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We present a detailed account of our work on the propagation of quasiparticles and phonons in bulk,
superconducting lead. Time-of-flight techniques combined with tunnel junction detection (for quasiparticles)
and bolometer detection (for phonons) are used. A transition from quasiparticle diffusion (and ballistic
phonon propagation) to diffusion in the combined gas of quasiparticles and phonons is observed as the
temperature is increased. We give a theoretical description of the pulse propagation characteristics in the
diffusive regimes. The “theoretical line-shape fits to the data yield a measure of the quasiparticle
recombination time and their number decay time as a function of temperature.

I. INTRODUCTION

Récently, there has been considerable activity
in the study of nonequilibrium superconductivity.!
Most of the experimental studies to data have in-
volved the study of the superconducting transition
of a thin film or the I -V characteristics of a thin-
film tunnel junction. In a recent paper,? we re-
ported on the propagation characteristics of photo-
excited quasiparticles in bulk, single-crystal,
superconducting lead using a tunnel junction as a
quasiparticle detector and time-of -flight tech-
niques with nanosecond resolution. The combined
use of bulk samples and time-of -flight techniques
made possible a direct determination of the spa-
tial and temporal behavior in the nonequilibrium
state in a previously unexplored regime.

In this paper we present a full experimental and
theoretical account of this work. We shall first
discuss the various characteristic times that are
important in the temperature range under con-
sideration (Sec. II). We show that the relaxation
time for the decay of the excess number of quasi-
particles may be very long, this being the key to
the understanding of the observed diffusive behav-
ior of the quasiparticles and phonons. In Sec. II
we present the coupled diffusion equations for
quasiparticles and phonons, and discuss their jus-
tification. We solve the equations for a point
source in an infinite medium, and show how these
solutions are modified in a finite slab. In Secs.
IV and V we discuss the experimental techniques
and results. In Sec. VI we make a detailed com-
parison of theory and experiment.

II. CHARACTERISTIC TIMES

An extensive study of various characteristic
times of a superconductor has recently been re-
ported by Kaplan et al.®> Since we are interested
in temperatures well below the gap A, it is con-
venient to use the low-temperature (k,7 < A) ex-
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pressions for these quantities in our subsequent
discussion. For this purpose we use a form of
the electron-phonon matrix element g, that em-
phasizes its low-temperature properties,

| g, 2= Miw/2N(0) , (2.1)

where 7w is the phonon energy and 2N(0) the den-
sity of states for both spins at the Fermi surface
of the normal metal. The constant A (which is of
order unity) determines the mass enhancement
through m*=m(1+2X), if the q dependence of the
electron-ion pseudopotential is neglected. When
we need the magnitude of the scattering rates for
a given metal, we employ the relation

o®F(w)=MAw)?/4(kz0)%, (2.2)

where a®F(w) is the usual effective-phonon density
of states used in Ref. 3. The scattering Debye
temperature © is here defined as kz©=pc with
c the sound velocity and p, the Fermi momentum.
For purposes of the following discussion we sum-
marize the results of the standard golden-rule
calculation of the normal-state relaxation rate
T4(0) at the transition temperature T, and at the
Fermi energy, the low-temperature scattering
rate 75 of a quasiparticle at the gap edge, and the
low-temperature recombination rate 7 of a quasi-
particle at the gap edge. The expressions may be
written (with z=k;=1)

1/740)= Z7¢(3ANTy/ ©7, (2.3)

1/74=(157%/2/16V2)( LI T/ 2/0%a1 /2, (2.4)
where £(n) denotes the ¢ functiovn, and

1/7 = (2m)% (A% 2T 2/@%)e s/ 7T, (2.5)

The numerical coefficients in front of these ex-
pressions are close to 13, 4, and 16, respectively.
Since

TR/ Ts=0.3(T%/8%e?/ T, (2.6)

the scattering rate is seen to be larger than the
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recombination rate below a temperature T=A/6
~ 2.7 K, when the value A=16.3 K appropriate for
lead is used for the zero-temperature gap.

With the identification 1/7,(0)="7£(3)(1/7,), we
may extract the normal-state relaxation rate 1/
7,{0) at T, from 7, as defined and tabulated in Ref.
3. For Pb we get

1/7,{0)=4 x10' sec™. (2.7

Using the zero-temperature gap value A=2.26 T,
we then obtain

1/74=0.2T/T,)/2[1/7,{0)], (2.8)
/7= 9(T/T ) 2e™*Te/ T[1/7 (0)] , (2.9)

which is a convenient estimate of the magnitude of
the scattering rates at a given reduced temperature
t=T/T, in the low-temperature region (¢s3). We
stress that these expressions do not take into ac-
count strong-coupling corrections to a®F, which
for Pb are numerically important for the recombi-
nation rate, as shown in Ref. 3. For an accurate’
comparison between theory and experiment one
must use for 7, the general expression given in
Ref. 3 [Eq. (15)].

