponding to this
classical solution is

+2E
K=O

(3.9)

It is, of course, well known how to extract the

&{q.}= d~ — ' + U y,

L
= VE+ 2 dx U{q,}.

"L
(3.16)
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Brezin et gE.' ""have found that the asymptotic
behavior of E is controlled by the existence of
solutions p,(x) of (3.11) that are periodic [p,(x)
= p,(x+ V) J and which give a finite nonzero value
for A as L-~ (A{y,}finite). In order for A{p,}to
be finite it is clear that y,(x) must be localized in
space" and must correspond to an energy E[V]
that goes to zero faster than 1/V as V- ~. Then

U04, g}=.V'+ g 'V-' (3.18)

This is a single-well potential and clearly is an
example where there is no instanton. If we analyt-
ically continue U, onto the complex g plane, then
we see that

(3.18a)

is of the form shown in Fig. 2(a).
'The "potential" V shown in Fig. 2(b) leads to an

instantonic solution. This corresponds to a solu-
tion that starts at y= 0 at x- -~, raises to p 'pp

at some position Q Qp and then returns to p= 0 as
z-+~. The zero-energy solution corresponding
to this instanton can be obtained directly from Eq.
(3.15). The turning point cpo = yl/(2g) is determined
by the condition E = V(rp,') =0. We obtain via direct
integration that

limA{p, }=2 I dx U{p,(x)}g~ oo ~OO

is finite. There are two main classes of potentials
of interest. The first class is characterized by
the potential in Fig. 1(a). The absolute minimum
of U,{y}is at y= 0. If we consider V,{p}=-U, in
Fig. 1(b) we see that the only periodic solution is
trivial: p= 0; this gives A{0}=0 and does not con-
trol the convergence of the perturbation theory.
Thus there is no "instantonic" solution of the equa-
tion of motion for the physical values of the param-
eters of the theory (P, x, u). This is, from the point
of view of perturbation theory, a desirable feature.
In the last analysis an instanton represents an in- '

stability in a problem. In the case above there is
no instability for the physical values of the param-
eters. We expect that the "nearest" instability
corresponding to unphysical values of the param-
eters of the theory will control the convergence of
the perturbation theory. I et us specialize the dis-
cussion to the simple case

«a)

I, b)

FIG. 1. (a) Potential Uq(y) vs y with an absolute min-
ima at y=0. (b) Potential Vq(y)=- U(q) vs q.

(a)

„ &+ 5 -(vie.)'1"')
9' 9'p

which we can easily solve to obtain

y= y,/cosh(x -x,) .

(3.19)

(3.20)

(b)

This instability on the negative u=g axis charac-
terizes the nature of the asymptotic perturbation
series for positive u. In particular Brezin, Le

FIG. 2. (a) Symmetric potential with minimum at
q= 0 and two humps symmetricalIy 1ocated at fIt), = +1/(2g).
{b) Symmetric double-we11 potential with minima located
at q,'=+~/Wu.
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Gulliou, and Zinn-Justin" ' have shown that the
free energy in this case has an expansion

F( ) g F +2E
K=O

(3.21)

where

-K!( -3)» 6 1
K 3]2VK

(3.22)

OO

F(g) g2E~ df t»e t-
K!

K=O

This expansion is clearly asymptotic. However,
because of the K! and the oscillating sign with K,
it appears useful. to perform a Borel transforma-
tion. " Write

panded about the instanton the resulting perturba-
tion expansion using the new action will be Borel
summable. This follows from the fact that only
a complex instanton exists for this new action
&'h}=&4,+ x}-&4,}.

This progress on stable and metastable systems
is encouraging and stimulates one to think that
these ideas can be used to treat our degenerate
double-well problem. Let us therefore return to
the model defined by Egs. (2.1) and (2.2). For low
temperatures and large P we again expect that the
dominant contributions to Z„will be from those
field configurations y,(x) which minimize A/y}:

6A d'
( )

= 0 = —,y,(E) —E'y, (E)~ ups(x) .
|!'=&c

(3.24)

dte 'G tg,
0

where the Borel transform

(3.21a) We discuss first the uniform solutions

q', =+»/Wu, O. (3.25)

(3.23)

is analytic on the real positive axis. Suppose one
then uses the first six terms in the expansion for
G(z) to determine a [3,3] Pade approximate. One
can then insert this approximate G into (3.22) and
do the integral over t. The result for g= 0.5 cal-
culated in this manner differs from the "exact"
result~ by only 10 3.

An important and by now much studied problem
is where the potential of interest is of the form
given by U, as shown in Fig. 2(a). In this case one
is interested in a metastable system where the
metastable state corresponds to the local minimum
at the origin. It is clear from the argument above
that an instanton exists for the Ohysical values of
the para. meters of the theory. Consequently the
associated perturbation theory can be shown to
be non-Borel summable. This is, of course, ex-
pected since the system will eventually tunnel to
the absolute vacuum and this instability —a tun-
neling phenomenon —will lead to a breakdown of
any perturbative approach. Langer' showed, how-
ever, how one could proceed in this case. The
basic idea is to expand about the existing instan-
ton. In this case one finds that there is a contri-
bution to the free energy of the form

exp( -A/p, })= exp( -const/g '),
which is clearly nonanalytic in the coupling con-
stant. It is also found that the unstable nature of
the system leads to an imaginary part to the free
energy which one can associate with the lifetime
of the metastable state. An interesting recent
development" is that once one has properly ex-

The solutions p,'= +E/u u are the usual mean-field
symmetry breaking solutions. We know of course
that these solutions are not stable" in finite tem-
perature in a one-dimensional system due to tun-
neling. If we compute the "energy" corresponding
to these solutions we obtain

x(o) = o,

A(A )= — =E

(3.26)

(3.2'I)

and the solution to the field equation is given by

dy

, [2(Z+ U[&])}'&'

The broken symmetry state has the lowest energy.
The solution y, = 0 gives an energy that is very
large compared to the energy associated with the
symmetry -breaking solution. Since the configura-
tion where all of the oscillators sit in one well is
not thermodynamically stable at finite temperature
there must be a low-lying excitation which is as-
sociated with this instability. We expect that this
tunneling instability, which corresponds to the sys-
tem switching from one vacuum state to the other,
will be related to the instantonic instabilities we
discussed in Sec. II.

