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No "direct force" in electromigration
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In electromigration, a uniform field is applied and a dipole moves from one crystallographic site to another.
The dipole has the same strength at the two sites. Because electrostatic fields are conservative, the
translation occurs without change of electrostatic energy. Accordingly, the "direct force" is identically zero.
Objections to this conclusion are considered. It is emphasized that in any experiment in which an electron
wind is present it is important to measure Z~ in the lattice frame of reference.

I. INTRODUCTION

d = —b.E, (&)

(2)

In electromigration, the experimenter applies

Some problems in physics are inherently sim-
ple. The "direct force" of electromigration is one
of these.

The simplicity inheres in the concept that elec-
trostatic energy is a conservative quantity; to
specify the electrostatic energy of a particle we
only need to know the charge upon it and the elec-
tric potential at the point which it presently oc-
cupies. Ne do not need to know the path by which
it c,arne to occupy its present position. Equally,
if we wish to know the change in electrostatic
energy on moving a particle from one position to
another, we do not need to know the path followed
between the two positions, we only need to know
the electric potential at the two end points and the
charge which has moved from one end point to the .

other.
Likewise, if we have a system of many particles

and we wish to know its change of electrostatic
energy on going from one configuration to a second
configuration, we only need to have information
about the initial and final states, and not about the
several paths followed by the particles.

The two end points with which we are presently
concerned are two crystallographically equivalent
sites in a crystalline solid. Our problem is that
something (yet to be defined) moves from one
equivalent site to the other. We assess the dif-
ference in the electrostatic energies of the system
in the initial and final states. Let the difference be
~E. If we specify that the two sites are separated
by a distance d, we may define an electrostatic
force F pushing the "something" from one site to
the other. We require no more than the basic
definition that energy is the dot product of force
and distance'.

and the theorist considers an electric field which
is spatially uniform on a macroscopic scale.
Clearly, this applied field is the same at our two
equivalent sites, at our two end points.

Ii, then, the "something" which moves from one
site to the other is an electric dipole, of equal
positive and negative charges and of zero total
charge, it is a dipole which has the same strength
at the two equivalent sites.

Because electrostatic fields are conservative,
because we are concerned only with end points and
not with paths followed, it does not, matter. that
the strength of the dipole fluctuates, with the
periodicity of the crystal lattice, as the dipole
moves along any path between the two sites. The
fluctuations are not a parameter of our present
problem. Accordingly, for simplicity and for
ease of comprehension, we.may think of the dipole
as having constant strength. The problem then
becomes very simple, and its solution immediately
obvious: a dipole of constant strength moves in a
uniform field. As it moves, its electrostatic en-
ergy does not change. Hence the electrostatic
force upon it is zero.

Thus the elementary concept (or definition) that
electrostatic fields and energies are consemative
is of prime importance. Because these fields are
conservative, the "direct force" of electromigra-
tion is not merely small, or negligible in some
circumstances, it is always identically zero; it
does not exist.

II. EQUIVALENT SITES

The essence of the problem is therefore the
realization that in electromigration a dipole moves
across a background of unchanging electrostatic
energy between two sites which are fully equiv-
alent.

The initial and final sites are locally equivalent
and they also have long- range equivalence. Local
equivalence is easily seen. In a solid, a lattice
vacancy or an impurity atom is translated between

l8
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two crystallographic sites, through an integral
number of lattice vectors. Iri a liquid there is no
lattice, but, simply because experiments sum over
a large number of sites the local character of
which does not change with time, we may still con-
sider the elementary act of electromigration to
occur between sites which have full local equiva-
lence.

In general, we do not have full long-range equiv-
alence. - When a lattice vacancy or an impurity
atom is translated between two crystallographic
sites, it moves closer to one specimen' boundary
and further fx'om another. The condition of long-
range equivalence, therefore, is that we restrict
consideration to sites which are remote from the
specimen'8 boundaries and we restrict the trans-
lation vector to a length very much smaller than
any dimension of the specimen. Long-range
equivalence is universally subsumed, in both
experiment and theory. It is an adequate assump-
tion. I merely make it explicit.

III. STEADY BACKGROUND

In electromigration, at'an interval of several
days or weeks, successive measurements are
made of the distribution of a radioactive tracer
or the position of a surface scratch or an em-
bedded filament. During the interval, a steady
temperature and a steady electric current are
maintained in the specimen.