Turning now to, the role of impurity scattering
we may estimate the normal-state impurity relaxa-
tion rate 7, in a free-electron model to be

1/70p=5x10° sec™ (2.10)

for a Pb sample with resistance ratio of 20 000.
As a consequence, the impurity scattering rate
dominates the rates 1/7, and 1/74 at temperatures
below 2 K. In this regime we therefore expect the
diffusion of quasiparticles to be limited by im-
purity scattering.

Let us briefly discuss the role of electron-elec-
tron scattering as a possible additional scattering
mechanism. For Pb one expects it to be totally
unimportant, as confirmed by the following esti-
mate, but we shall give the results of a more de-
tailed calculation to elucidate its possible impor -
tance for a metal like Al. The estimate indicates
that one does not expect to see effects of electron-
electron scattering even for Al, since the elec-
tron-phonon interaction always dominates the in-
elastic part of the total scattering.

To obtain the low-temperature electron-electron
limited relaxation rate we use the results of
Pethick, Smith, and Bhattacharyya* for quasipar-
ticle scattering in 3He at low temperatures. Their
result is in the present notation

(;)JFA’—‘”— (& [2N(0)] ) )

where n,/n is the number of excitations »,, rela-
tive to the total particle number » in the (isotropic)

(2.11)

superfluid state. The quantity in brackets is a
dimensionless number that involves the collision
probability wg in the superfluid state. The normal-
state relaxation rate [1/7,(0)],., may be written,

in a similar fashion,

(far)

The ratio of the rates is

(l/T)qp-qp _ 8_ ATF 72 <wS>
[1/7(0)]pee 37 T2 n oy °

For an interaction that has a constant spin sin-
glet amplitude (and zero triplet), the ratio (ws)/
(wy) may be shown to equal L.* Such an interac-
tion is not an altogether unreasonable approxima-
tion to a screened Coulomb interaction; in any
case, one does not expect the ratio to differ sig-
nificantly from unity for a more realistic inter-
action. Putting in this estimated value of (wg)/
(wy), we obtain a formula similar to Eq. (9),

(1/T)qp-qp _ T\/? -A
/0, (‘T‘> e,

where we have kept the zero-temperature gap A
in the exponential in order that the estimate may
apply to cases of weak and strong coupling.

To estimate [1/7,(0)],.,, we use the results of
the Born approximation which for a screened Cou-
lomb potential may be shown to be accurate to
within a factor of 2 when the resulting scattering
rate is compared to the one obtained by a phase-
shift calculation.® For an »g value equal to 2
(characterizing both Pb and Al) the relaxation rate
for an electron at the Fermi energy becomes

[(1/74(0)] ,,=1.6 Xx10°T2 sec™,

"5 T% (21; [ZN(O)]ZWN)) . (212)

e-e

(2.13)

(2.14)

(2.15)

where the transition temperature T, is measured
in kelvin.

For Pb, (2.15), yields a value of 1/7,(0)=9 x 10’
sec™, which makes the contribution of electron-
electron scattering in the normal state as well as
in the superconducting state totally negligible.

For Al the electron-electron scattering rate at T,
becomes 2 x10° sec™, which is considerably
smaller than that due to electron-phonon interac-
tion, which gives 1/7,(0)=2x107 sec. Compar-
ing (2.9) and (2.14), we conclude that the quasipar-
ticle-quasiparticle scattering rate at low temper-
atures is a factor of 30 less than the electron-pho-
non recombination rate in Al. We do not, there-
fore, expect to be able to see effects of electron-
electron scattering at any temperature even in
metals with a Debye temperature as high as that

of AL

Finally, we discuss the rate of relaxation of an
excess number of quasiparticles at low tempera-



18 QUASIPARTICLE AND PHONON PROPAGATION IN BULK,... 6043

tures. Of the various relaxation processes con-
sidered we note that both impurity scattering and
scattering against phonons conserve the number

of quasiparticles. The recombination processes
by themselves do, of course, change the number
of quasiparticles. However, the 2A phonon created
in a recombination process may in turn create new
quasiparticles, so the effective number decay time
Toee Decomes much longer than 7,. Occasionally,
a 2A phonon may break up into two other phonons
via umklapp or anharmonic processes, which re-
sults in 7,,, being given roughly by

Tete= Tl Tnh»zph/'ra) ’ (2.16)

where 75 is the rate at which a 2A phonon creates
quasiparticles, and 7} ., the rate at which a pho-
non breaks up into two other phonons. For Pb we
use the estimate in Ref. 3,

T ~3x10' sec™. (2.17)

The rate at which the 2A phonon may break up into
two phonons of lesser energy is not known theoret-
ically, but we may obtain a crude estimate of its
magnitude in Pb from measurements of phonon-
scattering processes in Bi by Narayanamurti,
Dynes, and Andres.® For temperatures below
about 4.5 K the normal processes are dominant,
while at higher temperatures umklapp (U) pro-
cesses take over. In a heat pulse experiment the
maximum in the phonon energy occurs at a value
of about 3.8 £, T. Thus the appropriate heat pulse
temperature for a 2A phonon of energy 33 K is ~9
K. If one chooses a U-process value for 7, ..,
then one obtains a value of 7,,,~15 7.