In this case we are looking for solutions connect-
ing the vacuum+ E/Wu and -E/Wu. For definiteness
assume as x-~, y, =+E/v u and as x- -~, y',
= -E/v u and there is some finite transition region.
The appropriate solutions are given by Egs. (3.14)
and (3.15) with q, = E/v u. The energy in this case
is nonzero,

(3.28)
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W2 '~ 0 dz
21-z

(3.29)
0

where x, is the point where y=0. We then have
the solution shown in Fig. 3,

K
p(x) = a(~/v u) tanh —(x -x,)

2
(3.30) I I I

I I

I I I

Afy, )= -a' V/4u+ Er,
where

(3.31)

These solutions connect the tmo degenerate vacua
and look very much like the kinklike objects ob-
served in computer simulations (see Sec. V). We
also note that these kinks are reminiscent of the
surface profile in the Van der Waals theory of a
liquid-gas interface. " We can have a physical pic-
ture of a kink by noticing that the potentiai V(p)
is a double-well potential [Fig. 2(b)], minima be-
ing at ag/Wu and maxima at the origin. At low

temperatures, the atoms will tend to sit in either
of the wells. This situation corresponds to the
symmetry breaking solution jo, = av/v u. When
some of the atoms flip from one well to another,
we obtain a kink and so on. This has been sche-
matically shown in Fig. 4. The "energy" of a kink
configuration can be obtained directly from (3.16)
as

—Wu

FIG. 4. (a) Classical vacuum, (b) one-kink, and (c)
kink-antikink field configurations.

eters in a theory would lead to the non-Borel sum-
mability of a perturbation theory. We might guess
and Brezin et a/. ""have shown, that the existenc
of the kinklike solutions lead to the non-Borel sum
mability of our double-well model. They find that

(3.33)

xfx
I

—K go+ —po+—
2 Igx ' 2 ' 2u

(3.32)

where

3&2K!3" I.fz= 25rg2 1+ o (3.34)

is the "kink" energy associated with the localized
tunneling process. Comparing (3.26), (3.27), and
(3.31), we see that the broken symmetrv solution
has the lowest energy, but it is not a thermody-
namically stable state at finite temperatures. The
solution cp = 0 gives an energy that is very large
compared to the energy associated with the kink

solution. %'e see, therefore, that the kinks can
be thought of as the elementary excitations above
an unstable ground state.

We noted previously that the existence of an
instanton for real values of the physical param-

y{x}
'xQ

(b)

FIG. 3. (a) Kink and (b) antikink field configurations
of width 6=2&2/~ and position x=x 0.

for large K. It is important to point out that their
analysis of the kinklike mode and its relevance to
the perturbation theory is considerably more deli-
cate than the corresponding treatment of instan-
tons for metastable systems. The reason is that
the kinklike solution is not a periodic solution in

the sense we discussed in treating the instantons.
Thus, in the particle language we can associate
with Eil. (3.11), a particle which leaves the left-
hand well will just reach the right-hand well where
it stops. It does not return to the left-hand mell
like a true instanton. In this sense the kink is
more like a soliton.

Given the untrustworthiness of a non-Borel sum
mable perturbation theory one wants to find an al-
ternative approach. In the case of a metastable
system it was necessary to expand about the tun-
neling instability —the instanton. In our case it
seems reasonable to try the corresponding ap-
proach and expand about a kink configuration. This
has been carried out by several authors. "" In the
Appendix we discuss the technical details. The
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calculation is very similar to that of Langer' and
Callen and Coleman' for the metastable case. A

major difference is that in our case, where we
deal with a stable system, we find no imaginary
contributions to the partition function.

The spirit of these calculations is that one can
construct the partition function as a sum of con-
tributions from zero kink, one kink, etc. , con-
figurations. Thus we write

(3.35)Z = Zp+ ZE+ ~ ~ ~

where Z~ is the contribution from expanding about
one kink. We evaluate Z~ in the Appendix taking
care to treat the so-called translation mode. If
we evaluate ZE to lowest order in the interaction
u we obtain the result

Z»= Z,e '»»V»(32& 2/pe)"' (3.36)

z=z, exp(ve ~»»/a), (3.3't)

It is clear that if we are to reproduce the therm-
odynamic limit we must take into account more
than just one kink. One kink cannot affect thermo-
dynamic properties. Langer' and Callen and Cole-
man' have argued that one can include multikink
configuration by ignoring interactions between
kinks and essentially just exponentiating E(l. (3.35)
to obtain'4

(
1 d'-

2 .„„.+ 8*))(.(~) = ~.().(x), (4.2)

V(x) = =» x'+ —'ux (4 3)

denotes the potential energy of the particle and
P„(x) denotes a complete set of normalized eigen-
states,

„x „*x' =&x-x' . (4.4)

Z =e (4.5)

Our problem then reduces to the evaluation of the
ground-state energy eigenvalue e, of Eq. (4.2).
Notice that the potential energy V(x) has two min-
ima symmetrically located at a»/v u. At very low
temperatures, the particle executes harmonic mo-
tion in either of the two potential wells. In the
harmonic approximation the doubly degenerate en-
ergy spectrum is given by

It is obvious that in the thermodynamic limit
when the volume t/' of the system becomes infinite,
the partition function Z„ is dominated by the lowest
eigenstate &„

where &„=(n+ 2)~2»/P —»'/4u, (4 6)

a= » '(32&2/~~) "'. (3.38)

A more detailed discussion of multikink configura-
tions and their relevance for understanding excited
states in quantum mechanics or correlation func-
tions in condensed matter physics is given in Refs.
14 and 15. Their methods for handling multikink
configurations appear to us to be extremely cum-
bersome.

where E„denotes the energy of the nth level. The
harmonic approximation is valid only for low-lying
energy states. So far we have not considered the
quantum-mechanical tunneling through the poten-
tial barrier between the two wells which leads to
the splitting of each doubly degenerate level. Using
the WEB approximation" one can evaluate the
amount of shift produced in each level due to tun-
neling. The ground-state energy E, (in the har-
monic approximation) decreases by an amount