The background must therefore be steady in two
respects: it must bp steady over the time inter'val
in which each measurement takes place and it must
be steady over the longer interval between the two
measurements.

Each measurement of distribution or position
integrates over a large number of atoms (~10")
and over a large number of lattice oscillations
(~10"), and fluctuations at any one atomic site
are lost in the two integrations. This is even
more true of the longer interval during which
electromigration is actually taking place. The
dependent experimental variable, the flux J of
the species of interest, is without question an
average value.

As a phenomenon of linear response, electro-
migration falls within the scope of linear thermo-
dynamics, and in the usual notation

J =LX., (3)

where L is the coefficient of the response and X
is the thermodynamic farce driving the electro-
migration. There are alternative ways of treating
Eq. (3). We might take microscopic values of L
and X, form the microscopic products, and take
an. average of all such product;s. :Alternatively,

we might take from some ancillary experiment a
macroscopic value of L. We would then write into
Eq. (3) a macroscopic value of X, an average
value. In the analysis of an& electromigration
experiment we always choose the second alterna-
tive, we use a macroscopic, experimental value
for the diffusion coefficient D of one unit of the
species of interest. %e take

L =Dc/k, (4)

IV. DIPOLE

In electromigration, we have a metal specimen
and a source of electric current, a battery or a
power pack. It is useful to regard the current
source as part of the world outside the specimen.
We accept electrons from the negative terminal
of the source and we surrender them to the positive
terminal, but when these electrons are outside the
specimen we have no interest in them —we do not
suppose that they produce electrostatic forces with-
in the specimen. This is a universa1. assumption.

Thus, in assessing electrostatic energies and
electrostatic forces, we are concerned only with
the world within the specimen and not with the
world outside. The faces of the metal specimen
are the boundary of our region of interest; they
define "the system" of Sec. I and Eq. (1).

It is useful to think of the boundary of the speci-
men as a box. The box contains a number of ions
and a number of electrons. We may redistribute
the ions within the box but we may not take them
out. The box is therefore of constant volume, un-
changing with time. Electrons flow into the box,
through one face, at a steady rate, and they flow

where c is the volume concentration of the species
of interest and k is Boltzmann's constant. There-
fore, when we come to write

X=(F+F' + ~ ~ ~ )/T (5)

where T is the local temperature (a macroscopic
parameter) we require macroscopic values of X
and of F, P„,etc. In Eq. (5), P is the electrostatic
force of Eq. (2), F„ is the'force of the elec-
tron wind, ' and the dots indicate the inclusion of
all the forces which produce electromigration.

The sequence of Eqs. (3)—(5) arid the use of a
macroscopic value of D indicate that we require
a macroscopic value of 0; the background is
steady in the sense that we are to ignore fluctua-
tioris, both the fluctuations in time, such as occur
at one-lattice site within a crystal, and fluctuations
in space, such as occur with the periodicity of the
lattice. As long as we conceive of electromigra-
tion as having some concern for experimental ob-
servables we are free to ignore fluctuations.
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out, through the opposite face, at the same steady
rate. Electrons enter and leave, but the numbe~
of electrons within the box is stationary, un-
changing with time.

I make the explicit assumption that the electron
flow is nondivergent. The shape of the box is then
stationary, unchanging with time.

Thus we have a box, of constant volume and
constant shape, which contains a constant number
of ions and a constant number of electrons. In the
elementary act of electromigration we rearrange
the ions and the electrons within the box. %'e

assess the change in electrostatic energy brought
about by the rearrangement, we apply Eq. (1)and
thereby discover the electrostatic force F. The
displacement d is an integral number of unit
vectors in the real lattice of the metal.

Consider first the simplest of several rearrange-
ments, the movement of an interstitial impurity
ion from a site with a position vector A to a site
with a position vector B,

d=B —A .
Suppose that the impurity has a valence z. This means
that the ion carries a charge of z proton charges.
Within a distance of the ion which is small by com-
parison with the speciment dimensions, ' ',a detec-
tion device which, like the instruments of real ex-
periments' ' requires a macroscopic time for its
operation, will detect a screening cloud of z conduc-
tion electrons. These z electrons are additional to
the conduction electrons which would be present in
the absence of the impurity ion.