In order to investigate the possible influence of
higher -order scattering processes, we have con-
sidered quantitatively the rate of a process in
which two quasiparticles combine to form a pho-
non, subsequently breaking up into two other pho-
nons. When the state of the intermediate phonon
is broadened in accordance with the rate at which
it may create quasiparticles, the rate of the entire
process is similar to 7}, as given by (2.16).
Clearly, a variety of higher-order processes in
the combined gas of quasiparticles and phonons
might be considered. Though the precise me- -
chanism of elongation may be difficult to verify,
we believe that the answer (2.16) is qualitatively
correct. In Sec. III we shall study the coupled dif-
fusion equations for the quasiparticles and pho-
nons, and demonstrate the physical importance
of the elongation of 7 into 7.

III. DIFFUSION OF QUASIPARTICLES AND PHONONS

In this section we formulate the coupled diffusion
equations, which describe the propagation of quasi-
particle and phonon pulses in the crystal. Our ap-
proach differs from the customary one only in that
we allow for the possibility of separate diffusion
of the excess number of quasiparticles and the lo-
cal phonon temperature through introduction of re-
laxation terms in the diffusion equation. These
relaxation terms lead to coupling of the diffusive
pulses for quasiparticles and phonons at higher
temperatures, but when the temperature is suffi-
ciently low the two pulses become decoupled with
a resultant large shift in the arrival time of the
quasiparticle pulse. This we propose as the me-
chanism behind the observed transition described
in Sec. V.

Though the diffusion of quasiparticles involves
their excess number 6n, we shall for convenience
express this in terms of an equivalent change in
temperature 67, (e stands for quasiparticles, p
for phonons). We write

on
dn= 2% 0T,

for the deviation from absolute equilibrium of the
total number of quasiparticles. Here n, denotes
the equilibrium number of excitations introduced
in Sec. II. Locally the temperature of the phonons
may vary by an amount 67,. The excess number
of quasiparticles relaxes to the local equilibrium
given by the number of quasiparticles appropriate
to the change in local temperature 8T,. The re-
laxation term consequently involves

on
Ony g, = 8_; (8T, ~0T,),

which differs from zero when 6T, #0T,. We may
now write the coupled diffusion equations in terms
of the temperatures T, and T,. The left-hand side
of the equations have the usual form describing
heat diffusion,

3 1
(cegz -—fceV2>Te= -ce;;(Te -T,),

5 1
(c,a—t - x,vz) Ty (1,-1,), (3.1)

where C is the specifi¢ heat for either system and
k the thermal conductivity. The times 7, and 7,
are relaxation times for the electrons (quasipar-
ticles) and phonons, respectively. From detailed
balance we have

C/T,=C,/7,=1/T, (3.2)

where 7 is expressed in units of time/(specific
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heat). In the limit when T,=T,=T, which we shall
show is appropriate for somewhat higher temp-
eratures, the addition of the Egs. (3.1) yields the
usual diffusion equation describing the time and
space variation of the temperature 7,

0
(C,+ C°)—atz+('{’+ K)V?T=0. (3.3)

From this we derive the diffusion coefficient
D=(k,+K,)/(Cy+ C,). (3.4)

Since at low temperatures C,< C,, and k,> K,,
the diffusion coefficient D is to a good approxima-
tion

D=x,/C,=(C,/C,)D,, (3.5)
where the quasiparticle diffusion coefficient D, is
D,=x/C,. (3.6)

Evidently D, is the diffusion coefficient appropriate
for the separate diffusion of the quasiparticle gas.
When the impurity scattering dominates, we have

Ky= %Ce(vz)‘?im, (3.7)

where we have written the thermal conductivity in
a convenient kinetic form involving the thermally
averaged square of the quasiparticle group veloc-
ity (v?) and an effective impurity scattering time
Timp At the transition temperature (v%)=12% and
Timp= Timp While at temperatures well below the
gap, T<A, one has (®)=~(7/a)v% and 7y,
~(2a/nT)*/?7,_,. Thus in the low-temperature
range of interest 7,  differs from 7, by a factor
of roughly 2. Consequently, the quasiparticle dif -
fusion coefficient becomes

D=} Wy, - (3.8)

At somewhat higher temperatures, where the
combined gas of quasiparticles and phonons dif-
fuses as one pulse, the diffusion coefficient is

D=3(C/C)HT*, (3.9)

where (7*)™! represents whatever relaxation rate that
dominates the scattering of quasiparticles. As we
expect from the theoretical calculations of Ref. 3
and the estimates (2.4)—(2.6) and (2.10), the re-
combination rate 1/7, is the most dominant in the
temperature region of interest (above 2.5 K). If

the 2A -phonon lifetime 7, is short compared to the

Ty, the relation between 7*and 7, is quite simply

T*=3T,. Note that our definition of 7, follows the

one that is customarily used in theoretical calcu-

lations: 73 is the rate at which a single quasipar-
ticle recombines. If 7,2 7,, one must correct for
the fact that at a fraction of time 75/ Tg the energy
is a 24 phonon that does not diffuse, as discussed

further in Sec. IV.

