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We calculate the electromagnetic coherence length ( for superconductors with magnetic impurities by
using the theory of Shiba and of Rusinov. The expression for $ is analytically evaluated in several limits,

and it is numerically evaluated for a range of values of the variables on which g depends. It is found that,
over the range of values of the variables for which ( is calculated, (' can be fitted with a simple empirical

function to an accuracy that is never worse than 6%, and is typically better than 2%, whereas a naive

estimate of ( can be as much as 80% higher than the correct value. We show how to calculate the

penetration depth in the London limit and the extreme anomalous limit from the results for g and the

already calculated local-limit penetration depth.

I. INTRODUCTION

Studies of the effects of magnetic impurities in
superconductors illuminate the phenomenon of
superconductivity and provide information con-
cerning the interaction between magnetic spins
and conduction electrons in metals. For example,
gapless superconductivity was first proposed in
the original work of Abrikosov and Gor'kov' (AG)
on the effects of magnetic impurities on supercon-
ductivity. In this theory the interaction between
individual spins and the electrons is treated by
perturbation theory. The results of the theory for
a variety of phenomena have been reviewed by
Maki. '

The work of AG has been succeeded by exten-
sions of the theory to take into account the inter-
action between the individual impurity spins and
the conduction electrons beyond perturbation the-
ory. This is not simply a matter of quantitative
interest. In normal metals it is known that this
extension leads to an understanding of the Kondo
effect. A treatment of the thermodynamic proper-
ties of superconductors that takes some account
of the Kondo effect has been given by Muller-
Hartmann and Zittartz. ' ' This treatment appears
to be moderately successful, albeit with some
modification of the theoretical parameters, ' for
alloys with T~/T„~ l. A self-consistent treat-
ment of the thermodynamic properties of super-
conductors with magnetic impurities has recently
been given by Schuh and Muller-Hartmann. It
has not yet been fully compared with experimental
results. It is not easy to extend these treatments
to cover the effects of external fields and of ir-
reversible phenomena.

An alternative extension of the theory of AG has

been provided by Shiba, ' and Rusinov. In this
theory the impurity spins are treated classically,
but otherwise their interaction with the electrons
is calculated exactly. This treatment should
therefore be valid for large impurity spins, and
provides, in any case, a useful model. One
striking new qualitative feature of the model is
the existence of bound states in the energy gap.
Reviews of the comparison of observations with
some of the consequences of the model have been
provided by Ginsberg" and by Takayanagi and
Sugawara. ' More recently, ' ' good agreement
has been found between this theory and measure-
ments of the electronic thermal conductivity of
Pb-Mn, In-Mn, and In-Cr alloy films. This suc-
cess is an encouragement to explore further con-
sequences of the theory.

In the past, the electromagnetic properties of
superconductors have proved useful in elucidating
the properties of impurities in superconductors.
However, the electromagnetic coherence length
has not been calculated for superconductors con-
taining magnetic impurities, even in the frame-
work of the AG theory. We have therefore begun
a program to extend the theory in this direction
by computing the electromagnetic coherence
length of superconductors containing magnetic
impurities which conform to Shiba, 's model. Since
it seems that Shiba's form for the single-particle
Green's function is a good approximation to that
obtained by Muller-Hartmann and Zittartz, pro-
vided that Shiba's parameter &c (see Sec. II) is
given an appropriate temperature dependence "
the present calculation may also be applicable to
superconductors for which that theory is a suit-
able model.
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II. THEORY

The point of departure for this work is the the-
ory of Shiba and Rusinov" for the Green's func-
tions for electrons in a superconductor with mag-
netic impurities. Assuming s-wave scattering
by the impurities, and using a classical treat-
ment of the spins, one finds that the single-
particle temperature-dependent Green's function
G(k, i&@„) is, for a temperature T, given by

G(k, i&@„)= I/(iW —~)-ps —bnpxo2) t

(u„=2vT(n+-2) .
(1)

(2)

