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Variational methods in the hydrodynamic theory of liquid He
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This paper presents a derivation of the dissipationless two-fluid equations of motion for liquid He based on
a variational procedure that is closely related to one formulated originally by Zilsel. The Lagrangian that
appears in this treatment has been derived before by applying statistical-mechanical methods to an
elementary-excitation description of the flowing liquid; the main steps are recounted here. An important new
development is that for uniform flow, the Lagrangian is shown to be a Legendre transform of the internal
energy. It is a particular thermodynamic potential for which the primary, independent variables are clearly
exhibited. Identi6cation of these variables makes it possible to avoid certain steps in Zilsel's procedure which
have been criticized by several workers, while one arrives at the same equations of motion. Furthermore, it
is shown, by example, that the Lagrangian density postulated by Zilsel is exactly the same as that assumed
by Lhuillier, Francois, and Karatchentzeff {LFK),but that terms have been grouped differently in the two
treatments. This should eliminate apprehension expressed by LFK about the reliability of Zilsel's
Lagrangian. The results derived here also bring new unity to the work of Zilsel and its extension by Jackson,
and certain work of Khalatnikov and its extensions by LFK and by Geurst. Finally, a discussion is given of a
proposal made by Lin for modifying Zilsel's variational treatment of liquid "He.

I. INTRODUCTION

In 1950, Zilsel derived the dissipationless two-
fluid equations of motion for liquid 4He by applying
Eckart's variational principle' to an action func-
tional constructed with a phenomenolggical La-
grangian density. Z ilsel's approach is appealing
not only because it is straightforward and elegant,
but also because it avoids intricate verbal argu-
ments that constitute an essential part of the lead-
ing alternative approach, viz. , that of Landau' and
Khalatnikov, which is based on Galilean invari-
ance. Those considerations, as well as others,
recommend the variational method for treating
a wider class of systems, e.g. , liquid mixtures
of He and He, normal and superfluid liquid 'He,
superconductors, and various classical fluids,
including plasmas. Dating back almost to the time
of Zilsel's original publication, severe criticism
has been directed at his derivation. Temperley'
and Dingle' questioned the set of variables which
he treated as independent; and they specifically
objected to his treatment of x, defined as the ratio
of normal-fluid density to total density, as an in-
dependent variable. In responding, Zilsel' im-
plied that both of them had interpreted his treat-
ment incorrectly, and that there was no valid
basis for their compI. aints. However, the same
criticism has been leveled at Zilsel's treatment
recently by Lhuillier, Francois, and Karatchent-
zeff (LFK). These latter authors further contend
that Zilsel's treatment is unreliable because of the
Lagrangian density which he used. The grounds
for their second allegation is that Zilsel wrote
the Lagrangian density as a difference between

kinetic and internal energy terms, and that this
differs from a Lagrangian density which they con-
structed on the basis of a detailed analysis. Lin'
has critized Zilsel's variational calculation for
another reason. He claims that Zilsel erroneously
omitted a certain constraint, which according to
Lin accounts for the conservation of the identity
of (fluid) particles, and which he believes is es-
sential to a correct treatment. It is relevant to
note that Lin' has also criticized Herivel's' vari-
ational treatment of a single component, classical
fluid on the same grounds.

In a recent paper, " it has been shown that Zil-
sel's Lagrangian density for liquid 4He can be rep-
resented explicitly with formulas derived from a
microscopic theory. Furthermore, that theory
has been extended" to deal with dilute solutions
of 'He in liquid He. The first of these develop-
ments gives considerable support to the idea that
Zilsel's approach is basically sound, and it offers
a means for settling at least some of the contro-
versial issues. The need for clarifying those
issues is increased by the second developement,
i.e., extension of the theory to 'He-4He mixtures.
In this paper the primary, independent variables
of the Lagrangian density for liquid 4He are de-
duced for the first time, and it is shown that when
they are used with Eckart's principle, they lead
to precisely the same equations of motion as those
derived originally by Zilsel. Viewing the matter
in this way, one can see that although there may
have been valid grounds for skepticism about
Zilsel's procedure, there is no error in his re-
sults arising from lack of independence of the
variables. Next it is shown that the Lagrangian
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density constructed by LFK is exactly the same
as Zilsel's Lagrangian density, the only distinction
being that terms are grouped differently in the
two cases. As a byproduct of these developments,
new unity is exhibited in the work of Zilsel' and an
extension of it by Jackson, "and the work of
Khalatnikov' and recent extensions of it by LFK'
and by Qeurst. " Finally, some comments are
made about Lin's suggested additional constraint.

ducing Lagrange multipliers P and v„, and re-
quiring that for each value of i,

8 (1
&n; (k

i-S-PZ +Pv„ P)=O.

This gives

1+n,ln =P ~e;+p, (v, —v„)

(4}

II. MICROSCOPIC THEORY

OF THE LAGRANGIAN DENSITY FOR LIQUID He

Consider a system of N ~He atoms with volume
V in which there is a uniform field of flow of su-
perfluid with velocity v, . The method of corre-
lated wave functions has been used before to es-
tablish that the diagonal matrix elements of the
Hamiltonian within the context of a noninteracting
elementary excitation model can be written as

E'=E,+ ,'Nme2+—v, .g n, p, +g n;e; .

