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A theory of the neutron scattering intensity from an imperfect vortex lattice in type-II superconductors is
developed, which predicts that flux pinning leads not only to a broadening of the Bragg reflections, but also
to a finite scattering intensity for wave vectors within the first Brillouin zone. At sufficiently high fields, the
small-angle scattering intensity is predicted to exceed that of the Bragg reflections. According to this theory,
if the incident beam is chosen parallel to the applied field, shear and tilt strains in the vortex lattice, and
thus the most important intrinsic defects, give no contribution to small-angle scattering, and the measured
intensity is due almost entirely to the strains caused by pinning forces. Small-angle neutron scattering
experiments are thus capable of yielding insight into elementary pinning interactions beyond that obtainable
from volume pinning force measurements, which must be interpreted by means of still unsatisfactory
statistical summation theories.

I. INTRODUCTION

The magnetic field inside a type-II supercon-
ductor to which an external field H, &H„ is ap-
plied exhibits spatial variations due to the appear-
ance of flux lines, which form a flux-line lattice
(FLL). If a beam of monochromatic neutrons is
applied to the specimen, some of the neutrons are
scattered by a small angle, the scattering ampli-
tude being proportional to the Fourier transform
of the internal field H(r). Neutron scattering has
been used to determine the symmetry and spacing
of the FLL, the field distribution within a lattice
cell, and the curvature of flux lines. ' '~

In a real superconductor the pinning forces ex-
erted on the flux lines by crystal imperfections
distort the FLL and smear out the Bragg reflec-
tions of the ideal FLL. As recently pointed out
by Labusch, "the intensity profile of the diffrac-
tion lines gives insight into properties of the pin-
ning forces. This theory predicts not only a
weakening of the sharp lines by Debye-Wailer
factors, but also the appearance of a broadened
profile, whose width gives a measure of the mean
square of the pinning forces. Neutron scattering
thus complements measurements of critical cur-
rents, flux density gradients, and irreversible
magnetization curves, which all determine the
maximum volume-pinning force of the imperfect
matrix on the FLL. As for the elementary pin-
ning forces, there is at present no method that
determines the forces exerted on each flux line
within a FLL without the aid of statistical summa-
tion theories. The existing summation theories
are restricted to the so-called dilute limit, and in
the three-dimensional case yield a threshold for

the elementary pinning force below which the
volume pinning force should vanish. There is no
experimental evidence for this threshold.

It is therefore desirable to get further informa-
tion on flux pinning. This is particularly impor-
tant at high inductions, b=B/B„&0.3, where the
flux line cores overlap, even if the Ginsburg-
Landau (GL) parameter v is large. This overlap
invalidates the usual picture of individual flux
lines interacting with each other and with the
pinning centers by two-body interactions. This
picture underlies all existing quantitative theories
on flux pinning. In those theories the only two
corrections adopted from the GI, theory are that
the pinning forces and the shear modulus of the
FLL are allowed to vanish as b-1. As shown
recently, "~' a rigorous GL treatment of the
pinning problem yields the fact that both the
elastic properties of the FLL and the character
of pinning forces require further modifications at
large inductions. These modifications are used
in this paper.

The method in which information about pinning
forces is extracted 'from the shape of diffraction
lines has several drawbacks that are most severe
just at large inductions where this information is
most desirable. One disadvantage is the low in-
tensity of even the most intense reflection. Since
the spatial variations of the magnetic field are of
order H„(1-b)/8 (ideal FLL tab& I2/8), the.
scattered intensity behaves as (I-b)'/a and thus
is low for large values of b and ~. This estimate
also shows that, without pinning, the field inside
a hard superconductor (~» 1) is practically con-
stant, except at very low inductions b& I/2x . It
is therefore difficult to measure the line profile
at large inductions or in hard superconductors.
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The sharp lines predicted by Ref. 15 appear only
if the flux line displaeements from a perfect ref-
erence lattice are small compared with the lattice
spacing d. For a specimen of diameter D this
means that the relative deviations of the induction
from its spatial average should not exceed the
value 0.1d/D, which is typically of order 10~.
Such a high homogeneity probably cannot be
achieved in macroscopic specimens. This is true
particularly at large inductions, since the stiff-
ness of the FLL decreases more rapid1y with the
induction than do the pinning forces.

There is also an objection of a more fundamental
nature. For the- calculation of the intensity pro-
file it was postulated that the scattering cross
section splits up into the product of a structure
factor and a form factor, which is assumed to be
insensitive to lattice distortions. This assumption
implies that the magnetic field is the linear super-
position of effective vortex fields, each of which
is centered at one flux line, or ifbending of flux
lines is allowed for, at one Qux line element.
However, at large inductions, and for z close to
I/ 2 even at arbitrary induction, this assumption
probably does not apply even approximately. In
these two special cases the magnetic field is re-
lated to the order pa, rameter &o(r ) = ~@(r) ~' and to
the applied field H, by the local relationship
H(r ) =H, —H„ur(r)/2(( . The order parameter of
the distorted FLL takes the form of a product
(which ensures &o = 0 at the flux line centers)
rather than a sum. ' It is not yet clear to us
in which cases the product may be approximated
by a sum, thus ensuring the form factors to be
independent of the lattice distortions. The inter-
pretation of the intensity profile requires a de-
tailed calculation of the rapidly varying part of
the magnetic field of the distorted FLL. At
present, only the slowly varying part is known
with sufficient accuracy. "'"

We therefore suggest experiments measuring
the intensity of neutrons with scattering vector
inside the first Brillouin zone (BZ) of the FLL
rather than close to the reciprocal-lattice vectors.
It mill be shown that this small-angle-scattering
method yields detailed information on the lattice
distortions and on the pinning forces. The method
will avoid most of the disadvantages of the line-
profile method: (i}The scattered intensity will
be large at large inductions and a modest angular
resolution or even integral measurements will
suffice, (ii) small displacements are not postu-
lated, and, most importantly, (iii) the theory is
based entirely on the GL equations and thus avoids
the ad hoc assumptions of displacement-indepen-
dent form factors, local-elasticity theory, and
local pinning forces which were used in Ref. 15.

