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It is argued that the intrinsic angular momentum of 'He-A should be taken as zero within the BCS model.

It is nom fairly well established that, in super-
fluid 'He, a BCS pairing of helium atoms occurs.
In the A phase of superfluid 'He, only atoms with
parallel nuclear spin form pairs, and the pair
wave function is P mave and proportional to the
spherical harmonics Y,'if the anisotropy axis l
is along the z direction. Therefore, the pairs
form with a relative angular momentum @. This
raises an important question: Does this relative
angular momentum imply that the whole system
itself has an angular momentum'?

Here we want to consider only the angular mo-
mentum arising from this P-wave symmetry of
the pair wave function, and we are therefore only
interested in a (would-be) homogeneous system
with a constant order parameter all over the
sample. We call "intrinsic" the corresponding
angular momentum. In addition to its basic inter-
est, this intrinsic angular momentum is likely to
play a very important role in orbital dynamics. ' '

Naturally, if we consider a real sample of 'He,
the order parameter will not be constant, in order
to satisfy the boundary conditions. ' The inhomo-
geneities mill give rise to supercurrents resulting
in an angular momentum which we call "extrin-
sic." This has been considered for example by
Mermin and Ho. ' The total angular momentum of
a real sample will be the sum of the intrinsic plus
the extrinsic angular momentum.

The extrinsic angular momentum arises from
macroscopic supercurrents. It is not easy to
figure out what are the currents giving rise to the
intrinsic angular momentum. They can be thought
of as microscopic currents on the scale of a pair
radius, resulting from the internal structure of
the pair. This is very similar to the case of di-
atomic molecules in a P-wave state, where the ro-
tation of the atoms around each other in a single
molecule gives rise to local currents (averaging
to zero), and to nonzero angular momentum.

A classical difficulty is that, for an homogen-
eous sample, the currents average to zero every-
where except at the surface, and therefore the
angular momentum comes ultimately from the
surface currents. This problem is common to

'He-A or to an assembly of diatomic molecules.
In the last case, the problem is solved by finding
first the angular momentum due to a single mole-
cule, which is done by looking at the symmetry of
the molecular mave function, and then adding up
the angular momentum of all the molecules. For
'He-A, this method does not work as such because
the pairs are highly correlated and one cannot
consider an isolated pair. However, in order to
find the intrinsic angular momentum one can still
look at the symmetry of the total 'He-A wave func-
tion, and this is the method that we use here
within the BCS model.

Already in the literature there are various an-
swers for the intrinsic angular momentum Lo.
In their early work, Anderson and Morel' gave L,
-NET, /Ez, where N is the number of particles in
the system. Recently, Cross" and Volovik' have
proposed l., —Nh(TJE~)', while according to Ishi-
kawa, ' one should take L, = —,'Nk at T =0. Here we
mant to show that the result is actually L0 =0 within
the BCS model.

A major difficulty in the angular momentum
problem is the choice of the BCS wave function.
For many purposes, the physical answers are the
same no matter what form of the BCS wave func-
tion is chosen. But this is not so for the angular
momentum. For example, the difference between
Ishikawa's result and ours can be considered as
due to a different choice of the BCS wave function.
Ishikawa's choice is obtained by creating in the
vacuum 2iV pairs of 'He atoms, each pair being in

a P-wave state with angular momentum @ with
the natural result that the total angular momentum
is &iV@. This state is a sum of states like

exPI (4k|+ i4, +" +0k„, )) ', '. " .'„, ~'k„, to&

where pk is the azimuthal angle of k, with respect
to the z direction.