Thus, locally within the boX, there is a Per-
turbation which consists of z proton charges at the
ion and z electron charges in a small volume
around the ion. The total charge on the perturba-
tion is zero for the simple reason that when we
add an impurity to a metal we add an uncharged
atom. However, the proton and electron charges
within the perturbation are polarized, by the ap-
plied field, they do form a dipole.

When the ion moves from X to 5, through a dis-
placement d, z screening electrons move through
precisely the same displacement d; the moving
entity is the dipole.

When the impurity is interstitial we may readily
visualize (or specify) that it moves through an
inert, nondiffusing solvent; we may readily
visualize the motion of a dipole against a steady
background.

When the impurity is substitutional, we require
only slightly greater sophistication. We first
imagine a pure metal, of identical ions in a sea
of conduction electrons. We replace one ion, at
A, by an impurity ion and we now let z be the
valence of the impurity minus the valence of the

host.
Again we have a perturbation of z proton charges

surrounded by z conduction electron charges.
Again we have a dipole. Initially, the dipole is at
A and there is no perturbation at 5. Finally~
there is a dipole at B and no perturbation at A.

The lattice vacancy may be classed as a sub-
stitutional impurity. We may map the applied
field, the field which is to produce electromigra-
tion, throughout the box. It is uniform and non-
divergent; the voltage gradient is everywhere the
same.

Across this map of electric potential we may
move ions and conduction electrons. If we inter-
change two identical ions of the solvent metal we
(clearly) do not affect the electrostatic energy of
the system. If we interchange two (indistinguish-
able) conduction electrons we (clearly) do not af-
fect the electrostatic energy of the system. Qn a
ma. croscopic scale, the background against which
we are to move the perturbing dipole is of a
steady, unchanging electrostatic energy.

The problem thus reduces to a translation of
the perturbing dipole through the distance d, and
because the dipole has the same strength at the
two sites A and B, the translation does not change
the electrostatic energy of the system; in Eq. (1)
both 4E and F are zero.

V. INDISTINGUISHABLE ELECTRONS

If we interchange two conduction electrons within
the box we do not affect the electrostatic energy of
the system. We cannot even detect the change;
electrons are indistinguishable and we have no
means of labeling either electron.

If we interchange a conduction electron in one
region of the box with a bound electron from an
ion in a second region of the box we again do not
affect the electrostatic energy of the system. We
have no label by which we may recognize that an
electron now free was once bound. These elec-
trons too are indistinguishable; the bound state
and the conduction state are distinguishable, but
the electrons which occupy them are not. .

Suppose we could label a conduction electron
which is at some instant one of the z electrons
screening the impurity ion at A. By the time the
impurity ion reaches B the labeled electron is at
some remote part of the box, its place in the
screen having been taken by another electron.
Suppose now that we interchange these two elec-
trons. Only if, the two electrons carried different
electric charges should we affect the electro-
static energy of the system. Alternatively, sup-
pose that when the impurity ion reaches 5 we
interchange the distant, labeled electron and one
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of-the bound electrons of the ion. Again, only, if
the two electrons carried different charges
should we affect the electrostatic energy of the
system.

I have spelled out at length this very simple
conclusion in order to emphaisze that the extent
of the binding betcoeen electrons and ions is not
a parameter of the problem; it has no bearing
on the existence of the "direct force."

VI. FRAMES OQ REFERENCE

The absence of an electrostatic force is not de-
pendent'on any choice of a frame of refer ence.

Having used the faces of the specimen as a frame
of reference, let us now adopt a second frame,
moving with a velocity v, as seen from the first
frame. Let v be much less than the velocity of
light. In the second frame, all specified veloci-
ties are increased by -v. In the second frame,
all coordinates are increased by one time-depen-
dent quantity, -v t, where t is the lapse of time
from the coincidence of the origins of the two
frames. Using the subscript 2 to specify coordinates
in the second frame,

A2=A —vt, (I)

B,=B—vt, (S)

and

d2=d .
The translation vector is unaffected by the change
to a second frame of reference. Other vectors
which represent a difference between two speci-
fied points are likewise unchanged. The potential
difference between any two points in the box is-
unchanged. The electrostatic energy of a particle
in the applied field is unchanged. (Both the par-
ticle and the field are moving through, the second
frame with velocities increased by -v). The elec-
trostatic energy of interaction of two particles is
unchanged. The electrostatic energy expended in
moving a dipole from A to B is unchanged.