IV. WKB TREATMENT OF PROBLEM
e*) —

„ I) l «),W2»

wp
(4. t)

z ~ e-) 86)) (4.1)

where E„ is the energy eigenvalue of the one-di-
mensional anharmonic Schrodinger equation,

In this section we will carry out ap approximate
calculation of the partition function Z„using the,
transfer -matrix technique discussed by Scalapino,
Sears, and Ferrell and others. " Scalapino et al.
have shown that how one can replace a one-dimen-
sional functional integral by an eigenvalue prob-
lem, which in our case essentially amounts to
solving a one-particle quantum problem. Briefly,
the partition function Z„[E(l. (2.3)] can be rewrit-
ten as

where
( xo &xo — 4 ~2 2 —X/2

(p~dx= dx 2p' "' '
E, , (4.6)

"0 Xp

and ~0 are the classical turning points. Without
much difficulty, one can show that

J ~ p ~

dx= pE» —ln(16W2e/~)+ 0(~) . (4.9)
XQ

Therefore, in the presence of tunneling the ground-
state energy density of the system is given as

&0=&0 -to

2~ 16 2e x/
~~ . .1o
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(4.11)

After substituting (4.10) into (4.1) we obtain the
partition function Z„,

Z, = Z, exp(-Ve '~&!a),

(x)

LkLkM

VTYTTY gVVVT$

where

Z, = exp(-p VE,) = exp [-(V~/v 2 —pa'/4u)] (4.12)

is the contribution to the partition function found
in perturbation theory to O(u). The parameter ]2

in (4.11) is given by

1/a = (tc/v) (32&2e/]. )' ~ '. (4.13)

Qn comparing (4.11) with (3.37) we discover that
the partition function obtained using the WEB ap-
proximation agrees with that of one-kink analysis
carried out in Sec. III except for a trivial numer-
ical difference in the value of the parameter g.
The ratio

a/2~ single kink

HAWKS

(4.14)

is close to unity.
Scalapino et a/. have solved the anharmonic

Schrodinger equation (4.2) numerically and have
obtained the ground-state energy e, which agrees
fairly well with the E, (obtained using the harmon-
ic approximation) at low temperatures. At high
temperatures, it deviates from the harmonic ap-
proximation due to anharmonic effects and quan-
tum-mechanical tunneling. We w ill compare our
results for the ground-state energy of the system
with their exact numerical results in a later sec-
tion.

V. MULTIKINK APPROACH

Stoll and Schneider' and Koehler et gl. ' have in-
dependently carried out computer simulations for
the model given by Eq. (2.1) and have indicated
that the existence of the locally ordered regions
generate the central peak for small wave numbers
q and low temperatures in the dynamic structure
factor S(q, &u). The displacement pattern (shown
in Fig. 5) corresponds to a set of large number of
kinks sitting side by side and superimposed on it
are fluctuations (phonons). This conforms to our
picture that in one dimension at finite temperature
tunneling between the two wells leads to the forma-
tion of multikink configuration. We can mathemat-
ically represent the above displacement pattern
by the functional transformation

FIG. 5. Schematic of dl.splacement pattern of lattice
points as observed in computer simulations at low tem-
peratures.

represents a multikink configuration and X(~) cor-
responds to a set of "residual" phonons. It is es-
sential to treat the multikink field as a product of
single kinks if we want to be faithful to the dis-
placement pattern observed in computer simula-
tions. One should realize that we cannot simply
insert Eq. (5.1) into Eq. (2.3) since we have not
yet given a prescription for determining the kink
coordinatesx, . As a first step in giving such a
prescription let us introduce an auxiliary quan-
ti

z,= p —,]
' I ' p[x,].

N~ f "-1

(5.3)

This is just the grand partition function for a set
of particles with coordinates X,. and described by
a spatial distribution function P[X,]. The param-
eter a dividing dX, in (5.3) has dimensions of length
and wil. l eventually be identified with the length p
given by Eq. (4.12). We now want to associate the
particles in Zz with the kinks in our field theory.
This association will arise due to a transformation
similar in spirit to the Hubbard-Stratonovich
transformation which has been widely used in
treating magnetic systems. As a first step in our
mapping we multiply and divide Eq. (2.3) by Zr
and write

z„= g —, ' l'
J(

' P[Jc] Js&ye'"". (5,4)

We then assume that we can take the functional in-
tegral over y inside the X; integrations. Then we
make the transformation (5.1) in (5.4), and rewrite
the partition function as

"d~z, =—P —
j

' ' s[x,.] nxe »["x»-
Z Nt "~ ~ aN= 0

(5 5)

v(~) = c(~)+ x(~),

c(~)=—' ll tanh —'(& x,)su, , W2

(5.1)

(5.2)

and A(C+ X}will now couple the "phonons" X and
the kinks at positions g, . We have

w(c+ x}=U(c}+Uh}+ &,(4, x], (5.6)

where U(4} is purely a kink contribution, UjX} a
phonon contribution, and
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xx»@, x»=x f d«fx(-«" —«'«+«@')x

+ 3uC '»c'+ 2uC &C'] (5.&)

K2 N

[1+C,(x)], (5 6)

where C,(x) = -cosh '(»/W2)(x —X,.). This can be
rewr jtten as

K N

C'(x)= — I.+ P C,.(x)

N+- g c,.(«)c,)«)+ ), (5.9)

where additional terms involve sums over terms
involving three and higher distinct number of par-
ticles. If the density of kinks is small, then each
of these terms will contribute, on averaging, a
factor of the density of kinks for each distinct
sum in a term. Thus, for example, the average
of the term ~„,, C,.(x)C&(x) will be second order
in the kink density. Using these ideas we can re-
write the kigk Hamiltonian in the form

U(4}=NE»+ Ui(4») —ic V/4u, (5.10)

couples the two fields. In this way, we map our
original field-theoretic problem into a statistical-
mechanical problem of a gas of kinks and interact-
ing phonons.

