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Fluctuating forces in turbulent He II
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%e have measured a fluctuating force on small probes immersed in turbulent He II thermal

counterflow. The force is consistent with neither periodic normal fluid vortex shedding from the

probe, nor with a secondary normal fluid flow in the counterflow channel. Instead, the force is

shown to be a random function of time, which is most simply interpreted in terms of an

exponential'power spectrum. The data thus provide the dependence of the force correlation time

on temperature and velocity. This dependence is shown to agree with that of the correlation time

for vortex line density fluctuations given by the Vinen equation. Theoretical and experimental im-

plications of this result are discussed.

In the past twenty years considerable progress has
been made in understanding He IIthermal
counterflow. Vinen' showed that at large flow veloci-
ties there is an excess dissipation present in the
counterflow which can be accounted for by imagining
the fluid to be permeated by a tangled mass of quan-
tized vortex lines. He was able to devise a simple
phenomenological equation that accurately accounted
for the observed dissipation. Brewer and Edwards
later showed that, at low velocities, the flow is
described by the laminar two-fluid equations of mo-
tion. Several subsequent experiments' have
confirmed the essential features of the Vinen equa-
tion, including its prediction of a critical velocity for
the onset of the turbulence. 3

Recent work has emphasized that our understanding
of turbulent thermal counterflow is far from complete.
Ladner, Childers, and Tough' have found taat a new
flow state, which they interpret as secondary flow in
the normal fluid, appears at very high velocities. In
another important experiment, Hoch, Busse, and
Moss have discovered fluctuations in the vortex line
density in turbulent counterflow. Finally, Schwarz
has developed a theory of turbulent counterflow from
consideration of the detailed dynamics of the vortex
lines. He has shown that the Vinen equation follows
as an accurate consequence of the theory.

We report here an experiment in which a small
resonantly mounted plate was used to probe thermal
counterflow in a rectangular channel. The plate was
mounted parallel to the counterflow velocity in a
manner allowing motion perpendicular to the flow.
Any time-dependent forces on the probe resulting
from, for example, a secondary flow of the viscous
normal fluid, vortex shedding in the normal fluid, or
vortex line density fluctuations would then result in a
displacement of the probe. By studying the probe

response as a function of counterflow velocity, tem-

perature, and geometry, information about the state of
the fluid in turbulent counterflow could be inferred.

The thermal counterflow cell is shown schematically
at the top of Fig. l. (Note that the top has been re-
moved for clarity. ) Details of the channel and probe
construction are given in Table I. The cell was im-

mersed in a temperature regulated He II bath. Flow
could be initiated in the rectangular channel by resis-

tively heating the 4He in a small reservoir. The probe
was resonantly mounted on a niobium loop to allow

motion transverse to the flow. This mechanical oscil-
lator had a resonance frequency «re and a Q of about
100 in the liquid. Motion of the probe in the small
(-106)magnetic field 8 resulted in changes in the
flux through the niobium loop. These flux changes
were coupled into a superconducting quantum
interference device (SQUID), the output of which was

a voltage proportional to the probe displacement x(t).
An analog squarer and digital signal averager were
used to compute (x2). Measurements of (x ) were

performed using an averaging time of 500 sec or
more. An interval of this length resulted in acceptable
scatter within a daily data run and ensured day-to-day

reproducibility to within this scatter. With the small

magnetic field employed here we were able to resolve
probe motions of a few angstroms. Great precautions
were taken to isolate the cryostat from external vibra-
tions.

A typical example of the probe displacement versus
time x(t) is shown in Fig. I. At low heat currents the
rms displacement amplitude is independent of heat
current to within the scatter of the points. At higher
heat currents the displacement amplitude increases
with heat current. Ignoring for the moment the obvi-
ous modulation of x(t), we consider the possibility
that this response may be driven by normal fluid vor-
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FIG. 1. Schematic representation of the counterflow cell,
instrumentation, and response of the probe to a large

counterflow velocity V. The cell, shown without its top, was

machined from epoxy. Only the envelope of the x vs time

curve is shown.

tex shedding. Considerable data' exist in the litera-
ture of fluid mechanics on the shedding of vortices in
the wake of bluff bodies. A characteristic feature of
the phenomenon is that the frequency of shedding is
related to the flow velocity V and the thickness of the
body W by the simple expression ru, = CV/ W. The
parameter C, which depends somewhat on geometry
and the fraction of the channel blocked by the probe,
is about 1 for this apparatus. It is also well established
that the shedding produces a periodic lift force on the
body at frequency eo, . If this force is responsible for
the oscillations of the probe in the counterflow chan-
nel (Fig. 1) then we expect a resonance to occur when

era= ra„or when V„= V,h
=—rue W/C, where V„ is the

normal fluid velocity. The signature of normal fluid
vortex shedding is thus unmistakeable: the amplitude
of oscillation should exhibit a maximum when the
normal fluid velocity is near V,h.