In the approximation where off-diagonal matrix
elements are neglected, E' may be regarded as an
energy eigenvalue. We note that this formula is
consistent with a well-known result deduced by
I.andau, who used an-argument based on Qalilean
invariance. In Eq. (1), E, is the ground-state
energy of the liquid at rest, m is the mass of a
4He atom, and n, is the occupation number for an
elementary excitation state having momentum

p, . The excitations are assumed to obey Bose
statistics. It is known from earlier work" that
the type of treatment being discussed here can
also accommodate models in which a fairly wide
class of interactions among excitations are pres-
ent. For simplicity, we shall consider only non-
interacting excitations. The momentum eigen-
values for the liquid when the superfluid is flowing
are given by the formula

P' =Nmv, + n&p& .

The entropy of a set of independent bosons can be
found from elementary counting considerations,
and is given by

&BE~g+I g &V,A„)g

It can be shown that p = (1/kT) where T is the tem-
perature; k is, of course, the Boltzmann con-
stant. The I agrange multiplier v„may be
treated consistently as the normal-fluid velocity
in what follows. One can see from Eq. (4) that the
procedure used is equivalent to minimizing the
function W at constant v„v„, and T, where 5" is
defined by

W=E' —TS —v„'P' . (7)

By carrying out a simple rearrangement in Eq.
(3) and using Eq. (5), one finds that the thermody-
namic entropy can be written as

TS =AT+ ln(1+n&)+g n, e, +p, (v, -v„)

W=E, + —,'Nme,' —Nmv, ~ v„—kTQ ln(1+ n;) . (9)

A basic postulate of the theory is that W= W(v„v„
V, T, N) is a fundamental relation for the system.
It has been noted in Ref. 11 that there are two
similar, but nonequivalent, theories that are con-
sistent with this postulate. In one, v, is treated
as an intensive thermodynamic. variable, and it
is conjugate to an extensive variable that we shall
call Q. In the second form of the theory, v, is not
a thermodynamic variable itself, but it is related
to an extensive thermodynamic variable P, by

Combining Eqs. (1), (2), and (8) with (7), one finds

S=kg [(I+n&)ln(1+n&) —n&inn&] . (3)

For a fixed value of v„one can find conditions
of thermodynamic equilibrium by maximizing the
entropy over the manifold of states having fixed
values of total energy and total momentum. These
constraints may be taken into account by intro-

P =Xmv, . (10)

. In this case, the intensive variable conjugate to
Po will be ca1led u. We shal1 treat these two theo-
ries separately, starting with the first, involving
v, and Q. In this case, the differential dW must
be of the following form:

dW=-PdV —SdT —P' dv„+ pdN-Q dv, . (11}
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M =M -M„,
M =Nm,

M„(v„—v, ) =P n, p, .

(13a)

(13b)

(14)

In Eq. (14), n, has the equilibrium value given by
Eq. (6}. Solving Eq. (7) for E' and using the result
in combination with Eq. (11), one finds the follow-
ing expression for dE'.

dE'= -pdV+ TdS+v„dP'+ p, dN —Q ~ dv . (15)

The primary, independent variables in the internal
energy must all be extensive, and one can see
from Eq. (15), that E' does not satisfy this. re-
quirement. The internal energy, call it U, is
related to E' by a Legendre transformation.
Specifically,

U=E'+Q v, , (16)

dU=-pdV+ TdS+ v„dP'+ pdN+v, dQ . (17)

As we shall see shortly, there are good reasons
to identify the following (negative) Legendre trans-
form of the internal energy U as the Lagrangian:

L=p' v —U (18)

The differential dL can be found from Eqs. (17)
and (18):.

dI. =PdV —TdS+ P'. dh„—p, dN —v, dQ . (19)

A point which should be emphasized here is that
W is assumed to be the free-energy function for
which the primary variables are those that appear
explicitly in Eq. (9) when n& is taken from Eq. (6).
(In connection with that statement, one should
note that the ground-state energy Eo is a function
of N and V, and the elementary excitation energy
is a function of only the density of particles. That
is a, = e, (p), where p=Nm/V. The volume V also
enters Eq. (9) through the density of states as-
sociated with the sum over i )T.his circumstance
makes it possible for one to take partial deriva-
tives easily and to check that the coefficients S
and P' assumed in Eq. (11) agree with the formu-
las given in Eqs. (3) and (2), respectively. The
other coefficients of differentials may be regarded
as defining the pressure p, the chemical potential
per particle p, , and the variable Q. Explicit form-
ulas for these variables are given in Ref. 11. For
present purposes, one need only observe that

Q =M,(v„-v,), (12)

where M, is the superfluid mass defined by the
following relations:

I=L/V= p7,

l =L/M

p=M/V,

s=S/M,

p, = p/m,

q=Q/M .

(20a)

(20b)

(20c)

(20d)

(20e}

(20f)

(20g)

Then the following differential relations may be
inferred from Eqs. (19) and (20}:

dl =avdp+ pdl

d7 = -(p/p')d p - Tds+ j .dv„- v, dq .
(21a)

(21b)

Equations (21a) and (21b) will be used in Sec. Ill
when Eckart's variational principle is applied.