There, the 4x 4 matrix notation (see Maki') is
used, and the matrices g,. and p,. are Pauli spin
matrices, the former being an operator in spin
space, the latter in the space of electrons and
holes. In Eq. (1), e& is the energy of an electron
in the normal state, and ~ and 3 are related to
~„and the gap parameter ~ through the equations

u (u„'+1)'t'
(dn = (dn+ + A

2 7] u„+ E'p

+n

2 t (u'+1)'ia (3)

and

un +n/™n

a (u'„+1)" a. 1
2+ 2 27.t (u2+ 1)&/2

1 +n n

(4)

The parameters 7 7y & and pp are related to
the scattering of electrons by the impurities;
7-' ' is the scattering rate from any nonmagnetic
impurities or defects which may be present, 7., '
is the non-spin-flip scattering rate from magnetic
impurities, n/h is the spin-flip scattering rate
from magnetic impurities, and qp is Shiba's para-
meter giving the energy (normalized to t) ) of the
bound state that lies in the gap and is due to the
magnetic impurities. For a given host metal and
impurity, these parameters can, in principle, be
calculated, but in this paper they are treated as
parameters. Equations (3) and (4) can be com-

We derive an analytic expression for the electro-
magnetic coherence length $ by using the Shiba
theory. We numerically evaluate this expression
for $, using physically reasonable values for the
variables on which $ depends. We fit the calcu-
lated values of g with a simple empirical func-
tion. These three steps are described in detail
in Sec. II, III, and IV, respectively. Sec. V is a
summary. In Sec. VI we add a few remarks
about the electromagnetic penetration depth.

(7)

where

t = T/T„-, 6(p, t) -=~(n, t)/b. (0, 0),
p=—2ot/h(0, 0), y =mT, /6(0, 0) = 1.781,

(8)

and g„ is the transition temperature of the host
material. The function )t)(x) is the digamma. func-
tion. When t = T,/T, o, the ratio of the transition
temperatures of the host with and without magne-
tic impurities, the sum in Eq. (7) is identically
zero, and the resulting expression is used to
determine p for any value of T,/T„. It can be
shown that when T,/T„=O, then p =1. Note that
neither g„nor 5 is a function of 7"y or p Equa-
tions (1)—(8) are sufficient to determine the
single-particle Green's function as a function of
~„and T. For certain values of the parameters
these equations have been solved by Lo and

Nagi "
As we have said, Shiba's treatment of the scat-

tering of electrons by a single impurity goes
beyond perturbation theory. Perturbation theory
can, however, be recovered by letting &p tend to
unity. This yields the theory of AG. Deviations
of &p from unity thus represent deviations from
perturbation theory.

The calculation of the electromagnetic proper-
ties of the system very closely follows the similar
calculation for the case dealt with by AQ (see
Maki'). For the Meissner effect, one requires
the response of the system to a static magnetic
field, represented by the vector potential X(f').
The current j(fi) induced by a single Fourier com-
ponent K(g) of the vector potential can be written

j„(fi)= —
4 g K„„(~I)a,(&), (~)

where K„,(g) can be calculated in terms of the
single-particle Green's functions using standard
many-body theory. To be consistent with the pre-
vious calculation of the Green's functions, we still
assume only s-wave scattering by the impurities.
There are then no vertex corrections to the ex-

bined to yield a single equation for gg„,

(u„/t), = u„[1 —(n/t), ) (u„'+ I)'i'/(u„'+ e',)] .

To complete the determination of the Green's
function it is necessary to add the gap equation
that determines b.(a, T) as a function of n and
temperature T. According to Lo and Nagi, "this
equation can be written

2yt ~ (1 2) it'2 6(p, t)
t)(tt, t) ~. " tt t)tt+-'. +ttitvt) )
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pression for K„„(Q)that is given by (see Maki')

x Q TrG(k, i(u„) G(k+f1, i(u„)

Xe'
mc lV (10)

where pf is the density of conduction electrons.
For a transverse vector potential in an isotropic
superconductor one finds

where

and

TN
&(q) =

18 Q de dp, (I —p')

x TrG(k, i~„)G(k+q, i~„)

(12)

g =k ~ Q/Pq; (13)

X
(I —p.')