II. SCATTERING FROM STRAINS IN THE FLUX-LINE
LATTICE

The differential scattering cross section for
neutrons within the Born approximation" is

dA 4(({(0
~H(k)~ =f(k) (2.1)

(in Systeme International units), where y„= 1.91,
p, is the quantum of flux, k is the scattering
vector, and H(k) is tbe Fourier transform of the
magnetic field inside the superconductor defined
by

(2.2a)

{{(k{=f d'~ e""'~ {{{r) (2.2b)

The spatial integration in (2.2b) extends over the .

volume V of the specimen. H(r) is completely
determined, at least in principle, by the boundary
conditions, by the positions of the flux lines, and
by the material parameters and temperature en-
tering the theory chosen.

In the following we need the discrete fields
s„(z)= (s, „(z),s„,(z), 0), the displacement of the
vugh f1ux line measured in the plane z = const from
the regular flux-line position 8„=(X„,F„z}, and
P(z)=(P„„(z), P„„(z), 0), the pinning-force
density. These fields are discrete with respect
to the variable v (indicating the flux line) and con-
tinuous with respect to z (a line parameter, for
which we choose the coordinate z parallel to the
applied field). The Fourier transforms of s„(z)
and P,(z) are continuous functions s(k) and
P(k) defined, e.g., by

P„(z)= e'" ".P(%),
BE

(2.3a)

{(i7) = Q f dec"'" T„(z{.
V

(2.3b)

H(r)= g Hg e'"',
K

H(R) = g HZSm'5(R-K),
R

wbere the 5 function is 6(k„-K„)f((k„-K,) 5(k,),
and the sum is over all reciprocal-lattice vectors
K= (K„,K„,O). Due to the factor 6(k,), the seat-

(2.4a)

(2.4b)

In (2.3a) n= 6/(((, is the average density of flux
lines and the integration is over the BZ. From
(2.3b) it follows that s(k) and P(k) are periodic in
k. In contrast to this, the integration in (2.2a)
extends to infinity and H(k) is not periodic. For
an ideal periodic FLL one has



E. H. BRA 5DT

plus terms of higher order in the strains and in
k'/EP„(KM is the first reciprocal-lattice vector).
Equation (2.5) applies to all values of ~ and b and
to wave vectors k &0.7 k~, where k~ is the radius
of the BZ. The three characteristic wave vectors
appearing here and in the following are

(2.6)k as=2b//=4 nv,

k'„= {~)/~' = [(I —b)/2bd] k„ (2 7)

k2s = 2(1 —b)/P = [(1—b)/b] kss, (2.8)

where A, is the weak-field penetration depth,
= X/((, and {(d)= 1 —b is the spatial average of the
order parameter. For the triangular FLL, K»
= (2v/V 3)ks, or ks = 1.05 (2E„).

Equation (2.5) states that for periodic displace-
ment fields the s component of H(r) varies
spatially with the amplitude Bdiv s(r-) (1+k'
/k„') ', where -div, s(r) is the local compression
of the FLL. In addition to this, a field component
B(s/ss) s(r) (1+k'/k„') ' appears that is propor-
tional to the local tilting angle of the flux lines
and directed perpendicular to z; this component
ensures that div H(r) =0. The factor (1+k'/k'„) '

tering intensity of the ideal lattice vanishes out-
side the plane k, = 0. This is shown in Fig. 1.

For an imperfect FLL H(r) is no longer strictly
periodic and the 5 functions in (2.4b) will be
smeared out. In addition to this, long-wavelength
variations of H(r), with wave vectors k within
the first BZ, will occur and lead to a finite scat-
tering amplitude at small scattering wave vectors
(Fig. 2). For such small k the GL theory yields"

p, -z[ik ~ s(k)]+ ik,s(k)
1+k'/k'„

IO-

k~, '

FIG. 2. Lines of constant scattering intensity for a
perturbed FLL (schematic). If the FLL is a polycrystal,
the intensity distribution is rotationally symmetric about
the k, axis (which is parallel to H,). The planes of con-
stant intensity are tori of elliptical cross section and
with radii K~ and ellipsoids centered at the origin.
These ellipsoids are calculated in this paper. The .

smearing out of the Bragg reflections by rocking the
sample is indicated by a dashed line.

may b5 interpreted ks originating from the over-
lap of effective vortex fields having a range k„'.
Indeed, Eq. (2.5) coincides with the corresponding
result of the London theory" with A. replaced by
k„"'. This coincidence is, however, restricted to
k&0.7 k~. At larger k the GL result for the field
of the distorted FLL only approximately coincides
with a linear superposition of effective vortex
fields, the deviation being largest at large values
of b and k.

Inserting (2.5) into (2.1), we get a basic formula
for the differential scattering cross section of the
distorted FLL:

lO

(( 91 ' Ik s(k)!*+A*,(s(k}t*
4 (1+k /k„')' (2.9)

III. SCATTERING DUE TO PINNING FORCES

kn

K-ll '
&KO I

-)0

FIG. 1. Schematic representation of the scattering
geometry for incident neutron beam and applied field 8,
parallel to the z axis for an ideal hexagonal FLL. The
scattering intensity is finite only at the reciprocal-lattice
points ~=k. The neutron wave vector k„and the scat-
tering angle 8 are not drawn to scale; for 2x/k„= 4 A and
B=1000 G, 8=0.0016 rad. The total intensity of each
reflection has to be measured by rocking the sample.

Distortions of the FLL may be caused by intrin-
sic defects or by pinning forces. Within linear
theory of elasticity, the most important intrinsic
defects (edge and screw dislocations and point de-
fects'9) cause mere shear or tilting strains. Both
intrinsic strain types satisfy the condition div
s=ks=0: for the shear strain div s vanishes by
definition, and for screw dislocations it vanishes
because s depends only on z but has no z com-
ponent. Thus the first term in (2.9) vanishes
identically for intrinsic strains. The second
term can be made extremely small by choosing
the incident beam parallel to the external field.
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In this geometry the scattering vector for elastic
scattering has a negligibly small z component,
since for thermal neutrons the wave vector k„ is
much larger than the scattering vector k.