I et us begin with a discussion of the kink contri-
bution. In order to gain some feeling for the form
of U(C) let us first look at the quantity 4 '(x) which
appears in U$4). This can be written

K2 N

C '(x) = —g tanh' —(x -X,.)
u j=l

= —4v 2ic/u = —6E»/»'. (5.13)

We believe that the correct physical picture of
our system is that of a low density kink gas at low
temperatures. We see, however, that the inter-
action U, (4) between kinks is attractive. This
means, of course, that our system is unstable at
low temperatures to the formation of ki:nk-anti-
kink bound pairs and, at low enough temperatures,
because of the many-body interactions, we expect
this system to collapse to a large number of kinks
at a point. This collapse is an intolerable feature
and does not occur in the molecular dynamics
simulations. We can restabilize our kink system
via, a judicious choice for the probability distribu-
tion for the "vacuum" kinks P[X,]. We cho.ose
P[X,.] so that the attractive interactions between
kinks U,(4) is cancelled. We write therefore

P[X,.] = e" I'»,

then

N

P~l ll Jdx~
NW f=l

(5.14)

(5.15)

represents the grand partition function for a set of
kinks interacting via repulsive interactions. Com-
bining Eqs. (5.5), (5.6), (5.10), and (5.14) the par-
tition function can then be written as

Fig. 6). At large distances our result for the kink-
kink interaction agrees with that obtained by Haja-
raman" using quite different techniques. The
three-body potential can be shown to be short
ranged, e.g. ,

lim U,(k, q)= lim ' d(x, —x&)d(x, -x,)
ky @~0 Q q~P

x ei))(x.-x. )eiq(xi-x»)U(X X X )jt $t

where E» is just the kink energy given by Eq. (3.32)
and

U, (e)= g U,(X,. -X,)+ g U, (X, , X„X„)+ ~ ~,

'=g. Z'N. II J" .'

x @Xexp — U X +H, 4t X (5.16)

(5.11)

where the dots represent higher-order interac-
tions, is the interaction between kinks. We calcu-
late directly that the pair interaction between kinks
1s

0.0

-0.2

U,(x) = E» csch' —1+ 5 coth' — coth'—2 KX , »x 15»x, »x
2 2 2 2 2

g Kg 15K+ 5 Kg——coth —+ coth'—
2 ~2 2v2 v2

(5.12)

We note that the two-body potential falls off expo-
nentially for large distances and is attractive (see

p4

p6l I I ) I I I I I I I I I I I I I I I I I I I

0.4 1.0 1.6 . 2.2 2.8 3.4 4.0 4.6
(I|,'X )

FIG. 6. Interaction potential V(x) vs x bebveen a kink
and an antikink. For small x, V(x) = (-7+96m x )E~-3 5

Whereas -for large distances V(x) = —6 E&exp(- v 2 Kx).
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The kinks in the numerator interact with each other
only through interactions with the phonons. Note
that we now have a term exp( PN-E») in the weight
factor. We see that -E~ is essentially the chem-
ical potential associated with kink creation and,
as we will verify, the kink density at low tempera-
tures will be proportional to exp(-PE«).

Let us now focus on the part of the Hamiltonian
coupling 4 and Z defined by Eq. (5.7). Let us ana-
lyze H, using the result (5.9) for C'(x). After
some elementary algebra and noticing a cancella-
tion that follows from the stationarity of V[y] in
the presence of one kink,

3K
H, (4, X}= dxy. '(x)+ u dx C(x)X'(x)l

+3K dxdx nxX x

cosh K 2 x -x
where the dots represent terms involving two dis-
tinct kinks and

NW i=1

x ' » exp(-P[&.(X}+~,(c,X}])&&4+X},

where

N-"0

~ ~p

a

(5.22)

x SxexP — F0 X +A.II, 4, X (5.23)

and we have included the quartic part of F[}i]in
H:

Z,f X}=— dx —+ 2«)(

H, (4x, X}=H~(C,X}+ dx4 y (x) .
(5.24)

We have introduced X in (5.22) so as to keep track
of various terms in the perturbation-series ex-
pansion in H, .

is the kink density "operator. " We see that the
first term really does not couple the kinks to pho-
nons and should be lumped with UQ} as the basic
phonon Hamiltonian. The second term can be
treated as a perturbation in u and the third- and
higher-order terms are small when the kink den-
sity is small. We can therefore write the effective
"Hamiltonian" after our transformations as

(5.19}

where

r

VI. THERMODYNAMIC PROPERTIES

In this section we will evaluate the density of the
kinks and other thermodynamic properties of our
kink-phonon system. The average density of the
kinks is written as

(6.1)

where

G(n, z)=in ~~, '
[

' e«

Z( X}= — dx —+ 2«'X'+1 8X '
2 2 uX

2 8x 2
(5.20)

»exp(-P&AX} -P~.(C, X}),(6 2)

rxr(X, @)=X fXxyXx(x)[-x"(x)+xx'(x) —x'rx(x)l

and a= -PE». We have calculated G(n, X) to the
second order in A. and found it to be well behaved.
We discuss here only our results to the first order
in X,

+ 2+CX'+ Su C ——X' x . 5.21
G(n, X) = -V«[1/v 2 —(+ Xq(e)], (6.3)

We see then that Hi can be treated as a perturba-
tion if u is small and the kink density is small.
We also note that E(x}represents the Hamiltonian
for a single-mell oscillator. There are no prob-
lems in using perturbation theory to treat the X

phonons. "
Now we can calculate any physical quantity of

interest. For example, the average of any variable
A(qr} is given as

where

t'=nJ«= e ' «/«a (6 4)

is the dimensionless free kink density and q(e) is
the first-order correction given by

YJ(f) = [(3/4v 2)(e ~2~ - 1) + —' e] . (6 5)

Remember e.=ukeT/«' is the dimensionless param-
eter introduced in Sec. II. Using (4.11},(6.3),
and (6.1) we obtain the average density of the kinks
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n(X) in the presence of the interaction,

n(X) = (1/n) exp[-PE»(T)],

where n = 2v 2/» is the width of a kink and

(6.6)

0.
3 (256&2e)'~ ' 3

E»(T)=E» 1 — min + &In@
2&2 & 4 2

9x'E

4&2
(6.7)

is temperature-dependent kink energy. By setting
X=0, we recover free kink density

Q4

n(X=0)=n, = [(32 v2e)'~'/mv e]e ~»». (6.8)

E»(T) = EJ1 —3v 2e), (6.9)

which we also plot in Fig. 8. They have also car-
ried out molecular dynamics simulations on the
associated lattice model. One can extract rough
estimates for the kink density from these lattice
calculations. For X= 1 and at low temperatures,
our analysis predicts higher kink density com-

We plot the free and interacting kink densities in
Fig. 7. We observe that as soon as we turn on the
interaction, the average density of the kinks in-
creases.