Next let us discuss the justificiation for iden-
tifying the function in Eq. (18}as the Lagrangian.
First combine Eqs. (16) and (18), and get

L=P' v„—Q v, —E' . (22)

Note that Eqs. (2), (12), (13), and (14) imply that

P' .v„—Q .v, =M,v', + M„v'„. (23

Let E be defined by the relation

(24)

Combining Eqs. (22)-(24), one gets

L = 2M,v,'+ 2M„v

Properties of Z have been worked out in Ref. D.
%e shall review briefly the method and results.
From Eqs. (1) and (24), one finds

E = E Mo „(v„—v, )'+Q BEE)

To derive the differential of E, we shall intro-
duce the function

(26)

I'=E —TS —2M„(v'„—v, )' . (27)

Substituting from Eqs. (8), (14), and (26) into (27),
one finds

the internal energy, the function L = I,(V, S, v„,N,
Q) represents a thermodynamic potential whose
primary, independent variables are those in-
dicated. If one assumes all of the results derived
so far are valid, even when the liquid is only in
local thermodynamic equilibrium, they will lead
to an explicit representative for Zilsel's Lagran-
gian densi'ty. In preparation for applying the vari-
ational principle, it is useful to restate some of
the foregoing results in terms of densities.
Toward that end, let us introduce the following
notation:

Having been derived by Legendre transforming
I

I'=ED —kT+ ln(1+n;) . (28)
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dY = -PdV —SdT —M„d~ (v„-v, )'+ sdM, (29)

With the aid of Eq. (28) one can readily show that siiy was constructed. Referring to Eqs. (13), (20),
(25), (34), and (36), one can derive the following
formula for the Lagrangian density:

where
~. ~

~ 1 2Z= /+VS'V„—2Vq .
I = p[—,'(1 —x)v', + —,'xv„—e] . (37)

E= Y+TS+ ~M„(v„—v,)' .
Then using Eqs. (29) and. (31), one finds

dE = -pdV+ TdS+ —,'(v„—v, )'dM „+sdpif .

(31)

(32)

From Eq. (26) one can infer that E is an extensive
variable, and from Eq. (32) one can see that the
primary, independent variables of E are all ex-
tensive. Therefore, E is a homogeneous function
of first degree in its primary variables, and Eq.
(32) can be readily integrated. The result is

E = -p V+ TS+ —,(v„—v,)'M „+zM . (33)

We shall call E the intrinsic internal energy. The
reason for the qualifier "intrinsic" can be under-
stood by referring to Eq. (24), where one can see
that E does not include the kinetic energy. The
label "internal energy" is consistent with the ex-
tensive nature of its-primary variables. In retro-
spect, one can see why the function Y in Eq. (27)
was introduced, for it is a Legendre transform of
E and its primary, independent variables are
those that appear explicitly in Eq. (28), so that
it is easy to calculate its partial derivatives. A
straightforward explanation of the logic involved
in my procedure is given in Ref. 11. The vari-
able z is frequently called the chemical potential
in the literature, but we have reserved that term
for p, earlier in our discussion, so we shall call
it the intrinsic chemical potential.

If we let

e=E/M,

then one can deduce from Eq. (32) that

de = Tds+ (P/p2)dp+ —,'(v„—v,)'dx,

where

x= p„/p=M„/M,

(34)

(35)

(36)

and s is given by Eq. (20d). The function e has
exactly the same partial derivatives that Zilsel'
used for the intrinsic internal energy density
with which his phenomenological Lagrangian den-

(30)

The defining expressions for p, S, M„, and p, are
those specified earlier in connection with work
involving the. free energy lV. The easiest way to
show that Eq. (29) is correct is to obtain explicit
formulas for the partial derivatives with the aid
of Eq. (28) and to compare them with formulas
found with the aid of Eqs. (9) and (11). Solving
Eq. (27) for E, one gets

This coincides with the formula given by Zilsel.
One can now understand why we have called the
function L in Eq. (18) the Lagrangian; for it is
the difference between the kinetic and intrinsic
internal energy, and from the work of Zilsel
and our work here, it is known that it leads to
two-fluid equations that are compatible, for the
most part, with those derived by other methods. "~
To be accurate, we should call the first two terms
in Eq. (37) the apparent kinetic energy, because
if x&1, the first term will be negative. That point
has been emphasized in Ref. 11, but having recog-
nized this condition, we shall drop the modifier
apparent in the discussion here.

Next let us develop the parallel formulas for the
theory in which P, in the form given by Eq. (10),
is a thermodynamic variable, and its conjugate
is u. In this case, a fundamental relation is rep-
resented by W= W(P„v„, V, T, N) and a transcrip-
tion of Eq. (9) gives

Q2
W=EO+ 0 —Po v„—kT g ln(1+ n&) .' KVm

(38)

u= (p./p)(v, —v.) . (40)

In terms of P„E' from Eq. (1) takes the form

Po 1=E,+ + P, ~ n, p, +Pn, e, . (41)

The function W in Eq. (38) is related to E' by Eq.
(7). The differential dE' found with the aid of Eqs.
(39) and (7) is

dE' = -PdV+ TdS+ v„dP'+ pdN+ u ~ dP, . (42)
E' =E'(Po, P', V, S, N) represents a fundamental
relation in which the primary, independent vari-
ables are all extensive, and so E' is the internal
energy. As we shall soon see, there are good
reasons to identify the following (negative) double