"
In Fig. 2 we show data for (x2) as a function of the

normal fluid velocity V„ taken in two different
geometries at the temperature T =1.6K.' The velocity
V,h corresponding to resonant shedding is indicated by
an arrow. The data do bear a superficial resemblance
to the low frequency portion of a resonance curve. In
no case, however, was it possible to reduce (x2) by
continued increase of V„. Moreover, if there were a
maximum value of (x2), in cell No. 1 it would certain-
ly occur for V„& V,h while for cell No. 4 it would be
for V„( V,h. It seems clear that these data cannot be
understood-in terms of the resonant response of the
probe to a periodic shedding force. Finally, we note
that even when (x2) is very large, x(r) continues to
be highly modulated.

The lack of a resonance in certain data (such as for
cell No. 1 in Fig. 2) might suggest that normal fluid

vortex shedding simply does not occur in turbulent
counterflow. This would certainly not be unreason-
able since the mass of quantized vortex line in the
superfluid could destroy the spatial coherence needed
for shedding. Unfortunately there is some ambiguity
as to whether the Reynolds number is suSciently
large for a fluctuating lift force to occur even in the
absence of turbulence. The value of R (=p V„I/rl)
based on the plate lenght I, total fluid density p,
viscosity rl, and the velocity at resonance (arrow in

Fig. 2) is about 8500 and surely large enough. The
Reynolds number R„(=p„V„I/q), using the normal
fluid density p„rather than the total density p, is only
about 1400, however, and is marginal. Since it is not
certain which is the appropriate Reynolds number, it is
not possible unambiguously to demonstrate from
these data that normal fluid vortex shedding is

suppressed by the turbulence. Experimental con-

TABLE I. Details of channel and probe construction.
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FIG. 2. Mean-squared probe displacement (x ) vs the

normal fluid velocity V„as measured in two different experi-

mental geometries. The arrows indicate the expected velocity

for resonant vortex shedding.
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siderations unfortunately do not allow a search for
shedding in laminar counterflow. '

Having eliminated vortex shedding as a source of
the probe oscillations we now consider a secondary
flow such as suggested by Ladner, Childers, and
Tough. 7 In conventional fluids such flows are both
time dependent and spatially inhomogeneous, and
could be expected to produce a force on a small probe.
Unfortunately, (x') does not increase above back-
ground until V„ is much greater than the onset veloci-
ty suggested by Ref. 7. Further, the probe response
would be expected to scale with a Reynolds number R
(=p V„d/ri) based upon the channel width d. This is
not observed. The rapid increase of (x2) at V„=6
cm/sec for cells No. 1 and No. 4 (Fig. 2) corresponds
to R =14000. The same feature in the data obtained
with the wide channel (cell No. 6) occurs. at V„=7.5
cm/sec, or R =24000. We conclude that a secondary
flow is not responsible for the motion of the probe.
We note, however, that the original observations in-

terpreted as a secondary flow were made in channels
of circular cross section. More recent results' show
that the secondary flow is suppressed in rectangular
geometries. It is therefore not surprising that we see
no evidence for this phenomenon.

In order to understand the probe motion produced
by the turbulent counterflow it is necessary to account
first for the slow modulation of the oscillation ampli-
tude that is obvious in Fig. 1. Suppose that the probe
is driven by a random force F(t) which has a zero
mean value, (F(t)) -0. If F(t) acts on a simple har-
monic oscillator, the displacernent of the oscillator
with time will be' x(t) = E(t) [cos[~pt + $(r)]]
Here, zoo is the resonant frequency of the oscillator
and P(t) is a random function of time. E(t) has a

Rayleigh distribution: it is white for frequencies less
than the oscillator bandwidth and zero for higher fre-
quencies. The displacement x(r) of the oscillator has
a Gaussian probability distribution. The function x(t)
will thus appear to be a slowly modulated cosine at the
frequency zoo. This is precisely the response of our
probe to the heat current (Fig. 1), and we conclude it
is in fact being driven by a random force.