We also plot the temperature-dependent kink en-
ergy E»(T) vs e in Fig. 8 for the free (X=0) and
interacting (X=1) cases. In the presence of inter-
actions, the energy required to create a kink de-
creases. Also we observe that the kink energy
E~ decreases with the increase of temperature.
Koehler et a/. have determined the temperature-
dependent kink energy E»(T) in two ways. They
have evaluated E»(T) from the static structure fac-
tor using the transfer-matrix technique and ob-
tained approximately that

0 0.1 0.2 0.3 Q4

FIG. 8. Temperature-dependent kink energy EE (T
vs e for A, = 0 (dashed line) and A, = 1 (dotted line) . The
solid line is due to Koehler et al.

+ 2 &( c '+ X')'&] . (6.10)

After a little algebra, one can evaluate the energy
density to the first order in X and n as

pared to the one obtained using transfer -matr ix
technique by Koehler eI; al. But their average den-
sity of the kinks by this method is much lower
than what is observed in computer simulations.
So our result for the average kink density is in
better agz cement with computer simulations than
the transfer-matrix result given by Eg. (6.9).

Next we evaluate the energy density of the kink-
phonon system. Using (5.22) we write the average
energy density as

E/V= [ku((c'+ X) ) -2& ((@+X) )

I
I

I
I

4 = ——+ —+ —&+

7 5
+ X ——e'+ $ ——3&+ —e' . (6.11)

2 3 4

In the absence of interaction (X = 0), and at l.ow
temperatures, the energy density of the phonon-
kink system is given as

0.1— E K4 1—= ——+—wk~ T+ nE~.
V 4u

(6.12)

0 O. I 0.2 Q4
The first term in (6.12) corresponds to vacuum en-
ergy, the second and third terms are the phonon
and kink energy densities, respectively. At T= 0,

E= »4V/4u= E,- (6.13)
FIG. 7. Density of the kinks n(~) vs «« ~=0

(solid line) and %,=1 (dashed line). This result is no surprise to us as at zero tem-
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1,0—

the second term corresponds to the specific heat
of free kinks. At low temperatures, the specific
heat due to kinks is in good agreement with that
of one-dimensional Ising model suggesting thereby
that at low temperatures, the system of atoms be-
haves like Ising spins. One can understand this
situation as follows; at low temperatures, due to
quantum-mechanical tunneling, an individual atom
randomly tunnels through to the other well which
is equivalent to flipping a spin in a system of
aligned spins.

We plot C/gVke vs c in Fig. 10. We also observe
a maxima in the specific heat as reported by other
authors. "'" In the presence of interaction, the
specific heat increases compared to that of free
kink-phonon system.

VII. STATIC-CORRELATION FUNCTION

A. Basic development

The basic quantity giving us information about
the equilibrium structure in our system is the
static structure factor

S(k) = d(x -x') e '"*"'&5y(x) 5q(x')&.

0.1 0.2 O.a 0.4 0.5 0.6

After we make our functional transformation op= 4
+ X the structure factor reduces to a sum of three
pieces,

FIG. 9. Energy of the kink-phonon system vs & for
A, = 0 (solid line) and A.= 1 (dashed line).

perature all atoms sit in either of the two wells
and then p, = az/0 u which on substituting in (2.1)
gives (6.13). In Fig. 9 we plot (E —E, )u/Vg vs s.
As soon as we turn on the interaction, the energy
density of the kink-phonon system increases con-
siderably.

Now the specific heat of the kink-phonon system
can be readily obtained from the energy density, .

s(k) = s,(k)+ s,(k)+ 2s,(k),

where

Sx())= f d(x-x') e ""*'(Ile( )Ile(„'))

is the kink-kink structure factor,

S,(k) = d(x -x') e '"""'&5X(x)5X(x')&

is the phonon-phonon structure factor, and

S,(k) = d(x -x') e ' '" "'&5X(x)54(x')&
~ 00

(V.2)

('1.3)

( t.4)

(7 5)

2v 2 t 5
+ X —4+, $

——36+ —t'
3&

is the "cross-correlation" function correlating kink
and phonon fields. We can now develop a perturba-
tion series expansion for these correlation func-
tions in terms of the parameter X.

(6.14)

At low temperatures and in the absence of inter-

action, the specific heat is given by

C/K V= ke(l/0 2+ 8$/9E') . (6.15)

The first term in (6.15) is the contribution to the

specific heat due to a classical gas of phonons and

B. Kink-kink correlation function

We can easily evaluate Sr(x -x') to zeroth order
in X to obtain

KS'(x -x')= —exp -Re,(x -x')exch —(x x')) .
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sos = o) = ——+ o(() ),
2W2x 1 v'

Q 2V2) 4E (7.10)

where $ = n, /k. The main point is that the kink-
structure factor is very sharply peaked about 0= 0
for low temperatures.

We can now proceed to investigate the correc-
tions to Sjk) using X as an expansion parameter.
It is easy to show that the first-order correction
to S~ is given by

S."'(x -x') = — dy RC'(y) C(x)4(x'))
4v 2~ 0

—(C '(y)),Sx(x —x') ],
(7.11)

where we have used

(y'(y)), = 1/2&2Px. (7.12)

0 0.1 0.2 0.3 0.4

1

l

ll

0.5 0.6

A key point here is to remember that the fields 4
are not Gaussian for A. = 0. We are so conditioned
to think in terms of Gaussian variables that it is

Numerical
----

Analytical
FIG. 10. Specific heat of the kink-phonon system vs
for A, = 0 (straight line) and A, =l (dashed line). e =0.2

S',(x -x')
2

p-2n Ix-x'I

Ix-x'I ~ ~
(7.7)

and we can identify the correlation length (2n, ) '.
As T-0 and pfp 0, this correlation length be-
comes infinite announcing the zero-temperature
phase transition in this system.