We now express the displacements that appear
in the scattering intensity (2.9) in terms of the
pinning forces. The most general linear relation-
ship between these fields takes a simple form if
expressed in Fourier space,

s(k) = y-'(k) P(k), (3.1)

where g&
'(k ) is the inverse of the elastic matrix

g&(k) of the FLL. Within the continuum approxi-
mation 2~, 26 which is valid for ~+0.~ ~~ the GL
theory yields an expression for g(k) that is
similar to that of the local theory of elasticity but
with the elastic moduli replaced by k-dependent
functions:

with

[c~~(k) —c66] k„ky~ c~~(k)k~+ cmkg+ c44(k)kg+ G ~
(3.2}

.„(k)=(~ dH. /dH)/(I. k /k.-„){I.k /k;),

ce, =BH„[(1—0)'/10/P] (1 -' I/2z'),

c„{k)= (a'/I, )/(I+ k'/k„')+ a{H. a/I, ) .

(3.3)

(3.4)

(3.6)

(3.6)

The parameter nz, first introduced by Labusch, s' emerges from the statistics of pinning centers (cf. Sec.
IV). It removes a divergence of the scattering amplitude at small scattering angles.

Inserting (3.1) into (2.9), we get for longitudinal geometry (beam parallel to z}
n2 Ik P(k„k„0)l2

(1+k'/k')' " [c„(k)k'+n J'
and for transversal geometry (beam perpendicular to z),

n' IP„(k„,0, k,) I'(k„'+k', ) I&,(k„, 0, k,)I'k',
(1+k/k) [c (k)k'+c (k)k'+n ]' [c k'+c (k)k'+u ]' n

(3.7)

In (3.7) appear the displacements caused by in-
trinsic defects, s„(k), which were assumed to be
uncorrelated with the displacements caused by
pinning forces. For longitudinal geometry this
assumption is not required. For cases where
rotational symmetry about the z axis applies, the
general result I(k„,k„k,) is obtained from (3.7)

'

by replacing k„' with k„'+ O', . The two expressions
(3.6) and (3.7) still apply to the general case
where this symmetry does not exist, for instance,
because of a transport current or asymmetric
flux density gradient. By measuring at various
orientations between the incident neutron beam
and the transport current, one would get additional
information about the distribution of pinning
forces.

IV. STATISTICS OF PINNING FORCES

The squares le P{k)l' appearing in (3.6) and
(3.7) with e = k, x, or y can be calculated from the
force field of individual pinning centers. First
consider a superconductor containing a large
number of pinning centers of various types with
positions distributed at random. From (2.3b} it
follows that the P(k } of two pinning centers of the

same type and at equivalent positions (differing
by a lattice vector 8„)differ only by a phase
factor exp(-sk ~ R„). If there are many pinning
centers of that type at equivalent positions, then
in the square of the sum over all force fields the
cross terms give no contribution because of de-
structive interference of the phase factors, and
one is left with

I'P(k)l'= g 'P~(k) =g I'P~(k)l',

(4.1)

where P, (k, a) is the force field of a pinning center
situated at r = a and the average is over all pos-
sible positions a. If the a are at random, one
should hope to obtain this average by averaging
over homogeneously distributed positions a within
one lattice cell. This is indeed true if one deals
with forces on a rigid lattice. Elasticity of the
FLL introduces, however, two complications.

First, the pinning forces are not completely
independent of each other since the flux line dis-
placements caused by one pinning center change
the distance between the flux lines and the pinning
centers, thereby changing also the original stiff-
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pP(I + k2/k2 )2
I(k k 0) 0 23

&&X(~k P(k„, k„o; aug(a)), (4.2)

where the average is taken over the unit cell of
the FLL and (g(a)) =1. Note that the factor
(1+k'/k2~) in the compressional modulus (3.3) and
in the field (2.6) have canceled, and the final re-
sult (4.2} contains the usual compressional mod-
ulus c»(0) = c» of the local elasticity theory. The
nonlocal elastic response of the FLL leads to the
appearance of the factor (1+k'/k2~) in the scat-
tered intensity. This factor may be neglected at
b&0.5; at; larger inductions it leads, however, to
the quite unexpected result of a b-independent
scattering intensity. This will be shown in the
following sections for point pinning centers.

lattice pinning forces. This effect is approxi-
mately taken into account by Labusch's param-
eter n~ in the elastic matrix (3.2). This param-
eter adds to the elastic interaction between the
flux lines an elastic interaction between each flux
line element and its original position in the ideal
FLL. This approximation makes sense only for
sufficiently weak pinning interactions and for
wave vectors k much smaller than the reciprocal
mean distance between pinning centers. It is,
therefore, consistent to keep nz in (3.6} and (3.7)
only in order to prevent the divergence as k-0,
but neglect all combinations of ~~ with k~~ and
k~~ when (3.3) and (3.4) are inserted. "

Second, if we calculate the pinning-force field
from the interaction with the unperturbed FLL, as
will be done below, we get too large a value for
~e P(k) ~', since the elastic response of the FLL
tends to reduce the pinning forces. This effect
will lead to a breakdown of the following calcula-
tions at inductions close to B„,where finally all
flux lines are trapped by pinning centers and the
displacements cannot increase further. This
saturation may be approximately accounted for by
performing the average (16) over the lattice cell
with a weight factor g(a) that favors the center of
the lattice cell for attractive pinning forces and
the cell boundary for repulsive forces (if the cell
is centered at a flux line). In this paper the
averages will be evaluated for g(a) = 1, which
means that the lattice distortions are assumed to
be small.