The coupled diffusion equations (3.1) are easily
solved for a point source by Fourier transforming
the equations in time and space and adding a con-
stant source term. The result is

(iC,w+kg*+1/T)T, -(1/T)T,=A4,,
—(1/7)7.“e+ (iC,w+ Kyg®+ 1/T)T-‘p=A, s

where T denotes Fourier components in the ex-
pansion of T in plane waves e!@*“t)  The con-
stants A, and A, represent a source term appro-
priate to a 6-function source in space and time.
In the situation of experimental interest, k, <<k,
and C,<C,, the eigenfrequencies of (3.10) are

(3.10)

w+
w= , (3.11)
w.
where
W,= ( 1 +D, qz) —iqu————}g-—— (3.12)
* ct ¢ 1+4¢%/42
and
w.=iDg?/(1+ ¢*/q%), (3.13)
where the wave number ¢ is defined as
gc=(D,C,1) /2=(D,7,)* /2, (3.14)

Note that both frequencies are purely imaginary
and exhibit a mixture of diffusion and relaxation
behavior.

In order to calculate the relative weight of these
two modes, we must specify the nature of the
source term. We shall assume that A,/4,=C,/C,,
corresponding to a heat source at a given tempera-
ture. Then it is straightforward to solve (3.10) for
the quasiparticle Fourier component 7,. Within
an arbitrary normalization factor, we get

T,=F/i(w - w)+G/ilw-w,), (3.15)
where

F=q*/(q%+q2) (3.16)
and

G=1-F=qi/q*+q3) . (3.17)

Having obtained the Fourier components f‘e, we
can readily find the form of T (¥, ?) itself by inte-
gration over momentum and frequency variables:
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- dw d R
T(r,#)= o (2153 et@telt T, w)
0 2
2 -uPpt/e?y, YU
o< — A u sinu (172-——-5 e + m-z- e

since to a good approximation w_=~iDg®% We have
introduced the important dimensionless variable
a through the relation

a=rqe=7/VD,T,. (3.19)

It is furthermore convenient to use the dimension-
less time variables

B,=VDt/r
and
Bz= @/r=(VDe/D)Bl

when we perform the integral in (3.18). The result
is most easily expressed if we define the function

(3.20)

2

0
. 2,2 &
a,B)= u sinue™® ——m du
¥a,p) fo U+ a

= a2’ [e*d(aB+ 1/28) —e~%®
 x(aB -1/28) -2sinha] ,

(3.21)
where & is the error function
&(y)= 72'—'7, Oy e dx. (3.22)
The final result is then seen to be
T(7, ) <ia,B,)+ e B [(Vr/4p) e/ 5
-Wa,B)] . (3.23)

When plotted for a fixed distance 7, the time de-
pendence of (3.23) is characteristic of diffusion.
The arrival time of the peak of the pulse depends,
however, on the parameter «. Rather than dis-
cussing the two limits @ < 1 and o > 1 directly from
(3.23), we may returnto (3.18). Inthe limit @ > 1we
evidently only get a contribution from the first
term in the integral characterized by the diffusion
coefficient D. In this limit we obtain the usual re-
sult

T (7,8 =(Va/4pd)e™/ 8 (3.24)

for diffusion from a point source. The time of ar-
rival of the peak is given by ’
pi=ti
or
tz%rz/D. (3.25)

In order to extract D from the measured pulse,

-ﬂzve'/rze"“e) du,

(3.18)

f

it is useful to consider the point of intersection of
the tangent at the steepest point on the leading edge
with the time axis. This defined the time ¢ given
by

t=0.0375(»*/D) . (3.26)

Physically, the condition a>>1 corresponds to
the quasiparticle number decay time 7, being much
less than the arrival time ~¥?/D, for a pure quasi-
particle pulse. As a result, the combined gas of
quasiparticles and phonons travel together in a
single pulse characterized by the diffusion coeffi-
cient D and the arrival time (3.25). In the opposite
limit, @ <1, the quasiparticles and the phonons
are no longer in equilibrium because the number
decay time is much longer than the pulse arrival
time. In this limit only the second term in (3.18)
contributes to T, with the result

Tr,8) < (—‘/——% e"/“"ge"“e> . (3.27)
463
In this limit the arrival time is
t=1v%D,, (3.28)

which is considerably shorter than (3.25) since D,
> D,

Finally, to more adequately describe the experi-
mental situation, the solution for an infinite medi-
um may be readily taken over to a finite slab of
thickness [ with the inclusion of boundary condi-
tions that correspond to zero currents through the
surface. The result for the temperature at a point
directly across the slab from the heat pulse is

WOL: 2 (=1)7[e~tne/ l)zDete"t/TeI"(t/Te)
n=0

v 7Dty (/73] (3.29)

where I, and J, can be written in terms of expo-
nential integrals

1,=(1/4nD,7)[7,/t+ e*Ei(-x)] ,
where

x=[1+(m/1)?D,7,)(¢/7,)
and

J,=(1/41D,7,)[e*Ei(~y)] .