The power spectrum SF(«&) of this force is related to

its mean-squared amplitude by'6 (F2) =
J~ SF(c») de.

A power spectrum can also be defined for the dis-
placement x. S„(co) is related to SF(cu) through an os-
cillator response function 4(ao, cop) by
S„(co)=4(co, r»p)SF(cu). For a narrow bandwidth os-
cillator, 4 will be very sharp and may be approximat-
ed by a 5 function, so that

SF'(a) = Spexp[ —acr( V, T)]

where the dependence of SF on Vis contained in
the correlation time ~. All of the dynamical informa-
tion about the random force is thus contained in a
correlation time that is determined by our data. Of
course, this choice for the form of the power spec-
trum is not unique. It wou1d be possible, for exam-
ple, to use SF(r») = Spr/ (1+co'r ), but the data
would then require ~ to vary exponentia!ly with V.

Since this dependence seems rather unphysical, we
prefer the power spectrum given by Eq. (2). The
Weiner-Khintchine theorem" then gives the

2.0 & ] ' . I

CELLS 6
O T=I.400K

~,6 —CI T=l.600K

P
1.2—

0.8—

3
0.4—

Q uU
I I

' 0 4 8
I I

I2 16 20

A measurement of (x') therefore gives the power
spectrum of the random driving force at the resonant
frequency of the oscillator.

Figure 3 shows data for SF(r»p) versus the
counterflow velocity ~ obtained in cell No. 6 at
T =1.4 and 1.6 K. Similar results were obtained for
all cells and at all temperatures [see, for example, Fig.
2, where now (x') =SF(cop)]. The monotonic increase
of amplitude with velocity is quite obvious. The lower
limit for the superfluid turbulence given by the Vinen
equation' is shown in the figure as V„and is much
lower than any apparent onset for (x'). In fact it is
not possible to define an onset velocity that
corresponds to a value of either R or R„which is in-
dependent of probe size and temperature.

It is possible to understand the strong dependence
of the power spectrum on V and T by assuming it has
an exponential form

(x') =
J S„(co)des = '~ 5(a), cop) SF(«») dp»

We finally find

(x2) = SF(cup)

V(cm/s)

FIG. 3. Measured fluctuation power spectrum SF(coo) vs

the counterflow velocity V. The solid lines are fits of Eqs. (2)
and (5) to the data.
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corresponding time correlation function as Lorentzian.
While exponential power spectra are not common,
they have been observed. One recent example is the
concentration fluctuations in a phase separating critical
binary mixture. "

It is very tempting to associate the fluctuating force
with random fluctuations in the vortex line density.
'/here are two problems, however. First, the ob-
served power spectrum of the line density fluctua-
tions is not exponential, but varies approximately as
I/ru .3This form does not have a Fourier transform
(time correlation function) and thus the fluctuations
cannot be characterized by a single correlation time. "
Second, the detailed coupling of line density fluctua-
tions to the probe are unknown. .(We note, however,
that turbulent fluctuations in classical Auids have been
studied using similar techniques. '9) These uncertain-
ties make it impossible unambiguously to relate the
two fluctuating quantities. However, as we shall
demonstrate below, the correlation time for line densi-
ty fluctuations derived from the Vinen equation' is in
excellent agreement with the correlation time deter-
mined by our data.

The Vinen equation for the time rate of change of
the line density is

r

4L --IX,a "L"VI- -X, " I.' (3)
df 2 p '2~

j

h is a dimensionless parameter of order unity deter-
mined from experiments on rotating helium, p„/p is
the normal fluid fraction, d is a characteristic dimen-
sion of the flow channel, and ~ is the quantum of cir-
culation. The dimensionless constants Ot, X~, and X2,
all of order unity, have been determined by fitting
temperature gradient" or second sound attentua-
tion" data to the results given by the model for the
steady state. The relationship between the steady-
state line density Lp and V, obtained by setting Eq.
(3) equal to zero, is

2b/a' 4~=X2/rr8'X)'(p„/p)' . (6)