Putting. these arguments together and special-
izing to longitudinal geometry (to which the follow-
ing sections are restricted), we arrive at the
differential scattering cross section

.~k ~ P(k„,k„, O)
~

= k„g P„+k„gP . (5.1)

If the force distribution is isotropic (no trans-
port current), the two sums in (5.1}are equal.
The scattering intensity (4.3) then becomes

I(k, k„,0)=0.23, , „—Q P(. (5.2)
(C~~k + Q~J 2

Here we have neglected the term k'/k2~. This is
consistent, since the above model is restricted to
low inductions, namely, to b«1 for core inter-
actions ($«d), and to b«1/2x' for magnetic
interaction (X«d).

Equation (5.2) could have been obtained also by
a classica/ local theory, since it contains neither
k„nor k~. The absence of k„ is, however, caused
by the cancellation of two factors (1+k'/k'„)' in
the denominator (magnetic nonloeality) and in the
numerator (elastic nonlocality). This factor may
become very large, =O'I('. , at large values of K.

The physical reason for the appearance of the
same k dependence in both the magnetic and the
elastic nonlocalities is that at low inductions the
flux lines interact only by the long-ranging mag-
netic field (except if x is close to 0.7). On the
other hand, at high inductions the elastic response
becomes "more nonlocal" than the relationship
between flux line positions and magnetic field.
This is reflected in the appearance of the factor
1+ k'/k2~ in (3.3) and(4. 2).

As a second example we consider pinning forces
that derive from a potential V(r). The force
densities exerted by an inhomogeneity situated at
r= a then read

P„(g) = —V V(r, (z) —a)= V V(r, (z) —a). (5.3)

The gradients in (5.3) are defined as having no z
component. If the flux lines form a regular lat-
tice, one has

d3k
P (s)= a V(k)e*'.«.-~&

P 8 3

(5.5)P(k) = -n g i(k, +K) V(k+ K)e '~'"'"'
K

In (5.5) the sum is over all reciprocal-lattice
vectors K, and k, = (k„, k„O). The Fourier trans-

V. SIMPLE-PINNING-FORCE MODELS

If each pinning center acts on one flux line only,
the average in (4.3) is easily evaluated. For a
pinning center acting with a force P,. on the flux
line situated at R„„Eq.(2.3b) gives P(k„, k„0)
=P, exp(-xk R„,). This result is independent of
the detailed behavior of the force density along
this flux line. For many uncorrelated pinning
centers one gets



18 THEORY OF SMALL-ANGLE NEUTRON SCATTERING FROM THE. . .

forms V(k) and P(k) of the continuous and dis-
crete functions V(r) and P„(z) are defined by (2.2)
and (2.3), respectively. From (5.5) we obtain the
average over a:

&lk P(k) I'&=n'g (kl+k. K)'IV(k+K) I'.

(5.6)

Inserting this in (4.3) and using the. rotational
symmetry of V(r) and V(k) about the z axis and
the relationship k'«E», we get the scattering
intensity

k'Iv(k)l'+-g z'Iv(K)l' .

(5.7)

For short-range forces (range «d) V(k) is slowly
varying. The sum in (5.6) may thus be trans-
formed into an integral over k'=k+ g with the
integrand replaced by k'2

I V(k ) I2 =
I
P(k ) I

2~ since
I V(k) I' is even. Going back to real space and
introducing P(r) = -&V(r) (the gradient is still de-
fined without z component), we get for the
quantity in brackets in (5.V)

A'xP r',
n o

(5.8)

c [k/(k+k) +c/k ] (5.9)

which does not depend on k. If the core width r,
enters the potential V(r) only in the combination
r/ro, the integral (5.8) does not depend on ro For.
the model potential V(r) = z(l+ r'/r, ') ', Eq. (5.8)
becomes ze'/3n. This model potential approxi-
mately applies to pinning centers interacting with
the vortex core, the constant z

I
being of the

order of t}OH2P or smaller.
The short-range case applies also to magnetic

forces if b«1/2(('. At larger inductions magnetic
forces have the long range k„'» d. For long-range
forces V(k) decreases rapidly, in particular one
has IV(0) I

»
I V(K,O} I

and thus the first term in
the brackets of (5.7}becomes important. This
term is strongly k dependent. The second term
is independent of k and approximately equals
(5.8). Magnetic interactions have an approximate
potentia132 V(k) = c(k'„+ k') " with c = pT ~ zk'„po/po
for magnetic inclusions with magnetic moment p, ,
and c= yok2+po/t(, 2Ofor para- or diamagnetic in-
clusions with strength g„or for crystal-lattice
strains that couple to the magnetic energy den-
sity, "'"[the perturbation energy is in these
cases E, = p, H(a) and E,= 2y, H'(a)]. This poten-
tial gives for the quantity in brackets in (5.V)

where c' is close to unity for 5& 0.2 and c' =-—,'lnb
for b & 0.2.

The term O'
I
V(k }I' in (5.7) is due to the simul-

taneous action of one pinning center on many Qux
lines which leads to a change in the local flux
density around the pinning center. The contribu-
tion of this term becomes large as the range of
the pinning forces exceeds the Qux line spacing.
For short-range forces this term gives a small
contribution.

Approximating the potential by V(k ) = c(km~+ k') ',
where 0~=k~ for magnetic interaction and k~
=v 2/g for core interaction, we get in the general
case of long- or short-ranging pinning forces
deriving from a potential

n~c' k' + k'
I(k„,k, 0)=0.23 N

C~~ 0 a+u', a'
y2+ p2 2 p2 (5.10)

where k', = o.'~/c», c and k~' are the amplitude and
the range of the potential, and c'=1.

s',(e, A}= fd'~[ a(r)(0~'+ 'P—(r)~@('-,
+y(r)

I
(v/iz-A)C '+ p(r) ~ H

+ -' X(r) H'1 (6.1)

contains small perturbations (}., P, y, p, , and X
which are due to material inhomogeneities. The
magnetic inhomogeneities are characterized by
the functions P(r) and X(r), and lead to pinning
forces of the potential type that is discussed in
Sec. V. The core interaction, characterized by
(}.', p, and y, for k & 0.3 is of the short-range type
treated in Sec. V. At larger inductions, however,
the core interaction exhibits a different behavior.
This will be discussed in the following for
localized perturbations with diameter S$. For
such inhomogeneities u(r) = a,6(r —I), P(r)
=P,6(r —a), and y(r)=y06(r —a), where o'.0, Po,
and y, give the strength of the perturbation.
The pinning forces on the undisplaced lattice may
be obtained bg a method developed in Ref. 22.
This gives" P (R) = P (k )+ P~(k)+ P„(k), where