The belief"' that such a Galilean transforma-
tion ("the equivalence theorem'") demonstrates
the assertion that "the shielding of unbound
charges is generally ineffective as far as the
force on the shielded object is concerned"' is
quite without foundation. The equivalence theo-
rem tells us nothing whatsoever about the pres-
ence .or absence of a "direct force."

Equation (5) makes' reference to F, the elec-
tron wind force. This is the force arising from
momentum transfer from the electron stream to
a scattering center. If we properly account for
all the momentum in the system, a computation of

will not be affected. by a Galilean transforma-

tion such as that just considered. A proper ac-
count must include the momentum carried by the
crystal lattice. Only if we choose the special
frame of reference of the crystal lattice do we
obtain the useful simplification of being able to
set the momentum of the lattice equal to zero.
If we choose a frame which is steadily moving
through the lattice and then ignore the momentum

'associated with the lattice, we get a wrong answer.
This error is made by Herzig and Wiemann' and
has led them to conclude that they have evidence
of a direct force (see Sec. XVI).

VII. SEPARABILITY OF P AND 0
Consider an atom in a gas. If we apply a uni-

form electric field, such as we have been con-
sidering, we polarize the positive charge of the'
nucleus and the negative charge of the extranu-
clear electrons. We create a dipole. Because,
the potential gradient is spatially uniform, there
is no electrostatic. force upon the atom, no elec-
trostatic force pushing it to one side of the con-
tainer.

Suppose we now bombard the atom with elec-
trons from a gun situated in one wall of the con-
tainer. The electrons are scattered at the atom
and momentum transfer from the electron beam
provides a force pushing the atom away from the
gun.

The atom is an uncharged entity, but it scatters
electrons. Thi.s simple example makes it plain
that we may have momentum transfer from a
stream of electrons to an uncharged object. How-
ever, it is equally plain that in a spatially uniform
field we do not have an electrostatic force on an
uncharged object. In a uniform field, the electro-
static force on an object is proportional to the
charge, q, on the object,

F=- @vs, (10)

where VV is the potential gradient.
The electrostatic force on an object and the

momentum-transfer force thus depend on dif-
ferent parameters of the object. The first de-
pends on the total charge (but not on the charge
distribution within the object), the second depends
primarily on the charge distribution and only via
the distribution does it depend on the total charge.

Since the two forces depend on different pa-
rameters, they are separable. The distinction
between them is simple: electrostatic, as its
name implies, is a function of position, of co-
ordinates. Momentum transfer is a function of
velocities. I see no reason to abandon the distinc-
tion between coordinate and velocity.

In electromigration the distinction is equally
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plain. 0 is a function of the equilibrium posi-
tions of a constant number of particles within a
box. 0„is a function of the velocity of particles
through the entrance and exit faces of the box.
Since 0 is not a function of velocity and 0„is not
a function of equilibrium positions, distinction
between the two is not merely permissible, it is
mandatory.

Those who still attach significance to experi-
ment may like to note that 0, when treated as a
separable quantity, ' agrees with the firmest ex-
perimental data, those on the noble metals, to an
accuracy of 10%. There is no indication from ex-
periment that 0 and P„are to be confused.

VIII. HELLMANN-FE'A64AN THEOREM

The Hellmann-Feynman theorem'o'" applies to
forces within molecules. A molecule is a closed
system. In such systems, to quote Feynman, "
"the forces are almost as easy to calculate as the
energies are . . . they can be considered as pure-
ly classical attractions involving Coulomb's la%."

Feynman" distinguishes the steady state from
the non-steady state and restricts the theorem to
the former. It would therefore seem that we may
only apply the theorem to electromigration if all
the quantities which enter into our calculation are
independent of time. Calculation of the electro-
static force satisfies this condition: we have a
box of constant size and shape containing a con-
stant number of particles and subject to a constant
field and we calculate a time-independent quantity,
the electrostatic energy when the impurity is at
A. We then calculate a second time-independent
quantity, the electrostatic energy when the im-
purity is at 5. Admittedly the system is not
closed, but we may ignore the world outside
the box; it does not enter the calculation.

The theorem does not have the same immediate
applicability to the electron wind force F . A

typical calculation'2 explicitly invokes the adia-
batic approximation so that it may calculate a
one-dependent quantity, "the time rate of change
of the average momentum. " I only wi.sh to note,
and not to discuss at length, that a scattering
problem involving an obstacle, a lattice in which
it is embedded, and a stream of electrons flowing
through the lattice, does require considerable
precaution to ensure that all the quantities en-
tering the calculation are in fact independent of
ti.me. I think there is a case for using simpler
methods' to calculate F„.