Our choice is obtained from the normal state by
creating a given number of pairs of particles, and
the same number of pairs of holes, each pair again
being P wave. As a result, no net angular momen-
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turn is due to the pairs and since the norma. l state
itself has no angular momentum, the total angular
momentum is zero. Our state is a. sum of stat, es
like

exp[i(4 '+ ~ ' &0 ' ) —'~(4 "+ ' ' ' +0 " )]1 n/2 g 7l /2

xa», a, . .. , a»&a» . lN),n2 -~/2

where [N) is the normal state

a,'a',
l 0) .

k& kg

We believe" that Ishikawa's wave function is not
the correct choice. The essential difference be-
tween his wave function and ours lies in the fact
that the former, when written in the 4-space rep-
resentation, contains an extra overall multiplica-
tive phase factor g»&» e'; it is precisely this
factor which is responsible for his result 2N@

for the angular momentum. Now, such an overall
phase factor would normally be regarded as phy-
sically meaningless, and indeed in our ease it
appears that it affects no physica. l quantity other
than the angular momentum itself (for all other
purposes, it is only the relative phase between
the va, rious components of the wave function which
is meaningful). At first sight, therefore, there
is no particula, r rea, son either to include or to ex-
clude it. However, we now observe that if it is in-
cluded, then it persists in the limit 4-0 and the
resultant state still has angular momentum &NS.
Since the normal state should have zero angular
momentum, we conclude that the physically cor-
rect choice is to exclude the phase factor, i.e,
to a,dopt our wave function. Ishikawa counters
this argument with the observation that the limiting
procedure is ill-defined, and in particular the re-
sults may depend on whether or not one takes the
limits N-~, 4-0 in such a way that the coherence
length is small compared to the sample size. This
is clearly an arguable point and tied up with the
general question of the validity of k-space argu-
ments. " On the other hand, if our own proposed
wave function is used the difficulty regarding the
normal state does not even arise, while all other
predictions of the usual BCS theory are unaf-
fected; for this reason we believe it is the correct
choice.

To summarize, if the angular momentum is cal-
culated from the symmetry of the wave function in
the k-space representation, one always finds zero.
It has been argued by Mermin" that calculations
using a k-space representation may be dangerous,
because one needs to consider k as a continuous
variable. We do not think that this is a rea, l prob-
lem because the angular momentum is obtained

INTRINSIC ANGULAR MOMENTUM OF Ht:-A

As already mentioned, in order to calculate the
intrinsic angular momentum, we go back to its
definition. It is the generator of the rotation of
the system. If we perform a rotation of angle 8

around the anisotropy axis f, the ground state
wave function willbe multipliedby e' o since the
angular momentum is obviously along f Th.e stan-
dard BCS wave function is"

IC. ) = ., (a»+&»a'a'»)Io).
k

(4)

We do not need to care about spin indices since,
for the present problem, the up- and down-spin
populations can be considered independent. In

Eq. (1), M» and v» are given by

I
~» I'+

I ~» I'= l

2u„*n =4, /E,

&,= f(k„+fk,) =fe'»

where 4» is the gap and E» =($» + ~b»l')' ', where

$» is the normal particle energy measured from
the Fermi surface. The standard choice for uk

and vk ls

a, =[-,'(i+g, /E )]"
gp [&(i $ /E )]&. /2 e~e»

We will see, however, that the particle noncon-
serving form Eq. (4) of the BCS wave function
gives a misleading result, and we have to use the
number-of-particles conserving form obtained by
selecting out the terms in Eq. (4) corresponding
to N particles

Ig, &
= Z („,~, a,', a',

, &0&)

"
u, , (7&

where (k;} contains ,N different k;. N—ow we can
gather all the states g». a»t, at„. l 0) which can be
deduced one from the other by any rotation R
around l. For all these states,

k;
'

k~~fk;j

will be the same. Let us call R(k;} such a set of
states and use the notation ik,.}/R for the various
sets of this kind. Then

from the basic symmetry of the BCS wave function,
which should be independent of this kind of mathe-
matical consideration. Anyway, one can escape
the problem by translating our wave function in
x-space representation. The angular momentum
is then calculated without any problem and found
to be zero.
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(8)

to ,N.—InEq. (11)we have not written a multipli-
cative constant (g(o, » u„)(g(,.~ ( v~. () which is
unimportant, since we have not normalized (g, & .
If we define