VI. PINNING FORCES DERIVED FROM GINZ-

BURG-LANDAU THEORY

A more rigorous treatment of the pinning
problem starts from the perturbed GI, free-energy
functional E =E,+E„where E,(C, A] is the free-
energy functional of the homogeneous material
(to which the material parameters H„H„, z, X,
and g refer), and
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I
P (k) =-u ~(qak2 g 2',2+K e I{5'2I'2, (6.2)

~g

P (k) P ~2(~)k2 Q
'\ 2+ )e j{K4I) 2

@+
(6.3)

V(o
k'V(4)+(k, +K)[(k+K) ~ V(o] (k, +K)[(k+K).V(o]+ (o 2(k2+K) ((2,x).",

k'„+ (k+ K)2 k22+ (k+ K}2
(6.4)

—2K (x 2 V(or
(o(r)

Kao

may be used to simplify Eqs. (6.2) —(6.4):

PP (k)=-u, (u(a);~ B, + V(o(a) e '"'

k2
P(k)= p, &u'(a), k, +V[(o (a}je ' ',

(6.5)

(6.6)

(6.7)

P„(k ) = y k f (a)&,+ Vf (a)

and &o= (o(a) =
~
4 (a) ~2 is the value of the unper-

turbed periodic order parameter at the position
of the defect. Equations (6.2}—(6.4) are exact
in the limit b - 1, and they remain good approxi-
mations in the entire range O& b & l. For b & O.5,
where ~ is close to Abrikosov' s solution, and for
k&0.7 kB, where (k+K)'=K' for KWG, the rela-
tion

III (6.8),

f,(a) = [V(o(a)]2/2)( (o(a)

is the gradient term of the GL functional E,."
Note that V(o and V((o2} are odd functions of a,
whereas (o, (o2, and f are even. This greatly
simplifies the averaging of ~k ~ P ~2 over a since
the averaged product of an even and an odd func-
tion vanishes. The term P~ may be neglected at
sufficiently large b, since it is quadratic in
1 —b, whereas P and P„are linear in 1 —b. The
remaining terms can be evaluated analytically;
we find in Appendix A:

2 2

&~k ~ P.(k) I'&=: & '&,.„.. &(V },
& —,

+ b[ ( )k]%, + a+

x e~keg. (6.8)

k g~ 1
0&(o& PA B (k2+k2)2

(6.9)

'I"'"'I'="*""4 4";4* 4*;*'"'" 4 ~ 4* 4* ' 4* e'4 4*)@+ j 4+ I + 4+ h+

k k'2k

(6.10)

(6.11)

where y0= by0 and the constants p„=1.1596, a, = 1.1125, a2 = 8.2440, and a2 = -3.0657 are defined by the
spatial averages &(o') =&(o&2p„, &(V(o)2&= b)( &(op&2„, &f22&= b2&(o&2a„&(vf2}'&=b2x &(o}2a2 and &V(oVf )
= b2(( &(o)2a2.

Adding (6.9)-(6.11), we get
2

2 ~ 2 k'kB k2 k2 l k k2
&I& P&4, 4„,O)I)-&-)'4, 4' ~, , . ...+~.+~.

I . .+4, 4. I+~. . .+~,)@+ {k2+k' k +k k +k „+k
whe re

(6.12)

c, = p„u20 —p„u,y,'+ a,y0 = 1.160u', + 1.113y," 1.160u y' &0,

c2= 4(pzu0 —2a2u0y0+ a2y0 ) =0.290 u20+2.061 y02+ 1.533 u0y0&0,

c2= 2( PBu0y0+ a—2y0') =-1.533 y02 —0.580u0y0~(0,

4 = e P~ro = O.29o yo" & O .

V)'ith (6.12) inserted, the differential scattering cross section for b&0.5 (4.2) becomes
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~2 2yp ) 2 )p +y2 II 2 y2

2a 1 k' k' ) k'
2

&IC . +C +C
k k2 k k2 't k

'(k'+k }' ' ' k'+k' k'+k') k'+k k'+k' (6.13)

In (6.12} the relat:ionships (2.6) —(2.8) and (&u)
= 22(l —5) (2a'p„- p„+1) ' have been used.

VII. DISCUSSION

A. Intensity profile

The relationship between the differential scat-
tering cross section for coM neutrons and the
properties of the pinning centers are given by
Eq. (5.2) for short-range forces, by (5.10)for po-
tential forces, and by (6.12) for nonmagnetic
pinning centers at b& 0.5. All three results apply
to the case where the incident beam is parallel
to the applied magnetic field, and where k&0.7k~
(=O.SV K,o for the triangular lattice). We first
discuss the k dependence of the scattering inten-
sity.

At very small k«k =(ct~/c»)'~', all three ex-
pressions yield I(k)-k~, with the constant of
proportionality itself being proportional to the
square of the ratio of pinning strength (P„c, n„
Po, yo) to Labusch's parameter n~. Since a~ is
roughly quadratic in the pinning strength, the
scattering intensity is predicted to be inversely
proportional to the strength of the pinning forces.
This effect is probably difficult to observe because
of masking by the primary beam. In principle,
0.~ may be determined from the position of the
maximum in the differential scattering cross
section at k =k (Fig. 3).

At k» k, I(k)-k~ for short-range forces and
for the GL result (6.18). For short-range forces,
this decrease continues up to the BZ boundary,
but for core interaction at b&0.5, I(k) reaches a
constant value at k =ks(1 —b)/b. For long-range
magnetic interaction I(k)-k for k„&k&k~, and
it reaches a constant value at k = ks[(1 —b)/b]'~',

I(k„,k„, 0) = 0.23Nna(go/p, ,)'
x (&'/it. c„)'(I/4a'} .