We have not been able to compute Sar(k) analyti-
cally. However, the approximate form

We see then, for large separations, the correlation
function decays as

CD

L

1

I

l

l,

2

s'(S) =—,"',) exp(-s&Re, /e)
u 4n,'+ k' (7.8)

follows from the interpolation between the large
and small ~x -x'1 limits:

KSjx -x') =—exp(-2v 2n, /x) exp(-2n, ~x-x'1) . (7.9)
I

As we see from Fig. 11, Sjk) compares favorably
with Sojk), evaluated numerically, over a wide
range of wave numbers. It is easy to show that

0.2 0.6
k/IC

1.0 1.4

FIG. 11. Comparison of the numerical (solid line)
and analytical (dashed line) result of the kink static
structure factor.
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tempting to evaluate S~ ' in the approximation
where we replace the four-paint C correlation
function by its disconnected pieces. This standard
Dyson equati. on approach leads' to the result

S„(k= 0) = -4—+ O(X', X)2,)
2v 2» 1 x2

u 22n«
(7.21)

S (k) = S'-'(k)+ Su) /2~2«, (V.is)

S"'(x -x') = — S',(x -x'}e "2'
2&2

x J( dy(exp[-n, k,(y, x, x')] -1],

with the consequence that as k - 0 and T-0, S~
is finite| As we shall see this reasoning is faulty.
A direct analysis of (V.il) leads to

and S«(k=0) diverges as T-0 as I/n. This con-
tradicts the results of the "disconnected" approxi-
mation and should be sufficient to contain our de-
sire to apply a Dyson equation analysis to our
problem. While resummations are required, they
must be developed in a manner different from the
conventional self -energy resummation. Again we
can approximate S«(k) with Eq. (V.8) with n, -n
and write

(7.14)
K

Sgk) 2«2II/ k

Q 4n'+u' ' (7.22)

where

E,(y, x, x'}

tanh(»/)) 2)(x —z) tanh(»/v 2)(x' —z) —1
cosh'(«/)/ 2)(y —z)

(7.15)

We plot the total static structure factor for X= 0
and X=1 in Fig. 13. We discover that as soon as
we turn on the interaction, the peak of S«(k) de-
creases in height and becomes broad as expected.

C. Phonon-phonon correlation function

We are interested in evaluating S"' to lowest order
in n, . If we expand to first order in n, in (7.14) and
then carry out the y integration we obtain

Now we evaluate the phonon static structure fac-
tor. To second order in X' we have

k(I)= J k( -«') « '"**'«I(«)IX(«'))

ol

2 no
(7.16)

exp 2)(n, +O(X', Xn,') S«(x -x').
&n

(7.17)

8
S (x -x ) = I+ -',~u, + O() ', ~&,') S',(x x )'&n,

S',(k) = d(x —x') e "'""'(~}t(x)6X(x'))0
«00

1
P(k'+ 2»') ' (V.24)

= S'(k)+ As"'(k)+ X'S"'(k)+ ' ' ', (7.2S)

where S~(k) is the free-phonon static structure fac-
tor and can be easily shown to be equal to

If we use Eq. (7.6) and make the change of variable
to y = ln(n, /»), then [with f(x) = 2«xcoth («x/v 2 }]

3 ~ K
S«(x -x') = exp —x ——exp[e"f(x -x')]

2 ey Q

s,(»(k)= P d( I) e-()I(k k')
«00

x dy 5H y 5Xg 5xg'

The first-order term can be written as

K
xp [e (2+32/ 2)f(x xl) ]

We see from Eq. (6.6) that

n = n,e'""[1+o(x, n,)],

(7.18)

(7.19)

= s,'(k) z,(k)s',(k), (V. 25)

where the first-order phonon self-energy is given
by

Z,(k) = -~[-.'»'p(e-'~' -1)+SupS', (0)) (V.26)

K
S«(x -x') = —exp[-2nx coth(xx/I) 2 )]

Q
S,'(0) = (X'(x)),= 1/2V 2p». (7.2V)

x [1+o(x', )(n,')], (7.20)

so that we simply replace n, -n in first order in ~.
Then, for example,

A careful analysis of the second-order static struc-
ture factor S&(2)(k) suggests that apart from the
usual phonon self-energy diagrams, it contains a
diagram [Fig. 12(a)] which requires a special at-
tention. The dotted line in Fig. 12(a) represents
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{0)
g,(k) = x-[ ,'«-'p(e '~" —1)+3ups,'(0)], (7.29)

zgk) = sx'p'~'[s', (0)]'sgk) (7.30)

C& D

X {b)

is the second-order contribution from the graph in

Fig. 12(a).
We can then solve for S,(k) and substitute Eq.

(7.24) for S~(k) to obtain

1+ Z«(k)sq(k) 1+Z«(k)g(k)
P(k'+ 2«'-Z, (-k)yP) P(k'+ «',)

where

«,'= 2«'+ x [ g «'(e '~" -1)+ 3us,'(0) ] . (7.32)

X
7 T

X

{c)

For k 0, as T- 0 we recover the free-phonon
static structure factor,

m (7.33}

FIG. 12. (a) Second-order graph which does not con-
tribute to the self-energy. (b) Fourth-order graph ob-
tained by cutting along the vertical line a fourth-order
graph (c) appearing in the perturbation series.