The differential of 8' is

dW= —PdV-SdT —P' ~ dv„+ pdN+ u dP, . (39)

The variables p, S, and p' are given by the same
formulas and havethe same meanings as in the
version of the theory discussed earlier, but the
chemical potential p. is different. The formula
for p. is given in Ref. 11; i.t can be computed using
Eqs. (38) and (39). Furthermore, the variable u
can be easily computed by using Eqs. (38) and (39);
it is given by the formula
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Legendre transform of the internal energh E' as
the Lagrangian:

I =u. P +v .P' —E' (43)

The differential of L that follows from Eqs. (42)
and (43) is

dL =pdV — TdS+ P'. dv„—p.dN+ Po du . (44)

d$= (p/p)dp -—Tds+3'dv„+v, du . (45)

Equations (21a) and (45) will be used in See. III
when Eckart's variational principle is applied.

Next let us discuss the justification for identi-
fying the function L in Eqs. (43) as the Lagrangian.
Equations (2), (10), (13), and (40) imply

Having been derived by Legendre transforming
the internal energy, the function L =L(V, S, v„,N,
u) represents a thermodynamic potential whose
primary independent variables are those indicated.
Qnce again we shall construct a Lagrangian den-
sity and make the assumption that the formulas
are valid even when the liquid is only in local
thermodynamic equilibrium. Equations (20a)-
(20f) are still applicable, but (20g) is replaced
by a result deduced from Eq. (10), viz. , v, = P,/M.
Equation (21a) still holds, but instead of (21b), we

have

G=gn, . p, (47)

The Hamiltonian operator in the models that we
are considering and the operator 0 are both di-
agonal in the occupation number representation
for the excitations. The energy eigenvalues E'
are still given by Eq. (1). If we so choose, a con-
straint can be imposed on 0 instead of P' when the
entropy is maximized to determine the thermo-
dynamic properties of the system. For S given by
Eq. (3), let us again introduce two Lagrange
multipliers P and v„and then require

8 1—S —PE'+ Pv G )
= 0 . (48)

It turns out that v„can still be treated consistently
as the normal-fluid velocity. From Eq. (48) one
finds that Eqs. (5}, (6), and (8) still hold. Max-
imizing S subject to the constraint'indicated is
equivalent to minimizing X at constant v„v„,
and T, where X is given by

X=E' —TS —vN'CT . (49)

Substituting from Eqs. (1}, (8), and (47) into Eq.
(49), one finds

u. P,+ v„P' =M,v,'+M„v'„. (46a)
X=ED+ 2%me —kT g In(1+n&) . (50)

Equations (24)-(37), with the exception of Eq.
(30), are all still applicable. In Ref. 11 it is
shown thats and p, are now related by

s p + 2vq+ (p~/p)(v„' vq —f1') (46b)

With these results at hand, the argument for call-
ing I. the Lagrangian can be taken over verbatim
from the discussion of the first version of the
theory.

Although the two models discussed so far are
described by the same Lagrangian, and in fact
obey the same hydrodynamic equations of motion,
they are not completely equivalent. The stability
properties of the system as judged by ordinary
thermodynamic criteria are different for these
two models. This matter is discussed in Ref. 11,
where it is pointed out that which of the models
is more suitable for describing liquid 4He has not
yet been determined.

Qut next task is to shaw that the Lagrangian den-
sity used by LFK is the same as that used by
Zilsel. Lhuillier and collaborators have chosen
a set of independent variables that is different
from those in the two previous models; so we must
retreat to a convenient starting point for taking
this into account. Let us introduce a variable
G through the equation

Be I 1 cp-
m eo+ p +,v, +— n (52)

where eo is defined by

E =Me (53)

We shall postulate that X=X(v„v„,p, T, ~) is a
fundamental relation for the system. There are,
in fact, two similar, but nonequivalent, theories
that are consistent with this postulate. They are
closely connected with those discussed earlier,
where W is the free energy. We shall treat only
one of them here, the one where v, itself, as
distinguished from P, of Eq. (10), is a thermo-
dynamic variable. The differential of X is

dX=-PdV —SdT —G dv„+ pdN+P' dv . (51)

With the aid of Eq. (50) one ean compute explicit
formulas for the partial derivatives. In that way,
one can check to see that the coefficients P', S,
and G agree with Eqs. (2), (3), and (47). Equation
(51) may be regarded as defining the pressure
p and the chemical potential p. . The explicit form-
ula for p is the same as that derived using the
free energy W of Eq. (9}. The formula for p, is
not the same as that computed with W; now p, is
given by
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Solving Eq. (49) for E' and using that result in
combination with Eq. (51), one gets

dE' = -pdV+ TdS+ v„dG+ ljdN+ P' dv, . (54)
Y' = Eo —kT Q ln(1+ n)) . (67)

Combining Eqs. (3), (4V), (63), and (65), one gets

The internal energy U' is given by

U'-E'-v .P'
S

and so

(55)
(68a)

With the help of Eq. (6V), one can easily verify
the following relation:

AY=-pdV —SdT+ zdM —G chv,

I- = G.v„—U'

= G.v„+ P' v -E'
(5Va)

(57b)

With the aid of Eqs. (2), {13), and (4V) one can
show that

G v„+P'.v, =M g'+M g' .