The saturation value derived from (6.18) is

I(k„,k, 0}= [0.20¹Pha/(I —0.069m~)2ca»]

x (n2o —n oyo 5+ 0.96yo ba),

(V.1)

where 0.20 =y„'/16P&. Forthe special case y0=0,
one has ca= c~= 0; the scattering cross section is
then independent of k„and, for k&k, reduces to

~(~ ~ 0) 0:20Nn', n'5', j(a; +0')'
(1-0.069m a)ac2 ~ 'I, kks

(V 3)

k/ka
Q.7

FIG. 3. Differential scattering cross section at low
inductions (5 6 0.4), Eq. (5.10), plotted for he=0.05 kz
and normalized to its maximum value. Sobd line: Core
interaction with range k&= 0.7 t' (k&»k~). Dashed line:
Magnetic interaction with range k&'=kz = A, (l -b)
plotted for kz—-0.1 kz corresponding to bx = 50(1—b).

with (2.6) and (2.8) the last factor in (V.S) may be
written

f1+ —,
' [(1 b)/bk + k']'}, (V.Sa)

where k' = k/ks. For»»/&'„, where c» -&',
(V.Sa) contains the entire b and k dependence of
(V.S). The function (V.Sa) is plotted in Fig. 4 for
various values of b. The transition to the short-
range-force behavior I(k)ak~ is clearly seen at
b ~ 0.5.

The first term, unity, in the brackets in (V.S)
is due to the nonlocal elastic response of the
FLL, leading to the factor k4/kca in (4.2) which
compensates the b dependence (1 —5)' of the
factor (&o)' originating from the pinning forces
This results in a large b- and k-independent con-
tribution to I(k) at large values of 5 and k. Be-
cause of the approximations made, we cannot
decide at present whether the increase of I(k)
continues up the BZ boundary. A maximum at the
BZ boundary would be suggested by computations
of the FJ L strains caused by planar pinning
forces,"which lead to pronounced oscillations
with wave vectors pKyp and
the pinning-force distribution and the elastic be-
havior of the FLL, which are known in principle,
a calculation of the neutron scattering intensity
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I

O. I k/k~

FIG. 4. Differential scattering cross section at high
inductions {b~ 0.6), Eq. (7.3). Plotted is the expression
{'7.3a) for various values of b. This expression repro-
duces also the results at lower inductions if the pinning
strength eo is interpreted as an adjustable parameter.
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requires also the relationship between the dis-
placement field and the magnetic field, which has
not yet been calculated from GL theory for k
close to the BZ boundary.

B. Total scattering cross section

The measured scattering cross section is an
integral of I(k) over some solid angle or an
equivalent range of k„and k„. If the cross sections
of the neutron beam and the detector are circular
and concentric, the integral is over k= (k k')'~+ y/ ~

For a well-collimated neutron beam and an
annular detector (or an x-y-sensitive detector
with appropriate circuitry) with minimum and
maximum scattering angles 8, =k,/k„and 8,
= u,~e= „~ „, the total scattering cross section becomes

o = t d'QI(k) =—, I(k)k dk.
k2

1

Figure 5 shows 0 vs b for the special case (7.3).
Aliso shown is that part of o originating from the
term -k~ in (7.3) that would follow from a. local
theory. This local term dominates at b &0.4, but
gives a negligible contribution at b& 0.7.

Introducing a dimensionless constant A, we may
write

(7 4)

~ =uk„A, (7.5)

and the probability for an incident neutron to be
scattered into the detector becomes p=Ln A~A

P n

where L is the thickness of the specimen and
n~=X/V is the density of pinning centers For.
short-range forces Eq. (5.2) gives,

0.721n(k, /k, )n'2 1 (p2)
ll

(7.6)

The scattered intensity is thus proportional to the
mean square of the pinning forces. This result,
in contrast to the volume pinning force obtained
from statistical summation theories, applies to
arbitrarily weak pinning forces, and does not re-
quire a threshold force to be exceeded. A devia-
tion from the simple result (7.6) occurs if the

pinning forces are sufficiently strong to lead to
considerable distortions of the FLL, which in
turn lead to a weakening of the pinning forces, as
discussed in Sec. IV.

We estimate the scattering probability for three
simple examples. In all three cases we charac-
terize the strength of the pinning sites by a di-
mensionless parameter & with

~
c ~a 1, and we use

the approximation

c„=B'&H,/&B = P~ 5'(2+ —1)

For short-range forces with a potential V(r)

I I I I I

0.3 0.4 0.5 0.6 07 0.8 0.9 I

b

FIG. 5. Total scattering cross section 0. for the case
epicted in Fig. 4. Plotted is the expression (7.3a) in-

tegrated over g 2xk dk from 0.255 k~ to 0.7 k~ (solid line).
The dashed line gives the result that would follow from a
theory neglecting all nonlocalities by omission of k2 in
the denominators of (2.5), (3.3), and (6.7). The dot-
dashed line gives the total intensity (in the same units) of

e six first Bragg reflections for the example discussed
in the text below Eq. (7.14) and the dotted line gives the
intensity of the six second-largest Bragg reflections at

~ ~
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= op ~ $'(I+ x'/r 20} ', we get from (5.V) and
(5.8) for b&0.3

A = [0.001V In(k, /k, )/(8 ——')2b] z2

For pinning centers with

(n' a y b +y' b')'i' —z p, IP P
we get from (V.2) for b) 0.6 and k, =O.V ks

A = [0.016 (1 —k', /k', )/(8 --,')'b] c'.