kink-kink correlation function and the solid line
corresponds to phonon-phonon correlation func-
tion. The Fourier transform of the above diagram
is proportional to the kink static structure factor
which goes as the inverse of the kink density for
k= 0. At very low temperatures, it is the domi-
nant contribution to phonon static structure factor.
If one simply includes the contribution of this term
in the phonon self-energy, one obtains a phonon
static structure factor which goes negative for k
= 0 at low temperatures. This is quite unphysi-
calt It appears that one should not regard this
diagram as a phonon self-energy diagram. If in-
deed Fig. 12(a} were to be interpreted as contrib-
uting to the phonon self-energy a fourth-order dia-
gram of the form given in Fig. 12(b) should appear.
Such a graph would occur if we were to disconnect
the fourth-order diagram shown in Fig. 12(c). We
learned earlier in treating the kink static-structure
factor that we cannot treat the kink field C(x) as a
Gaussian variable. Consequently we should not
disconnect Fig. 12(c) to obtain Fig. 12(b) and the
contribution in Fig. 12(a) should not be treated as
a self-energy correction. So to the second order
in A, , we keep track of the above diagram and re-
sume the rest of diagrams to write the phonon-cor-
relation function in the form

At k= 0, the phonon static structure factor is given

by

lim PS (0) = —,+ 0(X')
o 2K

(7.36)

is finite. Whereas if we include O(X') terms in our

analysis, we discover that

limPS (0)=
9x'a

r-0 & 8)«
(7.36}

This clearly emphasizes the importance of the
second-order graph shown in Fig. 12(a). We have

also convinced ourselves that the product of such

graphs does not occur in higher orders.

0, Cross-correlation function

Next we evaluate the cross correlation function.
To the second order in A. , one finds that

S,(x —x') = (X(x)e(x') &

PX
~

dy -&6Ifgy)X(x)C(x')&.

+d I' d) J dy')IIM/y)5M)y')

s,(o}=[1+z,(0)s,'(0)]/p«', . (7.34)

If we restrict our analysis to the first order in A,

we find that

x x(x)4 (x')&, . (7.37}

S&(k) = S;(k)+ S,'(k)Z, (k)S,(k)

+ S,'(k) Z@k)S,'(k), ('l. 28)

where the phonon self-energy Z (k) is given by Eq.
(7.26)

The zero-order term vanishes due to the fact that
the zero-order phonon and kink Hamiltonians are
even their variables. Rewriting Eq. (7.37) expli-
citly to the first order in A. ,
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S &*-"'&=-S'"J dy(X'&y&X&x» &S&»S&x'». -S' fdy&X&y)X(x&) &(. S—(y') —«S(y)+ xd'(y) I S(x')&.

SX« J dy S (x —y)S'(D)S"(y -x') —l&X dy S'(y «)(„' „)Spy x')

S""f "yy (y- &&@'&y&S(*')).+O'X' dy Jdy'(Sydney)S&d(y')X(x)S(x')). . (7.38)

It can be shown that

where the function Q(x) is given by

2v2 Kg tanh(»x/» 2) + sech'(»x/W2)
» sinh (»x/v 2)» 2 tanh(»x/~2) 1+ tanh(»x/»& 2)

(7.39)

(7.40)

Q(x) is finite as x- 0 and is given as

Q(0) = 2&2/3»,

and leads to the result

&4 (x)) =(»'/u')e ' '"&& "

(7.41)

(7.42)

At large distance, Q(x) falls off exponentially,

Q(x) =6xe '"*, (7.43)

which goes to zero as x-~. So for large dis-
tances, we can approximate

&@'(y)@(x')).= (»'/u)S'„(y —x'), (7.44)

r
—P&n,' dy S,'(y -x)Spy -x')

+ O'X' f dy f dy (»Ay)«g(y ')X( )S( ))'xx
(7.45)

If we analyze the second-order terms, we find
that there are some terms which renormalize the
kink correlation function appearing in (7.45). We
can then rewrite the cross correlation function as

S,(x -x')= -SSX« f dyyv(y -x)Sv(0)S (y —x')

(7.46)+ O(n('), &') ~

%e next Fourier transform the space coordinates
to obtain the cross static structure factor to the

which has the same functional form as that of the
two-kink correlation function. Substitute (7.55) in
(7.49) and obtain

I

S,(x x ) = 3PXu dy So(y x)S,'(0)S',(y -x')

first order in A. ,

S,(k) = 3P~uSo(k)So(0)Sgk)

+ O(n,', X'}. (7.47}

At k=0, the cross static structure factor grows
exponentially as temperature is lowered towards
the critical temperature T= 0.

Adding (7.22), (7.31), and (7.4V), we obtain the
total static structure factor Sr(k). We Plot S (k)
vs k in Fig. 13 for A. =O and X=1.

At low temperatures, the height of the static
structure factor peak is inversely proportional to
the density of the kinks whereas the width is di-
rectly proportional. to the kink density. As soon
as we turn on the interaction, the kink density in-
creases. That is why in the presence of inter-
action (A. = 1), the peak is smaller in height and
broader compared to the free (A. = 0) static struc-
ture factor peak. Furthermore, we plot in Fig.
14 the total static structure factor Sr(k) vs k for
two different temperatures. %e find that as we
raise the temperature, the peak decreases in
height and becomes broad. This is precisely what
we expect because the kink density increases with
the increase in temperature.

Vm. DISCUSSION

%e have developed in this paper a procedure for
treating highly nonlinear field configurations like
kinks on an equal footing with standard linear con-
figurations like phonons. Some general features
of this procedure could, in principle, be extended
to the case of higher-dimensional systems. The
key point, of course, is the identification of non-
trivial local solutions of the field equations in
higher dimensions. It seems likely that for sys-
tems in metastable equilibrium these ideas may be
useful in treating the nucleation problem. It is a)so
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PIG. 14. Total static structure factor S(k) vs k for
A, = 1 at ~ = 0.14 (straight line) and e= 0.18 (dashed line).

0.6
k v

I.O 1.4
The classical equation for field y(x)

FIG. 13. Total static structure factor S(k) vs k at e
=0.14 for X=O (dashed line) and X=1 (straight line).

possible that this type of development may be use-
ful in understanding the coexistance region in fluids
in three dimensions. We are currently investigat-
ing these possibilities.