E' is the same as in the earlier version of the
theory, and so Eq. (24) still holds. Combining
Eqs. (5V), (58), and (24), one again arrives at the
Lagrangian given by Eq. (25). However, now the
differential of I. in terms of its primary variables
ls

dL =pdV —TdS+ G dv„—pdV+ v, dp' . (59)

Using the notation of Eqs. (20) and (36), we find
that Eq. (21a) still hoMs for the Lagrangian den-
sity, but instead of Eq. (21b), we now have

pdl = ——dp —Tds+ jo dv„+ v, dj, (60)

where jo satisfies

j,=x(v„—v,) . (61)

The intrinsic internal energy used by Lhuillier
and collaborators' is not the same as E defined
by Eq. (24). Bather, they have used Z' defined by

E' = —,'Mv2+M„(v„—v, ) ~ v, +E', (62)

as one can see in Eq. (7) of their paper. Taking
into account Eq. (14) and referring to Eq. (1),
one can infer that

X'=Eo+Qn, e, .

Comparing this with Eq. (26), we see that

E' = E+ —,'M„(v„—v,)' . (64)

To calculate the differential of E', we shall intro-
duce the function Y defined by

Y=E'- rS -G-w,
where

w:v —vn

(65)

(66)

dU'= -PdV+ TdS+ v„"dG+ pdN —v dP' . (56)

The Lagrangian is

where the explicit formulas for p, S, and G are
the same as those derived using the free energy
X. Also the formulas for p and S are -the same
as those based on the free energy W(v„v„, V, T, N).
The formula for z is the same as thatbased on the
intrinsic free energy I' in Eqs. (28) and (29). The
intrinsic chemical potential s of Eq. (68a) is re-
lated to the chemical potential p of Eqs. (51) and

(52) by

z= /gal ——51 (68b)

Solving Eq. (65) for E' and using the result in com-
bination with Eq. (68a), one finds

dE'= -pdV+ TdS+ zdM+ w dG .
In Eq. (8) of Hef. 8, the differential of the intrinsic
internal energy is written for constant volume.
Except for trivial changes in notation, one can
see that the differential there is the same as that
in Eq. (69) when V is held constant. Therefore,
the function E' that is defined by Eq. (62) and which
satisfies Eqs. (63) and (64) in my model also fur-
nishes a representative for the intrinsic internal
energy postulated by LFK. Furthermore, com-
bining Eqs. (57b), (58), and (62), one finds after
an elementary calculation that the Lagrangian
may be written as follows:

L = 2Mvq+M~(v„— v~) ' vq —E

When this is expressed as a Lagrangian density
referred to unit volume, it gives the formula con-
tained in Eq. (35) of the paper by LFK.' We have
noted before, immediately following Eq. (58), that
this Lagrangian may be expressed as in Eq. (25),
which produces a Lagrangian density having the
properties assumed in Zilsel's theory. The two
formulas for the Lagrangian look different because
a term —,'M„(v„—v, ) is added to the intrinsic inter-
nal energy used by Zilsel to obtain the corre-
sponding function used by LFK. This term is
just compensated in the Lagrangian by adding
a term 2M„(v„—v,)' to Zilsel's kinetic energy to
get a related quantity in the theory of LFK. Hence
the formulas for the Lagrangian differ only in the
way that terms are grouped. The differentials
of the Lagrangian density appear to differ further
because Zilsel's was constructed by first working
with the Lagrangian per unit mass; whereas that
of LFK was constructed by using the Lagrangian
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per unit volume directly. It is straightforward to
show that the differentials for the I agrangian per
unit volume are equivalent in the two cases.

Formulas for the energy in the presence of flow
and for the intrinsic internal energy assumed by
LFK are the same as those used by Khalatnikov4
and by Geurst" except for trivial changes in no-
tation. Therefore the analysis that I have given
exhibits new unity between their work and that of
Zilsel' and its extension by Jackson. " In part,
this unification has been achieved earlier in cer-
tain work of Clark' and of Uhlenbeck. " Using
only macroscopic theory and thermodynamic con-
siderations, both of them were led to consider
two intrinsic internal energy functions that are re-
lated as in Eq. (64), and they wrote down formu-
las for their differentials that are compatible with
Eqs. (32) and (69).