Now if we compare the set (k;) with the set cor-
responding to the normal ground state ((k; ( &k»},
we have n & ,'N va-lues of k, with (k, (& kr corre-
sponding to pairs above the Fermi surface. Let
us call these values k~. Similarly, we have n

values of k;, with (k; (& k», which are in the normal
ground state but not in the set fk;). These are
pairs of holes, which we call k;. Therefore, we
can write

we obtain

(12)

x, ((o,.)a, a, ) (eO, (lo)
ki

p(k) =(v,/u, )e(k- k,), t(k) =(u, /v„)8(k —k),

Z exp (ZeeO—e ZO .)
$ ~ t

here k, or kj are no longer restricted above
or below the Fermi surface. Using now r-space
representation, we finally have

where

a

X .-.a,pa, ~ ...ia ~ a~, 0
h

$ $

where

(14)

(O, )e= a'e, aeae, (O) = .„, a'e) liV) ((O)
a&a& IJ;

~P

())((' )„,(a &)„
j'$

Qy J
a. ~uPg h

J

Q+0 g&
$ $

a (o()a), (t (N&,

where i or j go from 1 ton, and n goes from zero

is the normal state, except for an irrelevant phase
factor. Since ig, e Q(, n —i Q„". (())~)) is clearly in-
variant under rotation and ((t)0&» is also invariant,
we conclude that the left-hand side of Eq. (9) is
invariant, and from Eq. (8) we obtain Lo =0 in the
superfluid ground state.

We note that the phase factor II~&~ e'~) in Eq.
(10) is just the one we were referring to in the in-
troduction. It appears in the BCS wave function as
well as in the normal-state limit. If one uses r-
space representation, this phase factor systemati-
cally gives a contribution 2N@to the angular mo-
mentum. " But this phase factor has no physical
meaning. Only the relative phase between the
pairs, or more precisely the relative pha, se of
the sets Itl(k; tis meaningful. If one discards this
phase factor as it should be and then uses r-space
representation, one naturally obtains a wave func-
tion with zero angular momentum. This is done
as follows. After elimination of the phase factor,
we can rewrite (tP, & as

((p„&=, dr; dr( dr&dr&p(r; —r )
f,j

x (t) ~(r;)(t) t(r', ) t(r~ —r~)(t)(r, )g(r&}( N&,

(15)

and P(r} and t(r) are the Fourier transform of
p(k) and t(k). Each of the i/„& has a clear physi-
cal meaning. They represent a state obtained
from the normal state by creating n pairs of
particles in the p-wave state p(r) and the same
number of pairs of holes in the state t(r). The
wave function p(r) appears well behaved. We note
that, although (((()„& in Eq. (14) is the sum of all the
(It, & with n going from zero to ,'N, it is likely —that

one obtains as good a description of the super-
fluid state by picking out only (P„&, where n, is
just the actual number of pairs created in the sys-
tem, which is of order (NTc/Er. Now if we use
the same kind of arguments as Mermin, "we ob-
tain the obvious result that each ((t)„& has zero an-
gular momentum because (N& has the same prop-
erty, and therefore (g, & has also zero angular
momentum.

Until now we have worked with the number-of-par-
ticles conserving form, Eq. (I). But we know that
the form Eq. (4) is in general much less cumber-
some to handle. Let us see what happens when we
try to calculate the angular momentum- from Eq.
(4). If we perform a rotation around I such that
r -R()( r ), any state (k& is transformed into (R ~( r )&.