(V.7)

(7.8)

If we assume a neutron wavelength of 2m/k„
=4 x 10 'om, a pinning density n~=10" m~ cor-
responding to a mean separation of pinning centers
of 10~ m =(p,/2kG)'i', a specimen thickness
L = 10~ m, a range of scattering angles 8,/8,
=k, /k, =3, a pinning strength a=0.4, and v=1.4,
we get for b =0.25 from (7.8): A = 0.0005 and p
=1.9 && 10~. If we correctfor the factthat, for such
small values of e and b, the c»=B'/p, , used in the
derivation of (V.8) is too large by about a factor
of 2, we get larger values: A = 0.002 and p
=8 && 10~. With the same data, we get for b= 0.8
from (V.8): A=0.0011 and p=5&& 10~. These re-
sults mean that for b =0.25 (0.8) roughly one in
every 13 000 (20000) incident neutrons is scat-
tered into the detector. This result, however, is
rather sensitive to the values of v, z, and n~
chosen

For long-range magnetic forces (b» I/2a ) we
get from {5.V) and (5.9) for k, =0.7 ks

A = ', , [p'j'+ (8p+4p') lnq+ 1.25+p] c', (V.9)
0.0181b

-2
where p = (1 —b)/b and q = k, /max(k„k„) 8 2. For
short-range magnetic forces (b & —,'K'), the bracket
in {V.9) has to be replaced by 4(1 —b)' b~ln(k, jk,).
Using the same values as above (v= 1.4, k, /k, = 3,
a=0.5), we get for b=0.8: A=0.0006, and for
b=0.25: A=0.0013 or A. =0.005 with the improved
value of cyy.

I(k) = 0.23 V 8m'n' Q h' „6(k—K), (7.10)

where h „=g+ „/B are the form factors of the
field. An annular detector (det), summing over
the first six reflections, measures a total scatter-
ing cross section

the integral over k„and k„of the intensity I(k),
depicted in Fig. 2, in the plane k, = 0. If the
sample is not rocked, the intensity in this plane
depends on the degree of imperfection and on the
exactness of the alignment of applied field and
incident neutron beam. For an ideal FLL one has
I(k)-6(k,)=k '6(p), where p is the alignment
angle; thus I(k) would be infinite for perfect
alignment but zero for misalignment. The sensi-
tivity to the alignment decreases with increasing
lattice distortions, but then a comparison with
theory is not possible since the theory of the in-
tensity profile of the Bragg reflections from the
imperfect FLL is still incomplete (Sec. I).

One therefore has to rock the sample to achieve
integration over k,. Rocking the sample together
with the applied field by an angle +P about the
x axis corresponds to rocking of the toroidal in-
tensity distribution of Fig. 2 about the k„axis.
The time-averaged. intensity is now smeared out
along k by the amount nk, = 2/ ik i, which, aver-
aged over a ring of radius K„, gives (4k,) =4&]&K»/

The rocking width should be everywhere larger
than the intrinsic width of the reflections which
we expect to be comparable to k~. Obviously this
condition cannot be achieved for small values of
ik, i/K|o by rocking about the x axis. The follow-

ing expressions are thus only estimates. Insert-
ing (2.4b) into (2.1) and using the relationship
8w' 6 (k = 0) = V, the sample volume, we get the
differential scattering cross section for Bragg
reflections

C. Comparison with the intensity of Bragg reflections o,o
=k„dk„dk I(k„,k, , 0)

det

The absolute value of the scattering probability
can be measured by raising the applied field above
H„. This procedure permits the intensity and
profile of the incident beam and the background to
be measured with the specimen in position. An
alternative method is to measure the intensity of
the Bragg reflections from the same imperfect
specimen and relate it to the intensity inside the
first BZ. We assume the integral intensity of the
strongest Bragg reflections to be unchanged by
the lattice distortions. An annular detector
should be used to measure the first six reflections
simultaneously. Such an arrangement measures

=0.23V8m n k„6hi06(k, ), (7.11)

@10 0 23V8w n k h|0(3n'/2/K, D)

Inserting in (V.12) the h, o
= (1 —b)/14. 2bg' of

Appendix 8, and using E„=8' '~3 ' n' ', we
obtain

(7.12)

where H„ is the largest Fourier coefficient of
II(r} (Appendix B). In the time average, rocking
the sample smears out the 6 function over a range
(n,k,); thus 8(k,) has to be replaced by (n,k,) '
= m/4/K, D, and the Bragg scattering cross section
becomes
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n» = (n"'/k'„) [(1—b)'/b'~'](0. 20/y) . (7.13)

a/o» = 0.004 b '/'(1 —b) ' (7.15)

This estimate gives o/o» ——1 (0.1, 0.013) for
b =0.94 (0.8, 0.25). As in the estimate of Sec.
VIIB, thevaluefor b=0.25 becomes larger, o/o„
=0.05, if a more realistic, smaller c» is used.

The Bragg-scattering cross section ('I.13) is
depicted in Fig. 5 for the above example in units
that give the correct ratio (7.15) between the
plotted curves. Also plotted is the intensity of
the six second-largest Bragg reflections |"» for
reduced temperature t=0.5, where o»/o;, = (k»/
h»)' = 0.014. The GL result (o»/o» = 0.0007 at
t=0) is unrealistic in this ca.se; a»/o» is expected
to depend quite sensitively on t, b, and the lattice
distor'tions.

VIII. SUMMARY

(i) The neutron scattering intensity from the
imperfect FLL may be calculated in five indepen-
dent steps: calculate (a) the pinning-force field
for one pinning center, (b) the pinning-force field
for many pinning centers using some statistics,
(c) the elastic distortions of the FLL due to these
forces, (d} the magnetic field of the distorted
FLL, and (e) the differential neutron scattering
intensity of this spatially varying field.

(ii) These separate problems have been solved
in this paper within GL theory: step (a) for small
flux-line displacements, (b) for statistically inde-
pendent pinning sites and small flux-line displace-
ments, i.e. , for uncorrelated pinning forces, (c)
for small strains in the FLL, (d) for small strains
and wave vectors k well inside the first BZ, and
step (e) within the Born approximation.

(iii) Since step (d) has not yet been solved for k
close to the Bragg reflections, a rigorous inter-
pretation of scattering experiments is possible
only for small-angle scattering with k inside
the first BZ. At sufficiently large induction more
neutrons will be scattered into the first BZ than
into the Bragg reflections.