III. APPLICATION OF ECKART'S VARIATIONAL

PRINCIPLE

In Eckart's variational principle, one associates
a Lagrangian density and the variables appearing
in it with fixed spatial points, and carries out the
variations as in a field theory but subject to con-
straints. If a variable is a velocity in some par-
ticular case, it is still treated as a field ampli-
tude. This is to be contrasted with many calculations
in hydrodynamics where velocity is treated direct-
ly as the time derivative of a position vector and.
the position vectors are regarded as basic coordin-
ates for the system. In the case of superfluid
~He when dissipation is neglected, Zilsel pointed
out that the relevant constraints are embodied in
the continuity equation and the equation expressing
conservation of entropy. Explicitly, the con-
straint equations are

The volume of integration is fixed in space, and the
variations in all quantities are specified to vanish
on the boundary of the space and time regions ap-
pearing in the integral. With the continuity equa-
tion written as in Eq. (Vl), and with l given by Eq.
(37), Zilsel varied p, s, x, v„, and v„ treating
them as independent variables. From thermo-
dynamic considerations, Zilsel deduced the first
two terms in Eq. (35) for the differential de; he
was able to derive (Be/Bx), , =-,'(v„—v„)' from the
varitaional calculation. We will not follow his
steps exactly, but rather we will use Eq. (35) in
making the variations since it is available from
the microscopic theory. This does not generate
any important deviation from Zilsel's method but
it will give some insight into the reason why his
procedure is successful. The Euler variational
equations of Eq. (72) are

1 1 9Q
Bp: ~(1 —x)v, + 2v„—e ——p+-

p 9t

BP+ 1 —x v, +xv„~ Vn +s —+v„~ V =0,
(VSa)

8
5s: —T + —+v ~ VP=0n (73b)

—,'( „' —v,') —2(v„—v,)'+ (v„—v, ) ~ Vo, = 0, (73c)

Bv„: x(v„+Vo)+sVP=Q, (VSd)

~vs Vs+ VQ =0 . (73e)

1 (ep0= 5 dt d'r l —n.
~

—+ v ~ (p,v, + p„v„)
to F

—Pi +v (psv„) i
. (72)

f B(ps) ")

and

—+V (pv, +pv)=0 (70a)

Equation (VSe) immediately yields the result that
V x v =0, a condition that was postulated by Lan-
dau. The Lagrange multipliers can be eliminated
from Eqs. (73a)-(VSe). The main steps in this
process have been described by Zilsel. ' The equa-
tions of motion that emerge are

B ps +V (psv„)=0. (70b)

The constraints can be imposed with the aid of
Lagrange multipliers, which we shall call n and

P. Following Zilsel, we shall rewrite Eq. (70a)
as

and

g)

Dt p
' ' = ——VP+sVT+ —,xV~v —v

~n s

= —Vz

D„„1 — 1—
Dt p x 2

(V4b)

—P+ V (p[(1 -x)v, +xv„]I=0 . (71)
—(v„—v,)—

px
(75)

Eckart's variational principle, . in the form as-
sumed by Zilsel, states that

In these equations the following notation has been
used for convective derivatives:



18 VARIATIONAL METHODS IN THE HYDRODYNAMIC THEORY OF. . . 6089

D, 8—'= —+v ~ ~
Dt Bt

(76a)

and

D„B—= —+V ~ Vn (76b)

The result in Eq. (74b) is derived in Hef. 11 with
the aid of some relations written down earlier by
Zilsel. ' In Eq. (V5), I' represents a source density
of the normal fluid (rate of production of normal-
fluid mass per cm'). lt equals a sink density of
the superfluid. For details, one can see Ref. 1.

It was noted in Sec. I that one complaint which
has been repeatedly registered"' against Zilsel's
procedure is that the variable x is not independent
of the others treated as independent by Zilsel.
Temperley and Dingle argued, in effect, that be-
cause Zilsel arrived at the form for de given by
Eq. (35), and in particular because (Be/Bx)
=-,'(v„—v,}', then Zilsel should have additional
terms in the Euler equations found by varying v,
and v„. In some sense, Eq. (35) seems to support
Zilsel's view, because there one can see that
s, p, and x are the primary, independent vari-
ables of e. However, the results in Sec. II indi-
cate that Zilsel's set of variables contains one
more element than occurs in a set of primary
independent variables of the Lagrangian density.
This statement can be understood clearly by
referring to Eqs. (21a), (21b), (45), and (60).
Therefore in the light of information that was de-
duced from the microscopic theory, there seem to
be valid grounds for criticizing Zilsel's procedure.
However, anticipating results that we shall derive
shortly, I should emphasize that Zilsel's pro-
cedure leads to the same equations of motion as
those derived by varying only the primary, in-
dependent variables of the I.agrangian density for
each of the three theories that are treated in this
paper.

In a certain sense, the success of Zilsel's
method seems to be partly fortuitous. The basis
for this statement can be understood by examining
Eq. (73c). When the value of Vn inferred from
Eq. (73e) is substituted into (73c), the latter is
reduced to a trivial identity and consequently it
is not essential to the derivation of the equations
of motion. It appears as an identity only because
the differential de is known completely from micro-
scopic calculations, which were not available to
Zilsel. In Zilsel's own treatment, the second term
in Eq. (73c) was written as Be/Bx, and instead of
an identity, he found an equation that he used to
determine Be/Bx. With de completely known as
in the present treatment one might try to proceed
by regarding x as a dependent variable in making

the variations. However, then there would be
extra terms in some of the other Euler equations
that would complicate the calculation substantially;
so that scheme does not provde a simple explana-
tion for the success of Zilsel's method. Because
Zilsel's procedure does give correct results at
least for several different models treated in this
paper, we should not overlook the possibility that .

there is some deep principle responsible for its
success that has not been recognized yet.