Here y=(D/D,)x and Ei is the the exponential-in-
tegral function.” It is this expression (3.29) that
we will compare with our experiments.
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IV. EXPERIMENTAL TECHNIQUES

The experiments were performed on high-purity
(99.9999%) Pb single crystals obtained from United
Mineral and Chemical Corp. The propagation di-
rection was the (111) axis and thicknesses of 4.5,
2.2, 1.67, and 0.87 mm were studied. The crys-
tals could be considered to be infinite slabs, as
the transverse dimensions were always very much
larger than the thickness. For the thin sample,
the propagation length and direction could also be
altered by varying the position of the excitation
relative to the detector. The resistance ratio
Ryo0 ¢/ R ¢ Of the thinnest sample was measured
to be 20000. Considerable variations in the mea-
sured impurity scattering time (almost a factor
of 10; see later) was observed between the 0.87
and 2 mm samples. The samples were polished
using a combined mechanical and chemical tech-
nique. Great care was taken during this process
to avoid straining the crystal and to obtain a rela-
tively smooth surface for the evaporation of the
thin-film detectors.

Two types of detectors were used in this study.
Superconducting Pb-oxide-Pb tunnel junctions were
used to detect the quasiparticles, while supercon-
ducting thin-film bolometers were used for, below
gap frequency, phonon detection. The Pb junction
was prepared directly on the sample in the follow-
ing way. One surface of the sample was cleaned
by back sputtering in argon to remove undesirable
surface contaminants. This was done to ensure
that we have a true quasiparticle detector. A con-
trolled oxide layer was then grown on this surface,
and after suitable insulating masks were deposited,
a thin-lead-film stripe was evaporated on top to
form the tunnel junction. The procedure for growth
of the controlled oxide has been described by Gar-
no.? High-quality junctions, with normal-state re-
sistance of 20-50 m® and area ~0.25 X 0.45 mm?
were formed. The low resistance and small area
ensured that the junction RC time constant was
less than 10 nsec. Silicon oxide and photoresist
were used to insulate the lead film from the lead
crystal outside the junction area. Flexible alum-
inum foil leads were used to make four terminal
electrical contacts with the junction.

The superconducting bolometers used were all
of the granular type. They were either AL (T,~2
K), gallium (7,~ 6.5 K) or Pb,_Bi, alloy (7,~9 K,
x~0.25-0.5). The latter alloy’s high T, enabled
us to study diffusive heat transport to temperatures
well above the T, of pure lead. Most of the mea-
surements reported in this paper were made with
this latter bolometer, which was fabricated in.a
highly oxidizing atmosphere (2 x10%-5x10™ Torr
of O,); sothat a broad resistive transition that
could be tuned conveniently with bias current all

the way down to 1 K was obtained. As far as we
know, such granular Pb:Bi bolometers have not
been fabricated before. Unlike the case of tunnel
junctions, the bolometers were, of course, elec-
trically insulated from the Pb crystal by means
of a 500-A SiO film. It is important to emphasize
that these two different kinds of detectors are sen-
sitive to different excitations. The tunnel junction
detects a deviation from equilibrium in the quasi-
particle gas but is insensitive to phonons (of ener-
gy <24). The bolometer, on the one hand, is elec-
trically insulated from the crystal and is sensitive
only to phonons. These differences will be appar -
ent in the low-temperature data. At higher tem-
peratures, where the diffusion is in the combined
gas of quasiparticles and phonons, the detected
pulses are similar.

The quasiparticles and phonons were generated

-on the face opposite to the detector by means of a

dye laser that was, in turn, pumped by a nitrogen
laser. The laser had a peak power of ~1 kW (only
a fraction of which was absorbed by the crystal)
with a rise time of 1.5 nsec and a pulse width of 5
nsec. The beam was about 0.2 mm in diameter.
The laser and power supply were located outside

a shielded room in which the cryostat was placed
to eliminate undesirable electrical pickup. Great
care was also taken to eliminate scattered light
from reaching the detector. The voltage signals
from the tunnel detector (biased in the region of
thermal quasiparticle tunneling) or the bolometer
(biased near its resistive transition were ampli-
fied by means of a B & H amplifier with 2-GHz
bandwidth. This amplifier had a low frequency
rolloff ~100 kHz. This low-frequency rolloff dis-
torted the pulse shape for times greater than about
5-10 usec. Some data were also taken with a Tek-
tronix 1121 amplifier with a bandwidth of 17 MHz ~
5 Hz. The high-temperature fits described later
were on data obtained with the Tektronix amplifier.
The amplified signals were fed into a Biomation
8100 transient recorder with 10-nsec resolution
and a Nicolet signal averager. Most of the data
was taken with the sample immersed in liquid heli-
um or by cooling in the vapor. No unusual changes
were observed in going through the A point or with
the sample in the vapor. We do not expect any in-
fluence from the helium, as the thermal conduc-
tance of the lead is very much greater than that
into the helium. It is a good assumption for cal-
culational purposes that there is no heat flow
across the boundaries, and the sample cools by
transverse conduction in the slab.