(u„'+ 1)[26„(u„'+I)'~' —lS' qv~g]
(14)

where vobis the Fermi velocity, and it has been
assumed as is usual that q«kF. Equation (14) is
identical in form with that for the theory of AG.
The difference stems only from the different de-
pendence of u„on ~„and ~ that comes from the
deviation of eo from unity in Eq. (6). Further
integration over g yields

c &( }
3eNTw ~ 1

4n mchv~q ~ u„.+1
h

x (1+s„'}tan
(s„&

(15)

In Eq. (12) the integration over c is to be per-
formed before the sum over ~„. The change in
order of summation and integration between Eqs.
(10) and (12) eliminates the term (Ne'/mc)6„„.

The integration over & can be performed analy-
tically, and leads to the result

C ~( )
38 NT7f

4m 2 inc

where the left-hand side is finite. The definition
agrees with that of BCS when no magnetic im-
purities are present. " From Eqs. (15) and (17)
one finds

hv, ~ 1

2 ~ s„(1+u„')'~ ~ (1+u')

The procedure for calculating ] is as follows:
for a given value of T,/T, o, determine p by setting
t =T,/T„, and solving Eq. (7); then, for a given
value of T/T„, find 5 by. simultaneously solving
Eqs. (6) and (7); finally, use Eqs. (4), (6}, and

(18}to calculate t'.
In general, t' can be found only by numerical

methods, but it can be found analytically in sever-
al limits. The'analytic expressions serve two
purposes: fi.rstly, they can be used to show that
Eq. (18) reduces to previously calculated results
in certain limits; secondly, they can be used to
check the accuracy of the computer program used
for the numerical calculations of g. We will ex-
amine four limits. In the following, we use the
definition

(18)

I-=vy [(1/&g)+ (I/&')] '
~

(i) Let T/T, -O, T,/T, o- 1, and l- ~. Then
p-0, u„- &u„/a(0, 0), and ~- a(0, 0). Putting
these results into Eq. (18) yields

I'v, ~ 1
2 ~ b, (0, 0)[1+[(o„'/b, (0 0)']/~'

1 1

[I + [(u„'/a(0, 0)']} (20)

Since t- 0, the sums can be converted into in-
tegrals, and Eq. (20) becomes

vf/sb(0 0}=—)oo,
'

This is the BCS" expression for the zero-tem-
perature coherence length for infinite mean free
path.

(ii) Let T/T, - T,/T„- 1 and l- ~. Then b,„-0,
g- 0, and u„- v„/a.- ~. Putting these results
into Eq. (18), we find

hv~ ~ 1 1

2sT«, ~ (2n+ 1) (2n+ 1}3 —,— . (22)

These sums are related to Hiemann g functions,
and their values yield

where

(18)s„=2s„(n„'+1)'~'/8 vfq .
The electromagnetic coherence length t' can be

defined by

( =0.752(DO.

This also agrees with the BCS theory.
(iii) Let 1/r' be large enough so that 3,„-5/

2y'(M„'+1)' '. Then Eq. (18) indicates that

$ =v~v' = l.

(23)

(24)

Iim qff(q, T)/Z(0, T) =3v/4[, (17} This is the well-known result that the electro-
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magnetic coherence length equals the electron
mean free path when the electron mean free path
is very short.

(iv) Let T/T, - 0 and T,/T„- 0. Then p- 1,
z„.- 0, and gg„~. After doing some algebra and
converting sums to integrals, Eq. (18) becomes

g = t.„(~/5')[I ln(1+ 5)j,
where

b = vg»II

(25)

(26)

Therefore, in this limit, g depends on I but not on
Although this limit of the theory is not usually

experimentally attainable because of impurity-
impurity interactions, it can still be used to check
the accuracy of the computer program. Equations
(25) and (26) indicate that when I ~, then g- 2.427$». The same program that we use to cal-
culate $ to an estimated accuracy of 0.1% repro
duces this result to that accuracy.