(iv) The intrinsic defects and all shea. r and tilt
deformations of the FLL give no contribution to
the scattered intensity if the incident neutron
beam is directed parallel to the applied magnetic

Comparing this with (7.5}, we get the ratio of the
two scattering cross sections [expressions (7.7)
and (7.8) for A give the same estimate if k, /k,
=3]

a'/&, o=np(go/B~) / b / (1 —b) q 0.08(f&. (7.14)

For the example (n~= 10" m ', q = 0.4, B„=3 kG,
and P = 0.5 rad), we get

field. Only the elastic constant c» enters the final
result. It follows from Eq. (3.7) that this requires
alignment of the two axes within an angle (c«/
c )'"=(1 —b)/3b"'a.

(v) The small-angle scattering intensity is pro-
portional to the sum of the squares of all pinning
forces (for b& 0.5) or of all pinning strengths (for
b & 0.5). In contrast to thleories of the volume
pinning force, this proportionality applies to arbi-
trarily weak pinning and does not exhibit a thresh-
old.

(vi) At large inductions the differential scatter-
ing cross section do/dO depends only weakly on
k. This is in contrast to the result of usual local
theories that assume the pinning forces to be
short ranged and the elastic response of the FLL
to be local. Such a theory would yield do/dQ-k '
in the entire BZ.

(vii) Within the present theory the scattering
cross section attains a constant value at B„in
contrast to the Bragg reflections which vanish
as (B„—B)'. This effect is due to the strong non-
local elastic response of the FLL and applies to
sufficiently weak pinning. In reality, 0 will de-
crease below the weak-pinning result close to
B„and vanish%t B,', due to flux line trapping or
synchronization by the pinning centers, which
leads to a breakdown of the assumption made in
step (b).
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APPENDIX A;. EVALUATION OF THE AVERAGES IN SEC. IV

The evaluation of the spatial average

((k ~ P(k) ~') =((k P.(k)+k ~ P„(k) ('),
with P, (k) and P,(k) defined by (6.6) and (6.8) is
straightforward by expressing &u, '7~, f, and
v/f as Fourier series. For the Abrikosov solution
and the triangular lattice one has

V(o(r) = ur-„iKe'*'~,

(+)( )v +-v v/~
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v' =K' „/K'„=m'+ mn+ n' = 1,3, 4, 7, 7, 9, . .. , where
~ and n are the indices of the reciprocal-lattice
vectorsK=K „. Inorder to get the Fourier series
for f, we take advantage of Eq. (6.5), which
applies to any solution of the linearized first GL
equation. We get (with he = 2b(('}

v(o(r) g -iX
2b(('(o(r)

= pe*'"' —1=-g b(r R)
K Pl R

If we exclude the singular points r= R„, the period-
ic flux line positions, we get

v(o(r), (v(d)' v'(o

(d(r) ur' (o
(A1)

and thus

(~'& = ((o&'P„) P„=6 Q A = 1.1596,

((Vm) &=(m& b(( ao, a0=12ag v'A" =1.1596,

(f',) = (&&'b'a

a(=6 g A" (1 —av ) =1.1125;

((Vf,)'& = ((u&'b'(('a, ,

a, = 12a g v'A+ (1 —av'}' = 8.2440;

((v(o)(vf, )& = ((u&'b'I('a, ,

a, = 12a P v'A' (1 —av') = -3.0657.

The sums converge very rapidly. Finally, we
prove that a, = P„. From (A1) we get

(V(l7) = 2bK h) + (dv (0

and

((vs))'& = 2b I('((d'&+ (v((ov(o)& —((v(o)'& .

2g co 2K K 2bK

Using the relationship K'=2b(('27(/&3, we get, with
a=27(/V3 and A= e '=0.0266,

The average of the gradient of a periodic function
vanishes and thus ((Ver)'& = b(('(uP&, or a, = P„.
This general relationship holds for any periodic
solution of the linearized first GL equation.

APPENDIX B: FORM FACTORS OF THE IDEAL FLUX LINE
LATTICE

The Fourier coefficients II „or form factors
h „=p,+ „/8 of the magnetic field of the ideal
triangular FLL within the GL theory depend only
one and b:

1
Il „=

1+K' X'/(~&

(b«1), (»)
((o&0.276+ 2b ((2(m'+ mn+ n')

exp[-(m/v 3)(m'+mn+ n')

2by'

(1 —b«1).(1 b)( 0 ]63)m.+mn+n

2b g'1.16 —b0.16
(B2)

Equation (Bl) may be interpreted as originating
from a generalized London model in which X is
replaced by X((d& 'i'. ForK ) ] ', the form
factors are smaller than (B1).""" Equation (B2)
follows from the linearized GL theory. " Numeri-
cal calculations" show that the higher form factors
(m'+mn+n') 1) increase with decreasing b rather
rapidly. In particular, all negative Il „change
sign at values of b that are close to unity. For the
first form factor (m'+mn+ n'= 1) (B2) has, how-
ever, a large range of validity, b&0.5 or larger.
A useful interpolation formula between (B2) and
(B2) is

h, o
= (1 —b)/[1+ b(14.21(' —1.98)] (0 & b & 1) . (B3)

At reduced temperatures, t= T/T, &l, the form
factors were derived from the Gorkov theory for
b = 1 by Delrieu ' and for 0 ( b (1 numerically
by the author. " These results show that (B3)
remains a good approximation at t(1, except
for very clean superconductors at t (0.1. The
higher Fourier coefficients, however, increase
rapidly as t decreases from unity. For example,
for a clean superconductor at b =1,. one finds '
h„/h„=0.232 (0.219, 0.168, 0.117, 0.074, 0.039,
0.027) at t=0 (0.1, 0.3, 0.5, 0.7, 0.9, 1). The
increase of the ratio h»/h(0, h»/h(0, etc. , as b

or t decreases from unity, should be seen in
neutron scattering experiments, since the scatter-
ing cross section of Bragg reflections is propor-
tional to h' .
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