V. EXPERIMENTAL RESULTS

Figure 1 shows some typical pulses observed at
high temperatures (between 3.34 and 6.84 K) ob-
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(581K FIG. 1. Quasiparticle
signal as a function of
time in the high-tempera-
ture regime. Tunnel junc-
tion detector. The propa-
gation length is 0.87 mm.
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served with the tunnel detector and the 0.87-mm
sample. The leading-edge arrival times move
markedly with temperature and reflect the strong
changes in scattering time with temperature (see
discussion below). The trailing edge of the high-
temperature pulses is somewhat affected by the
B & H amplifier rolloff that was used to obtain
these data. Later data obtained with a Pb:Bi bo-
lometer at high temperatures showed essentially
the same temperature dependence. These data
were extended beyond the T, (7.2 K) of lead, and
showed that the diffusive heat transport also oc-
curred in the normal state with no abrupt change
at T,. The arrival time for the pulse in these high-
temperature data was found to scale with /? as ex-
pected for diffusive heat transport.

Unlike the high-temperature data, the data be-
low about 3 K were found to depend sensitively on
the nature of the detector. Figure 2 shows some
typical data obtained with the quasiparticle detec-
tor for 7=0.87 mm. At 2.6 K a new pulse is seen
to split off from the diffusive heat pulse. This
new pulse was found to grow in intensity as the
temperature was lowered further. The leading
edge of this pulse had a risetime of the order of
100 nsec and an exponentially decaying tail. The
peak arrival time of this pulse was found to scale
somewhat more slowly than [? approaching an [
dependence. The line shape of this pulse (as we
shall see below) can, however, be fit rather well
with a diffusion analysis, and is to be identified
with a pulse of diffusing quasiparticles. Below T
< 2 K only the quasiparticle pulse remains.

In Fig. 3 we show data at low temperatures of

| |
150 200 250

the quasiparticle pulse for the /=2.2-mm sample.
The tail of the quasiparticle pulse between 1.3 and
2.0 K can be seen to depend strongly on the tem-
perature. This is seen clearly in Fig. 4, where

T=1.6K

TUNNEL
DETECTOR
[11]

LEAD CRYSTAL

QUASIPARTICLE T=2.1K
PULSE

DETECTOR SIGNAL ( ARB. UNITS)

T=295K

TIME (usec)

FIG. 2. Temperature dependence (below 2.95 K) of de-
tector signal as a function of time. Tunnel junction de-
tector. The propagation length is 0.87 mm. A true
quastiparticle pulse splits off from the heat pulse at
T<2.6 K. ’
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FIG. 3. Low-temperature behavior of quasiparticle
pulse as a function of time. Tunnel junction detector.
The propagation length is ~2.2 mm.

we have plotted the signal amplitude, beyond the
peak, semilogarithmically as a function of tem-
perature. It is clear that the time constant changes
by nearly an order of magnitude between 1.2 and
2.1 K.
In Fig. 5 we show the data obtained at 7<2.55 K

with a Pb:Bi bolometer. The sample was the same
as that used in Fig. 3, but with a somewhat reduced

102 T T T T T

SIGNAL

1 | L | 1
200 400 600 800 1000
TIME (nsec)

FIG. 4. Semilog plot of the tail of the quasiparticle
pulse (see Fig. 3) as a function of time for several dif-
ferent temperatures. Note the large change in slope be-
tween 1.2 K and 2.1 K.

L Pb CRYSTAL
BOLOMETER DATA
2 ~1.67 mm

T=14K

BOLOMETER SIGNAL (ARB. UNITS)

T=2.55K

1
o 25 50 75 100

TIME (usec)

FIG. 5. Bolometer signal as a function of time for four
different temperatures. The propagation length is 1.67
mm,

length of 1.67 mm. In contrast to the tunnel-junc-
tion data, we now see ballistic phonon pulses
(longitudinal and transverse) split off from the dif-
fusive heat pulse as the temperature is lowered
below 2.3 K. At 1.4 K we see excellent ballistic
phonon pulses whose leading -edge arrival times
are now more than an order of magnitude slower
than the low-temperature quasiparticle pulse ob-
served with the tunnel detector. In fact, the arriv-
al times are now in excellent agreement with the
known sound velocities in lead.

VI. DISCUSSION
A. High-temperature data

Above about 3 K, it is clear that a single diffu-
sive pulse, characterized by a single diffusion con-
stant D, is observed with both the quasiparticle
and phonon detectors. This is consistent with the
expected extremely rapid scattering between the
quasiparticle and phonon excitations of the system
estimated from Sec. II. This rapid scattering im-
plies that there is true local temperature equili-
bration between the quasiparticle and phonon gases.