In a second paper in this series we will indicate
how the methods developed in this paper can be
used to treat dynamical problems.
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(A2)

possesses the so-called kink solution

p,(x) = (~/v u) tanh(x/V 2)(x -X,) . (As)

We note, however, that the kink depends on the

arbitrary "position" Xp. Thus we have a family of
solutions of Eq. (A2). For each y(x) we want to

choose that solution (or choice of X,) for which

y(x) is best approximated by cp,(x -X,) near x.
We therefore demand that the mean-square devia-
tion

Ptw'~ t = J «tpbt -w. (~)t' (A4)

be a minimum as a function of X,. Assume that

X,(hatt') is the value of X, that minimizes D. We can
then introduce the identity

APPENDIX

In this Appendix we develop perturbation theory
about a single kink. Consider the partition function
given in Eq. (2.3),

dXp&Xp Xp P ) 1,

into our functional integral (Al),

Z= nq dx ~ X-X, 9 )e '"'"'.

(As)

(A6)

Z ~~8-BA( y ) (Al) We can now expand A(y) around a single kink using
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y(x) = y,(x)+ X(x), (AV) x(x) = g &„y„(x), (A15)

and evaluate the partition function without any
problem. This procedure is essentially equivalent
to the Faddeev-Popov quantization prescription.

We note that the condition determining X,(y) is

8 82
6(X, -X.(y)}=~ sX D[Xo, y] sX. D(Xo yl

0

(A8)

Then

so that

A,'Q}= P ge„.

We have used the orthonormality condition of
eigenfunctions to obtain (A16),

dx y„(x)y„'(x) = 5„„,.

(A16)

(Al'f)

and

D(X„y]= 2 dx [y(x) —y,(x)]
0 ~X

(A 9)

,z. D[&., ) ) = 2 I dx
c 8 ) —[p(x)

(
)]&'y,(x)

X

(A10)

Then
OC) 1z= Je '" ' ' [ ]'id[„exp ——p cc„)

n=p n

g/2
2)7t

.i.L
n=p n

where the Jacobian J is given as

(A18)

From (A9) we see that the condition that D is a
minimum essentially enforces that X(x} is ortho-
gonal to sy, (x)/sx. From a mathematical point of
view we could have motivated our constraint con-
dition from the necessity of this orthogonality. We
can see this as follows. Suppose that we had pro-
ceeded blindly and expanded y about yo assuming

X to be small. Then we have

(A19)

( )
&y,(x)

ex sx (2tEC) ) cosh (Kx/v 2)

(A20)

The problem m ith this procedure is that there is
an eigenfunction with zero eigenvalue;

A(y, „x}=A,(y,j+—,x(»)x(»')&'A4$
5yx 5yx

+ o(x')

=~.4.}
+ — dx dx' X(x)M(» x')X(x')

2

=g,fy /+A', Q),
where the matrix M(X, X') is given bY

(A11)

where

8 2
= C = 2&a~'/3V.

9K
(A21}

(A22)

This zero eigenfunction arises due to the transla-
tional invariance in the system and is a general
feature of classical solutions. We see this by
noticing that if y,(x) is a classical solution,

»4 o}
~y.(x)

c
~'+)~')ante" (x-~))))(~-*')

~X 2

= M(x —x') (A12)

so also is y, (x -X,),
»(y.]

&y,(x -X,) (A23)

Then our functional integral (A1} reduces to a
Gaussian functional integral

Differentiate (A23) with respect to X, to find thats»(yo}, »(yo)
&X, &y,(x -X,) &y,(x -X,)&y,(x' -X,)

g e"Mpf@p} ~xe &p(X}/2 (A13)

We can evaluate the Gaussian integral by solving

for the eigenvalues &„and eigenfunction g„(x}, or

s yo(x —Xo)
&XO

(A24)

] d»M(x, x)q„(x)= ~„q„(x), (A14) 8
dx'M(x, x') y;=0,

~X
(A25)

and writing implies that By,(x)/sx corresponds to an eigen-
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function of M with zero eigenvalue. The integral
is not defined without the constraint. With our
choice of constraint we demand X to be orthogonal
to zero eigenfunction and the integral over (, can
be treated as a 6-function integral. Then the par-
tition function Z can be written as

X=e'" l' MC J&X dX„

x 5 d& X r8 p & e ~"p

= e Mo«"o~Z

where

(A26)

x'=ddc ldk„e(4, ) J dx, exp( —Q 4' 4 2)„„
n=p n=p

=ddc vll (")"'. (A27)

The energy eigenvalues e„can be obtained by solv-
ing Eq. (A14),

6Q= 0, Ck= 214 2 Cg=(k + 4)aK (A 28)

and the density of the continuum states is given
b 24

dn 1 /&(2L) 6(k'+ 2)
dk 2v ~q (k'+1)(k'+ 4)

(A29)

Then we consider

=VA V(
—

) Q, (A30)

where Z, is the partition function in the absence
of kink. The factor Q is given as

=exp Q ln~ ) +Q ln(k)

420

= exp — de [p'(E) —p(e)] In —,(A31)
2 p

where

e= 214'(4+ k')

Then

6(k'+ 2}
2v(k'+ l)(k' 4)

' (A32)

420

Q = exp —,'In — dk [p'(k) p(k)]

00

+ — dk [p'(k) —p(k) ] ln(4+ k')

-2 exp
2 dk(, 2N, 4~

ln(4+k'))

(A33}

With a little algebra, one can show that the integral
appearing in (33) is equal to —', mlnl2. Then

Q = —'
exp (—l )

6g2
= —exp ——ln122i 2m 3 r (A34)

Then

Z ~ (2 )'&'4 '
(A35)

32' 2 "'
= Z, Va' exp[-P(E~+ E„„)). (A37)

This is the single-kink contribution to the parti-
tion evaluated to lowest order in the coupling [in
Eq. (All) we kept only the Gaussian terms]. We
could follow Gervais and Sakita" and develop a
perturbation theory expansion giving the correc-
tions to (A37) as a power series in e. One can
show, following work due to Lazarides" in treat-
ing metastable systems, that this series is, again,
non-Borel summable because of the existence of
a real pseudoparticle. This real pseudoparticle
corresponds to an indirect manifestation of the
original kink.

Substitute e, = 2z' and (A21) in (A35) to obtain

2'/&, = Va(32W2/me)" ' (A36)

Then the contribution to the partition function from
a single kink is

Z =e BAp(yp)zl
K
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