Now let us apply the variational principle indi-
cated in Eq. (72} to each of the three models con-
sidered earlier. First, we will treat the theory

~ ~ ~

in which v, is a thermodynamic variable, Q is the
variable conjugate to it, and S' is the free energy.
The differential of the Lagrangian density is given
by Eqs. (21a) and (21b). With the aid of Eqs. (12)
and (20g). we shall rewrite the continuity equation,
Eq. (70a), as

Bp—+V ' [p(v„—q)] =0, (77)

B
6s: -T+ —+v ~ VP =0

n (V8b)

5v„: j+Va+sVP=O,

6q: v, +V'@=0 .
(V8c)

(78d)

Equation (78a) can be readily simplified if one
first carries out two preliminary steps. First,
combine Eqs. (20a) and (37) to find a formula for
l . Next, combine Eqs. (12}, (13), (20g), and (36),
and get

q=(1 —x)(v„-v, ) . (79)

Substituting these results into Eq. (78a), one finds
that it reduces to Eq. (73a) that was derived by
using Zilsel's procedure. Furthermore, it is
clear that Eqs. (78b) and (78d) are the same as
Eqs. (V3b) and (V3e). If one further notes that the
relation

j = (1 —x)v, + v„ (80)

follows from Eqs. (13), (14), (20f), and (36), then
it is easy to see that Eq. (78c) is the same as Eq.
(73d) when (V3e) is taken into account. Hence the

and use this form of it in applying the variational
principle. There is no need to rewrite the entropy
conservation equation, Eq. (70b). The form given
in that equation is suitable for direct use in the
variational procedure for all three of the models
we will consider, The independent variables are p,
s, v„, and q. The Euler equations of Eq. (72) are

p BQ BP
Bp: l ——+ +(v„—q) ~ Vc. +s —+v„.VP =0,

p Bt Bt

(78a)
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four relations in Eqs. (78a).—(78d) are completely
equivalent to those used in Zilsel's procedure to
derive the equations of motion. The extra equation
(73c) has no counterpart here.

Next, consider the model in which P, and u are
conjugate variables and S' is the free energy.
In this case, the differential of the Lagrangian
density to be used in Eq. (72) is given by Eqs. (21a)
and (45). The continuity equation can be written in
terms of the primary, independent variables of
that Lagrangian density, as follows:

Bp—+V [p(u+v„)j =0 . (81)

86s: T+ —+v—~ VP =0n: (82b)

6v„: j+Vn+sVP=0, (82c)

This equation can be inferred from Eqs. (13), (40),
and (70a). The Euler equations of Eq. (72) found by
varying the primary independent variables of the
Lagrangian density are

p 8cj ~ ~ lrep
6p: l ——+ —+(u+v ) Vo+s

i

—+v VP =0
p Bt n |Sf n r

(82a)

Using a process that is by now familiar, one can
show that this set of equations is equivalent to the
set (73a), (73b), (73d), (73e) that are sufficient
to determine the equations of motion found by
Zilsel. Thus we see that working only with the
primary independent variables in the Lagrangian
density for each of the three theories, one can
derive the same equations of motion as those found
by Zilsel.

It is remarkable that Zilsel's procedure auto-
matically yields the condition & && v, =-0, a result
that was mentioned eariler. Landau found it nec-
essary to introduce this condition as an indepen-
dent postulate. According to Lin, ' the condition
V x v, =0 was incorporated in Zilsel's theory un-
intentionally, and Lin has suggested that this re-
sult is actually due to a defect in Zilsel's varia-
tional method. The following review of certain
aspects of the theory of an ordinary fluid will
elucidate the basis for Lin's contention.

Her ivel" was the first to give a satisf actory
treatment of a single-component ideal classical
fluid within the context of a general variational
theory. Applying Hamilton's principle to such a
system, he .found the familiar equation of
motion,

~u: v~++Q =0 (82d} BV «) 2
«««1«—+V ~v'- vx (V x v) = ——Vp —Vp .2 (85)

8 p—+V ~ (pj) =0 .Bt (83)

With the aid of Eqs. (20a), (37), and (40), one can
rewrite Eq. (82a) in a form that is identical with
Eq. (73a) which was found using Zilsel's procedure.
It is easy to see that Eqs. (82b)-(82d) are equiva-
lent to Eqs. (73b), (73d), and (73e). As noted be-
fore, this set of four equations are suff icient to
determine the equations of motion, i.e., Eqs. (74a)
and (75).

Now consider the third model, in which v, and

Q are conjugate variables, and X is the free en-
ergy. The differential of the Lagrangian density to
beused inconjunction with Eq. (72) is given by Eqs.
(2la) and (60). The continuity equation canbe writ-
ten in terms of the primary independent variables
of l as follows:

In Eq. (85), v is the local velocity of the fluid, p
is the mass density, P is the pressure, and V is
the potential energy of external forces per unit
mass. Herivel obtained this same equation of
motion by two different variational procedures.
In one, the Lagrangian approach, the independent
variables included the position vectors of the
fluid particles. In the other, the Eulerian ap-
proach, instead of the position vectors, the in-
dependent variables included the velocities of the
fluid particles. The second of these procedures
is the one used in Eckart s variational principle,
the principle that was adapted by Zilsel to treat
liquid 4He. In this second procedure, there is an
intermediate step in the derivation in which one
finds that the velocity v can be written as