III. NUMERICAL CALCULATION OF $

We calculate $ numerically by using the proce-
dure outlined in Sec. II. We find it convenient to
introduce several quantities. First, instead of
using the spin-flip (o/8) and non-spin-flip (I/7~)
scattering rates as independent variables, we
use the ratio of these scattering rates

(27)

and the reduced transition temperature T,/T, o. In
real materials, g should perhaps be between 0.01
and 1. We define an electron mean free path
limited only by non-spin-flip scattering from the
magnetic impurities

(31)

but this is not correct for superconductors with
magnetic impurities. In Fig. 1 we plot some
values of ($,/g»)(T, /T„), which Eq. (31) indi-
cates should be id'entically equal to 1. It is clear
from Fig. 1 that the magnetic impurities cause
deviations from this value.

l.2—
~c / ~co = 0.8

0.

0.4&

T,/T, o
= 0.2, 0.4, 0.6, 0.8, 0.84, 0.88, 0.92, 0.96, 1 .

As mentioned earlier, the computer program
was designed to calculate g to an accuracy of
about 0.1%. The program was first tested by
comparing our calculated values of ~ against
those obtained by I.o and Nagi. " Then our values
of g were checked in the limits discussed in Sec.
II.

In order to discuss the deviations from BCS-
like behavior"" in $ that are induced by the
magnetic impurities, we discuss go/]«and t'/$o
separately. This procedure helps to elucidate
where and how the deviations arise.

The corresponding-states prediction for $,/g»
would be

lg —Vf Tj ~

Finally, we define

(o—= $(T/T„ I=~, II =~, eo, T,/T, o) .

(28)

(29)
0

$, is analogous to the BCS coherence length g».
In fact, g, = g» when T,/T„= l.

The calculation was performed for several
values of the variables on which g depends. In
particular, the calculation was done for

0.4—

T/T, =0.05, 0.10, . . . , 0.95,

I/t', = 10

where 0.2
O. I

and

g =0.01,0.03, 0.1,0.3, 1,
1 1 3

&o ~~ 4~ a~ 4~ 1 ~
FIG. 1. Plot of Q o/$ oo)(Tc/Tco) vs ~o for several

values of T~/T«. For a superconductor without magne-
tic impurities, this quantity is identically l.
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In Figs. 2 and 3 we show representative curves
of g/$, . From these curves one can see that the
effect of the magnetic impurities is to reduce (/',
from the BCS value. This reduction is due in part
to the non-spin-flip scattering from the magnetic
impurities and in part to the spin-Qip scattering
from the magnetic impurities. The non-spin-flip
scattering, which affects g/$, through Eq. (4),
causes g to depend on R. Clearly, for e, =1, the
terms in Eq. (4) containing 1/T, and 1/T' are the
same. However, as co decreases from 1, the term
containing I/7, increases although l stays the
same. This means that the effective mean free
path is shorter than l. Therefore, the coherence
length decreases. This effect is largest when
both p is smallest and &, =0. The effect disappears
when either p-" (an experimentally unobtainable
limit) or when e, =1. The effect also disappears
when T/T, -1. This can be seen by noting that
Eq. (6) indicates that when T/T, —1, u„- "for all
n. Hence the terms in Eq. (4) that contain I/',
and I/" become identical. The reduction of ]/],
due to the non-spin-flip scattering from the mag-
netic impurities can be best seen in Fig. 2. There
one can see that holding all other variables con-
stant and decreasing p (increasing I/z, ) de-
creases (/], . As T/T, approaches 1, all of the
curves come together to intersect at the same
point.

In Fig. 2 one also sees that even at T/T, =1,
the calculated curves lie below the BCS curve.
This is due to the spin-flip scattering from the
magnetic impurities.

The mean-free-path dependence of g/'0 is
roughly the same as the BCS behavior; $/$, de-

0.50

0.45
Go=lq

0.40
&o

0.55

0.50 0.2 0.4 0.6 0.8
T/Tc

l.O

FIG. 3. Plot of $/(p for several values of E'p. The
values of $ /$ p calculated for T, /T«=1 lie very slightly
above the curve shown for e p= 1 and are too close to
that curve to draw separately.

creases with decreasing mean free path, ap-
proaching the limit $/g, = I/), for very small
mean free paths.