In Fig. 6 we show a detailed line-shape fit to the
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FIG. 6. Bolometer sig-
nal as a function of time.
T=3.5 K. Propagation
length is 1.67 mm. The
dashed line is a theoretical
fit to the diffusion heat
il pulse shape. Parameters
used are discussed in the
text.

T=3.5K
L=1.67 mm

C JLM‘ ..‘ lw | ] ] 1 |
(o] 10 20 30 40 50
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diffusion Eq. (3.29) for data obtained with the Pb:Bi
bolometer at 3.5 K. From the theoretical curve a
value of D was obtained. By including strong-cou-
pling corrections, the specific-heat ratio C,/C, is
found to be ~0.222x 107 at 3.5 K and the thermal
quasiparticle velocity ~4 X 107 cm/sec. This veloc-
ity was also calculated from BCS theory with
strong-coupling corrections and assuming that

the Fermi velocity in lead, (¥2)'/2, is 1 x10° cm/
sec. This choice appears to be a reasonable mean
of the values measured for different orientations
by Lykken et al.® The theoretical fit corresponds
to a value of 7,~8 x10™! sec.

It is important to point out here that the trailing
edge of the pulse in Fig. 6 arises primarily from
conduction (quasiparticle out diffusion) away from
the direction of propagation due to the point nature
of the source and detector. This picture is consis-
tent with the negligible effect we observed experi-
mentally of the cooling medium (helium) in deter-
mining the line shapes, and is also consistent with
the high thermal conductivity of lead.

Fom Eq. (2.6), we determine that the strongest
scattering process is recombination, and so we
anticipate that our estimates of 7, are directly re-
lated to 7,. Because two quasiparticles are in-
volved in the recombination process, in Fig. 7 we
show a plot of twice the measured scattering time,
27,, as a function of temperature. Between 3 and
3.5 K, 7, was obtained from detailed line-shape
fits as described above. At higher temperatures,
the leading -edge analysis, (3.26), which gives sat-
isfactory results in the strongly diffusive regime,
was used. It is clear from Fig. 7 that the mea-
sured scattering time changes by nearly three or-
ders of magnitude between 7 and 3 K. The mea-
sured scattering (diffusion) time is particularly

short at high temperatures, having values ~7 x 107°
sec near 6.8 K.

The observed magnitudes and the temperature
dependence can be quantitatively explained as fol-
lows. In lead the shortest scattering time at 7= 3
K is the recombination time 7., which depends ex-
ponentially on A/kT. However, the phonon-pair-
breaking time® g (at 24) is ~3 x10™*! sec at T~ 3

T (K)
-9 10 5 33 2.5
10 T T T 7
" timp.
10-10
°
[
e
ES
z oMk
i 10
Z /
z A
o
g
o
? o1z
1073 L 1 I 1 L L
[o] 0.1 0.2 0.3 04 05 06

1T (K)?

FIG. 7. Semilog plot of twice the measured scattering
time (solid circles) as a function T-!. The dashed line
is the theoretical quasiparticle recombination time 7p,
while the solid line corresponds to T%/(Tg+ 75), where
Tp is the pair-breaking time in Pb.



6050 NARAYANAMURTI, DYNES, HU, SMiTH, AND BRINKMAN 18

K. The pair-breaking time (which is relatively
temperature insensitive) becomes comparable to
Tp at T~3.5 K. At higher temperatures, especial-
ly above 4 K, 7, becomes much shorter than 7.
This implies that the observed quasiparticle diffu-
sion is slowed down by the ratio 7,/(7,+7;), since
the energy involved in a recombination process
spends a considerable fraction of time as a phonon
and not as two quasiparticles. Thus the measured

scattering time 7_,,, is related to 7, by

1/ 7 0as=(1/ TR L+ T5/T5) .

The solid line is the calculated value of 72/(7 4+ 75)
as a function of temperature from the theoretical
calculations of Kaplan et ql.®> Theory and experi-
ment are in excellent agreement, and our data
provide a quantitative measure of 7,. Figure 8
shows a plot of 7, determined after making the
above corrections, and shows clearly the excellent
agreement between theory and experiment. For
most superconductors, this correction of TB/ Tgis
small as 7 is usually >7;. In a strong-coupled
superconductor like lead, however, above 4 K this
term dominates and the thermal diffusion is sub-
stantially retarded by this effect. It is also in-
teresting to note that the results of Fig. 8 suggest
that 7, is sufficiently short so that lifetime broad-
ening effects should be apparent. In a recent tun-
neling experiment these effects have been directly
observed.°

T (K)
5 33 2.5 2
107° 'lo T T
—Tg (THEORY)
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&

2 010k
woy
o=
= -
[ 4
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=
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23

= oM

210

(3]

w

[+ 4

10712 ] | ] 1
[oX] 0.2 03 0.4 0.5
/T (K)™!

FIG. 8. Quasiparticle recombination time (open cir-
cles) calculated from the measured scattering time of
Fig. 7. The solid line is the theoretical recombination
time 75 [A(T=0)].