The Euler variational equations of Eq. (72} are v+Vo, =PVs . (86)

8T+ —+ v ~ VP =O-
n (84b)

6v„: jn+SVP =0, (84c)

j: vs+ +Q (84d)

P Bo, . t'&P
6p: l ——+ —+j ~ Vo. +si —+v„~VP =0, (84a)

p Bt |,Bt Here s is the entropy per unit mass, and a and

P are functions of space and time that enter the
calculation as Lagrange multipliers. F rom Eq.
(86) one can see that if the entropy per unit mass
were constant, i.e., if the liquid were isentropic,
then the solutions to Eq. (85) would be limited to
irrotational flow. Lin considers this to be a dif-
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ficulty with the theory because this restriction
does not arise in the first version of the theory
where the particle coordinates are varied, and
because it does not arise in the equations that
are derived from mechanical and thermodynamic
considerations without using a variational pro-
cedure.

Lin noticed that this restriction could be avoided
in the Eulerian version of Herivel's variational
procedure if in addition to the constraint equations
for mass and entropy imposed by Herivel, one
introduced a third (vector} constraint equation of
the form

——+(v V}X=O .
Bt

(87)

X is a position vector of a fluid particle at one
definite time. The components of X(x, t) are the
I agrange coordinates of a particle in the Eulerian
description of the fluid, i.e., the description in
which the coordinates x refer to fixed points in
space. In describing Eq. (87), Uhlenbeck" states:
"This condition says that as you move with a par-
ticle, its position is unchanged. " Lin refers to
this condition as the conservation of identity of
particles.

Lin's belief that the equations derived from
Herivel's second method are less fundamental
than those in the other two methods mentioned
earlier is clearly at the root of his proposal for
introducing Eq. (87) as a constraint. Lin's view
has also been taken in Serrin's" discussion of the
theory of a classical one-component fluid, and
conclusions reached by Seliger and Whitham"
are consistent with this view. In the words of
these latter authors: "Lin's device still remains
somewhat mysterious from a mathematical view-
point, but the necessity for it seems to be firmly
established as we proceed. " They also state: "In
some cases, such as flow behind a curved shock,
vorticity is associated with entropy gradients.
However, in simple incompressible flow, for
example, it should be possible to have rotational
flows. " In the context of their discussion, it is
clear that the last sentence refers to isentropic
conditions. Uhlenbeck" also appears to concur
with Lin on this matter. The preponderance of
opinion seems to support Lin's contention that
Herivel's second method, the Eulerian approach
to the variational problem, is defective unless it
i.s supplemented by an additional constraint.

Turning to the theory of superfluid 4He, Lin sug-
gested that the constraint in Eq. (87) should also be
incorporated in Zilsel's variational procedure by
taking v to be defined by

pv = p~vq + pqv„ (88)

He states that if one had introduced this constraint
in Zilsel's derivation, the equations obtained would

" have been identical with equations given in Lin's
own treatment that do not contain the restriction
V xv, =0. For a certain class of solutions of
Lin's equations, the condition V'&& v, =0 does hold,
and for that class, the equations of motion reduce
to those found using Zilsel's original procedure,
i.e. , Eqs. {74a) and (75), except that the term in-
volving I' in Eq. (75) is missing. Lin agrees that
in some situations the superfluid is not rotating,
i.e. ,

V' x v, =0; but according to him, it is not that
it cannot rotate, but rather that it does not rotate
because of special conditions that occur in certain
experimental situations. It is noteworthy that
Lhuillier, Francois, and Karatchentzeff incor-
porated Lin's constraint and a generalization of
it in parts of their theory.

Applying Lin's constraint in the theory of liquid
'He seems to be much more speculative than ap-
plying it in the theory of a single-component,
classical fluid. If one adopts a literal interpreta-
tion of the two-fluid model for the purpose of
analysis, then it is clear from Eqs. (87) and (88)
that 37 does not fix the location of any fluid particle,
and it does not seem to have any clearly identifi-
able physical significance. The consequences of
introducing two constraint equations, one for the
superfluid and one for the normal fluid, have been
discussed by Clark. ' He indicates that they are
unsatisfactory for several reasons. Perhaps the
most obvious of these is that difficulties are en-
countered in situations where normal fluid is
converted into superfluid, or vice versa. Never-
theless, one can introduce a constraint formally,
in the manner proposed by Lin, and study the re-
sults while relying on experiment to test the va.-
lidity of the method.

Such a test could focus on the term involving I'
that appears in the equation of motion for the
normal fluid, Eq. (75), derived by Zilsel's original
procedure. According to Lin, that term is absent
when his constraint is imposed. (Cl ra,k'~ inci-
dentally, derived both Lin's and Zilsel's equations
from nonvariational procedures based on assump-
tions that were slightly different in the two cases.
Clark also discusses problems of uniqueness in
some of Lin's derivations. ) If experiment should
indicate that the term involving F is present, then
one could conclude that Lin's constraint should not
be used with Zilsel's procedure. Finally, it is
noteworthy that after discussing Lin's constraint. ,
Uhlenbeck" derived the two-fluid equations for
liquid 4He by a variational method without using
that constraint.
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