A. Fitting procedure

The calculated values of g/g, are fitted with a
four-parameter function according to the fol-
lowing procedure.

Values of ~/$, calculated in the unphysical limit
g =~ are compared with a slightly altered version
of the usual interpolation function

IV. EMPIRICAL FIT TO THE CALCULATED

VALUES OF P

An empirical fit to g is useful because it pro-
vides a way of calculating ( for any values of
the variables which affect it. If one estimates $
by using the usual interpolation formula"

&
= [II&...(T/T. , I=-)+ I/I] (32)

one will arrive at a value which is up to Q' high
for a superconductor without magnetic impurities,
and up to 80% high for a superconductor with
magnetic impurities in which q, =0 and g =0.01.
Our empirical fit is much better than this, as we
will see below.

0.500 0.2 0.4 0.6 0.8
Tc

I.O

+ -' (~8)g(T/T„~, ~, eo, T /T, o) I

FIG. 2. Plot of (/g p for several values of R. The
dashed line is calculated for T, /T& p= 1.

It is found that the tractional deviation of g/$0
from g, as a function of I/g„can be fitted with
a Gaussian function in this manner
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&/&. -g „„,„[»(I/~(.)]' (34)
B. Discussion

For each set of values for T/T„eo, and T,/T„,
the parameters A, B, and p are independently
varied to give the best fit.

To fit the values of ~/'o. calculated for finite
values of g, a new parameter must be introduced
to account for the enhancement of the non-spin-
slip scattering from the magnetic impurities,
which was discussed in Sec. III. %e call this
parameter D, and we use it to define an effective
mean free path

l= l/(I+D//l, ) . (35)

Note that D is always positive, so that ) ~ I;
only when go =1 or T/T, =1. For each set of
values for T/T„e„g, and T,/T„, D is chosen
to give the best fit to $/'o when l is substituted for
l in Eq. (34).

Solving Eq. (34) for g/)„and explicitly noting
that one should use ) in place of ), one arrives at
the basic fitting function for all of the calculated
values of g/$o:

$/(, =f —=g(l)/[I+" (l)].

First, we discuss how the fitting parameters
A, B, Q, and D depend on the variables on which

$/$o depends.
The parameter A. represents the largest frac-

tional deviation of g/$o from the usual interpola-
tion function g. It is a, function of T/T„e„and
T,/T„ Fi.gure 4 shows how A depends on these
variables. The figure indicates that A varies
from about 0.05 to 0.17 over the range of the
variables for which $/go was calculated. The ac-
curacy of the fit is reasonably sensitive to A;
a change in A of 0.01 causes a change in f of up

to Iyo

The parameter B is found to be a weak function
of T/T, , e„and T,/T„. In fact, for T,/T„o 0.2,
the parameter B can be taken to be a constant
0.42 without degrading the fit by more than about
Ilo.

The parameter t" is found to be a constant 1.84.
The parameter D is, by definition, the only

l.2

l7 I.O

l5 0.8

0.6

13

0.4

l3

13

O

0—

o04

~ 0.2
t

0.2

I&0=0, 4

Tc—=0.4
I

Tco

0.2—
60 Oq4 ~ 2q4

0

Tc—=0.2
Tco

I I I I

0 0.2 0.4 0.6 0.8 I.O

T/Tc

0.2 0.4 0.6 0.8 1.0
T/Tc

FICi. 4. Plot of the temperature dependence of the
fitting parameter A for several values of E'

p and T&/T& p.

FIG. 5. Plot of the temperature dependence of the
fitting parameter D(R = 0.03) for several values of ep

and T /T p.
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parameter which is a function of g. It is found
that the p dependence of D can be roughly ap-
proximated by the relation

be accurate to about 2% for all variables for which

] was calculated if one did not use the approxima. —

tion given in Eq. (37) for the dependence of D on R.