Therefore,
i g„& is transformed into
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&el'& = . „(us+ va~z eg~ ~s e~ f~) ~0&

(16)

If 0 is small, one has

&g.I &el g. & =„., [lull'+(1+i~) Iv. ('] =1+-,'ieN,

because N=2+I,
~
v, ~' at T =0. Therefore, we

apparently obtain l., = 2Nh f—rom Eq. (1'I). This is
not surprising since by using the form Eq. (4) of
the BCS wave function, we have no way to elimin-
ate the phase factor [see Eq. (18)] which produces
systematically the result —,'Nk. However, once it
is realized that the phase factor is responsible
for the —,'Nk, it is easy to get rid of it by saying
that only the difference in the angular momentum
between the normal state and the superfluid state
has a physical meaning. In this way one obtains
again Lo =0 in the superfluid state.

There is even a more convenient way to de-
rive I 0 from Eq. (4). Let us perform the can-
onical transformation defined by a, = e'~k 'bk.
In such a transformation, a state with angular
momentum a@like

fdic„e™~a~~~0&

is going into

fdQ„e"" ' "~"bg0& which has an angular momen-
tum (m ——,')K. This transformation is very similar
to a Galilean transformation where g(x) = e'~0"P(x)
and in which state of momentum p goes into a
state p-kk, . In this case, the total momentum of
the system is decreased by an amount -NSk, . In
the same way, in our transformation the angular
momentum is decreased by -&AS. Now, in the
new representation, Eq. (4) reads

J~,&=. ...(l., l I;lf tf '. 10&), (16)
k

which has clearly no angular momentum. We con-

elude that, in the original representation, the
angular momentum was &N@. Naturally, we can
apply exactly the same argument in the normal-
state limit and therefore L, must be taken as zero
as explained before.

This argument can easily be generalized to the
case T 40. To work at finite temperature, we have
to find the correct phase of the excited states with
respect to the ground state. To do this, we re-
quire that when we go to the normal state by letting
~ -0, we find the excited states corresponding to
the normal state Eq. (6). This implies that the
excited states, corresponding to the ground pair
states' (u~+ [ v„( e'e&at~at, ) [0& are e'@&~'at, (0&
and e'e~ 'at, ~0&, while the excited pair state is
(-

~ v, ~+u, e'ei a,at, ) ~0&. Performing the same
transformation as before, we go again to a repre-
sentation where there is obviously no angular
momentum, and we conclude again that the physical
Lo must be zero.

Finally, let us comment briefly on the results
of other calculations. The difficulties arising
in relating the Anderson-Morel result to the total
angular momentum have been discussed in Ref.
12. Regarding the calculations of Cross and Volo-
vik, we believe that they deal with the extrinsic
rather than the intrinsic angular momentum, since
they consider inhomogeneous situations. The fact
that their results are modified by Fermi liquid
effects seems to support this view. Finally, we
have extensively discussed why Ishikawa's result
~MS should not be taken as the physical answer
fol Lo.
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The readers can take two extreme positions with res-
pect to the arguments presented in this paper: (i) He
does not believe at all any k-space argument. In
this case, he can consider that we propose, in Eqs.
(14) and (15), a BCS wave function which seems as
good as Ishikawa's choice and has a zero angular mo-
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mentum. {ii) He does believe in k-space arguments.
In this case, we show that the standard BCS wave
function has zero angular momentum [Eqs. (4)-(10)].
Now if the reader believes somewhat in k-space ar-
guments (and we think he has to in order to know the
physical nature of the A phase), our point is that
Ishikawa's choice for the BCS wave function in r space
is unnatural because it is the Fourier transform of a
k-space wave function containing a phase factor which
is both unnecessary (in the sense that it affects no
physical quantities other than the angular momentum)
and leads to apparent difficulties in the normal limit.
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Actually the r-space calculation is somewhat equiva-
lent to saying, in k space, that a rotation makes
p& go into p~+ 8. Therefore, II~& ~

e'o& becomes
(II&& & e @")e'+~ ~, which gives the result 2NS.
This argument appears naturally as an artefact of a
continuous k-space representation, together with the
fact that P& is not a single defined function. But when
one goes in r-space representation, it does not appear
so any more.