Precise quantitative comparison of this result with our
data is impossible since reliable values of X~ and X2 do
not exist, though they are known to be of order unity.
The ratio Xt/X2 is determined in many counterflow ex-
periments, but published values show variations with
geometry of about a factor of 3. Given these uncer-
tainties our values for 2b/a2 agree with Eq. (6). To
emphasize further the agreement of our results with
the functional form of Eq. (5) over the wide range of
parameters studied, we have reduced our data in a
manner suggested by Eq. (2). Using the values of So
and 2b/a' given in Table II along with our data for
the mean-squared displacement SF(~0) produces the
results sho~n in Fig. 4. The points clearly define a
straight line of unit slope through the origin in agree-
ment with the Vinen model calculation. We em-
phasize that Fig. 4 includes data from every tempera-
ture and every cell studied, as well as data taken on
diA'erent days at the same temperature with the same
cell.

TABLE II. Values of Sp and 2b/a that fit Eqs. (2) and

(5) to the fluctuation data.

velocity Vis exactly that given for vortex line density
fluctuations by the Vinen equation. The quantities Sp
and 2b/a' are determined by the fit and are collected
for all sets of data in Table II. No particular
significance should be ascribed to the quantity Sp since
it involves an unknown overall c'alibration of our ap-
paratus as well as the (possibly temperature- and
geometry-dependent) amplitude of the quantity relat-
ing the fundamental fluctuations in the flow to our ob-
served random force. The quantity 2b/a', which is
determined absolutely from this fit, is given by the
definitions of a and b as

I'= bLoi2 ja(1 —u/dL(')i2) = bLoti2/a (4)
Cell Sp 2b/a2

where a =——,X~8p„/p, b =—X2~/2m, and the approxima-

tion is valid at large line densities.
We noe investigate the relaxation time of the

steady-state Lp following a perturbation hL « Lp.
riting L = Lo+hL in Eq. (3), linearizing about Lo,
and requiring dLO/dt =0, we obtain the correlation
time for line density fluctuations

1/r -(—aLO V 2bLO —aaI'/d) =—a V /2b

(5)
~here the approximation holds at high line densities.
In large channels this approximation is valid even at
low velocities.

The solid lines in Fig. 3 are fits of Eq. (2) to our
data, with r given by Eq. (5). Clearly the functional
dependence of the observed correlation time on the
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It is diScult to believe that the excellent agreement
between the correlation time for the fluctuating force
and that calculated from the Vinen equation is fortui-
tous. However, to suggest that the line density fluc-
tuations are the source of the fluctuating force requires
that the force spectrum SF(t0) results from a synthesis
of the line spectrum SL(at) and some coupling func-
tion. Since the line spectrum given by the Vinen
equation, and corresponding. to Eq. (5), is Lorentzian
it is unlikely any coupling function can result in an ex-
ponential force spectrum. The only experiment
which purports to measure Sl. (r») directly gives
Sr (cu) = 1/at'. This result is not only in disagreement
with the Vinen result, but is no more easily related to
our exponential spectrum than is the Lorentzian.
Much of this confusion is eliminated when it is recog-

200 400 600 800 F000 i200

V ~ (cm/s)~

FIG. 4. Universal plot illustrating the success of Eqs. (2)
and (5) in fitting the data. Shown are data for S~(esp) ob-

tained in every cell and at all temperatures.

nized that the Vinen equation can only describe spa-
tially homogeneous vortex line density fluctuations. It
seems quite unlikely that fluctuations in L p would be
homogeneous. Our conclusion then is that the fluc-
tuating force observed in the turbulent counterflow is
probably the result of inhomogeneous vortex line den-
sity fluctuations, and that the experimentally observed
correlation time does not differ significantly from that
for homogeneous fluctuations as given by the Vinen
equation.

These experiments have provided considerable new
information about turbulent thermal counterflow in
HeII. While we cannot rule out the occurrence of
normal fluid vortex shedding, our data show no evi-
dence of the expected resonant response even though
one might have thought all the required conditions
were roughly satisfied. We found instead that the
probe motion x(t) was consistent with a random driv-
ing force having a power spectrum SF(ta). The rapid
increase of (x2) with counterflow velocity V can be flt
using an exponential power spectrum SF(at) = See "'.
The correlation time v determined by the fit is in good
agreement with the correlation time computed from
the Vinen equation. There is no reason to expect this
agreement, yet it is unlikely to be fortuitous. A better
theoretical understanding of the vortex line density
fluctuations will clearly be needed before these results
can be fully understood.
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