D(R)/D(R =0.03) = 1+0.221n(R/0. 03) . (37) V. SUMMARY

The dependence of D(R =0.03) on the variables
T/T„q„and T,/T„ is shown in Figs. 5 and 6,
which illustrate the fact that the enhancement of
the effective mean free path disappears when T/T,
=1 or when q, =1, because D goes to zero in both
of these limits.

Values of g(T/T„ l=~, R =~, e„T,/T, o, )/)o,
which appear in the definition of g, are pre-
sented in Fig. 7.

The four-parameter fit is accurate to 0.5% in
the BCS limit, and to 1% in the AG limit, co= l.
When a~ & 1, the fit is a.ccurate to at least 6%, and
it is typically accurate to better than 2%. The
largest deviations occur only for T/T, &0.1, T,/
T„&0.9, e, &1/4, and l,/10 &l&l, . The fit would

An expression for the electromagnetic coherence
length $ has been derived for superconductors with
magnetic impurities by using the theory of Shiba
and Rusinov. The expression has been numerically
evaluated for a range of values for the relevant
variable s.

The results of the numerical calculation indi-
cate that if one were to estimate $ by naively
assuming that a superconductor with magnetic im-
purities conforms to the BCS theory, and then ap-
plying the interpolation formula given by Eg. (32),
one would obtain a, value for $ which is up to 80%
higher than the correct value.

The results of the numerical calculation also
indicate that for T,/T„~ 0.2, t' can be fitted with

2.8

2.4

I.o

0.9

2.0

1.6

1.2

1.0

0.9

0.8

2.0 1.0

1.6 0.9

1.2
Y)
O

08
O

0.4

0.8
0

o I.O

8 O9

1.6 0.8

1,2

0.8

0.4

I.O

0.9

0.8

1.2

0.8

0.4

I.O

0.9

0.8

00 0.2 0.4 . 0.6 0.8 I,O

T/T o.6
0 0.2 0.4 0.6

T/Tc

I

0.8 1.0

FIG. 6. Plot of the temperature dependence of the
fitting parameter D(R=0.03) for several values of ~()
and T /T 0.

FIG. 7. Plot of ( (l = ~, T/T~)/$o for several values
of ~ () and T,/T, ().
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a simple function of the form given by Eq. (36).
In this function, the parameters A and D(ft' = 0.03)
are functions of T/T„e„and T,/T„, but not of
$ or p. The fit is worst when all four of the condi-
tions T/T, &0.1, T,/T„o 0.9, 1,/10 & t & l„and
&p(4 are satisfied. In this case, the accuracy of
the fit is not worse than about 6%. When any of
the above conditions is not satisfied, the fit is ac-
curate to about 2%.

n~p
, (43)

p ft

where &ip is the value of &i as T- 0.
Equations (18), (42), and (43) can be used to

express X~ in terms of X, and (:

The local-limit penetration depth ~, has already
been calculated'; it is given by

VI. PENETRATION DEPTHS (44)

A —= A~ for A. »(,
A. =X, for A«$,

(38)

(39)

A. =—A. , for I «$0 . (40)

Like $, the London penetration depth A~ can be
calculated from the values of 4„and u„, since

We add here a few observations about some
limiting values of the electromagnetic penetra-
tion depth A in superconductors with magnetic
impurities. These limiting values" are the
London penetration depth A~, the extreme anoma-
lous penetration depth X„and the local-limit
penetration depth A, The size of X approaches
these limiting values in appropriate limits

Similarly, we find that the extreme anomalous
penetration depth X, is given by the relation

(45)

where p„ is the value of A., in the limit T- 0.
Equations (44) and (45) enable one to calculate

~~ and ~, in terms of the already calculated tem-
perature dependences of g and A, . The following
equation follows from Eqs. (44) and (45):

&a/~ao = (~i /&oo~io (46)

Equations (45) and (46) agree with results ob
tained pr eviously for supe rc onduc tor s without
magnetic impuritie s."

Since X, and A, are independent of $, the pene-
tration depth depends appreciably on $ only when
1 and X are about as large as $ or larger.

Tables of our results may be obtained from one
of the authors (DMG).
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