B. Transition region

So far we have been assuming that the quasipar-
ticles and the phonons are in equilibrium, so that
a local temperature and a single diffusion equation
describes the propagation. As discussed in Sec.
IIat T~2.7T K, T, becomes long and from the esti-
mates (see Sec. II) the relaxation time 7,,, for the
quasiparticle number becomes long. Thus in the
transition region we really have three pulses prop-
agating: these are the quasiparticle pulse, a pho-
non pulse, and the remnants of the heat pulse. The
heat pulse is detected both by the tunnel junction
and by the bolometer, while the quasiparticle and
phonon pulses are detected, respectively, by the
tunnel junction and bolometer. Furthermore, the
quasiparticles (see below) and the heat pulse can
be described by diffusion equations for the quasi-
particle number and the local temperature, re-
spectively, but the ballistic phonons cannot. For
this reason, we do not attempt quantitative fits
to the data in the transition region. However, in
Fig. 9, we show some typical theoretical line
shapes for the coupled diffusion equations approp-
riate for T=2.4 K. In this transition region, we
believe quasiparticle scattering time 7, is dom-
inated by the number decay time 7,,. The values

£=0.87 mm

= -6

SIGNAL

1 1 1 1 1 | 1 1 1
(0] 50 10.0 15.0 20.0

TIME (usec)

FIG. 9. Theoretically expected line shapes in the
transition region. The line shapes were calculated from
the coupled diffusion equations [see Eq. (3.29) of text]

for three different values of the number decay time Tt -
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TUNNEL DETECTOR
T~1.6K; L~0.87 mm

---- THEORY
‘— EXPT

Timp=1.5X% 10710 sec.
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] 1 ] | ] | ] I
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FIG. 10. Low-temperature quasiparticle pulse. T
~1.6 K. The propagation length is 0.87 mm. Tunnel
junction detector. The solid line is the experimental
data, while the dashed line is obtained from the theoret-
ical diffusion equation with a value of the impurity scat-
tering time 7, ~1.5x10710 sec.

obtained for 7., range from about 10 to 107 sec.
It is clear that in the region of 7,,~ 107 sec there
are two diffusion pulses reflecting the decoupling
of the quasiparticle number with the local temper-
ature as is qualitatively observed with the tunnel
detector. Note that the actual arrival time of the
second pulse at T~ 2.5 K is close to the sound ve-
locity. Thus the neglect of the ballistic nature of
the phonons in the transition region is not justi-
fied. To-make quantitative fits would require a
proper treatment of the ballistic phonons, and that
is beyond the scope of this paper. We, therefore,
choose to obtain more quantitative information of
the number decay time 7, through a study of the
tails of the quasiparticle diffusive pulse at low tem-
peratures, as discussed below.

C. Low temperature quasiparticle diffusion

Figure 10 shows an expanded trace of the low-
temperature (7~ 1.6 K) pulse observed in the 0.87 -
mm-thick sample. This pulse shape can be quan-
titatively fit by the diffusion equation with a value
of 7,,,~1.5x10™° sec and long-number decay
times (7,,,2 107 sec). This fit, then confirms our
earlier conjecture that the decoupling between the
quasiparticles and the local temperature is now
complete with the quasiparticle number diffusion
being limited by the impurity scattering.

These ideas are further substantiated by the data
on the 2.2-mm sample that we showed in Figs. 3
and 4. In this sample 7., ~ X 10™ sec (about one
order of magnitude longer than in the 0.87-mm
sample). At T=2.1 K the measured number decay
time ~6.3 x 10" gec is about one order of magni-
tude larger than 7, as expected (see earlier dis-
cussion, Sec. II). This time increases inversely

107€

Toff (sec)

1078 1 1 L 1 | 1 L
045 050 055 060 065 070 075 0.80

vT !

FIG. 11. Semilog plot of the quasiparticle number
decay time 7,z vs 1/T. Open circles obtained from data
are shown in Fig. 4. The solid line corresponds to the
expected 1/7 dependence of 7 .

proportional to the quasiparticle number density
down to temperatures as low as about 1.7 K and
provides confirmation of our model. These decay
times are plotted in Fig. 11, At the lowest tem-
peratures (1.3-1.6 K) the increase in 7 is some-
what slower than expected, but this is almost cer-
tainly due to the inevitable overinjection of quasi-
particles compared to the thermal number. This
overinjection becomes more important the lower
the temperature.

VII. SUMMARY

In summary, we have studied the propagation
characteristics of quasiparticles and phonons in
bulk superconducting lead by means of tunnel and
bolometric detectors and time-of -flight techniques.
The most interesting feature of the data is the ob-
served transition in the pulse propagation from
purely quasiparticle (and ballistic phonon) propaga-
tion to a diffusive heat pulse in the combined gas
of excitations. The data allow a numerical deter-
mination of the recombination time 7,, the number
decay time 7,,,, and the phonon-pair-breaking time
Ty through detailed line-shape fits of the observed
diffusive pulses.
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