IX. STATIC POLARIZATION

For pictorial clarity, let me return to the atom
in the gas considered in Sec. VH.

First, apply the uniform field but do not bombard
with electrons. The field creates at the atom a
dipole of such strength that each charge within the
dipole is in equilibrium, under the combined ac-
tion of the other charges in the dipole and the
applied field. There are as yet no moving par-
ticles in the system, and I will accordingly label
this dipole the static polar ization.

Now switch on the electron gun and bombard the
atom (but don't switch 'off the applied field). Be-
cause the atomic nucleus is more massive than
the (bound) extranuclear electrons, the bom-
barding particles change the strength of the dipole.
They also accelerate the atom away from the elec-
tron gun. %'e may take a time average of the ac-
celeration and also of the change in strength of
the dipole. I will call this average change in
strength the dynamic polw ization.

These two quantities, static and dynamic
polarization, arise in electromigration. The
extranuclear electrons are now not all bound;
some are bound and form part of the ion and
some are conduction electrons, but by the
Friedel sum rule, all of them are still there.
If we ask for a ti~e average of the number of
bound and conduction electrons screening the
atomic nucleus, we obtain precisely the number
of electrons in the neutral atom.

I therefore see no reason to omit the static po-
larization from the electromigration problem. It
will be evident that I regar'd the static polariza-
tion as the agent by which the electrostatic force
P is made identically zero. As far as l can tell,
many authors ' '" ' leave out the static polariza-
tion. The omission has its roots in the idea that
it is simply the ion which moves. In the course
of private, unpublished correspondence, I have
met several gestalt switches from atom to ion
and from ion pLus sceeen to bm.e ion. These
switches are hard to deal with because they go
(apparently) unrecognized by the person making
them but are crystal clear to the person trying
to pin them down. I am sure that confusion as to
the identity of the thing which moves is at the
heart of the direct force controversy.

X. DIRECT FORCE

Two different but equally valid definitions of a
"direct force" may be made, and there is some
evidence that both are in use.

The direct force may be defined, as in Eqs.
(l) and (2), as.a total electrostatic force mea-
sured by the change of electrostatic energy
caused by a displacement in a system of many
ions and many electrons, the metal specimen.

Alternatively, the direct force may be defined,
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equally validly, as the electrostatic force oz one
bare ion.

The significant difference between the two
definitions is that the first is the observable
sought by experimentalists, ""and the second
is not. As in Eq. (5), experiment seeks to divide
the electromigration forces into two components
only, a direct force and a wind force. Experi-
mental analysis, therefore, by including within
the term "direct force" all ihe electrostatic forces,
adopts Eqs. (1) and (2).

By contrast, the second definition yields an ob-
servable only if the electrostatic forces on bare
ions are the only electrostatic forces in the metal
specimen. Since electrons are subject to elec-
trostatic forces, this second definition yields an
observable only if we can be assured that the
electrostatic forces on the electrons in the sys-
tem in some way disappear.

Either definition may be chosen, but it is of the
utmost importance to avoid mental szoitches from
one definition to the other

In taking the direct force to be the 0 of Eq. (1),
I follow a recent review' which speaks of "the
direct action of the electric field on the moving
atom. "

XI. NUMBERS

To see the absurdity of the direct force as
us'ually contemplated, it is only necessary to con-
sider typical experimental figures 'for gold' and
to adhere consisteritly to one or the other of the
alternative definitions of direct force.

All the cited theoretical mork" """is ap-
plicable to pure metals and hence to the electro-
migration of gold atoms in gold.

Accepting the explicit statements'" that there
is no appreciable screening out of the external
field by the conduction electrons, the charge q
[Eq. (10)] which we are to associate with an elec-
tromigrating gold atom is one proton charge.

There is nothing in the cited literature to sug-
gest that the q of one gold atom differs from that
of another, nor that &V at one atomic site differs
from that at another site. %'e are entitled to sup-
pose that all gold atoms in one block of gold have
the same q and the same VV.

There is nothing to suggest that an atom must
be in motion before the force 0 of Eq. (10) can
come into play. Calculation'~ explicitly assumes
that "the ions are considered to be static. "

There is nothing to suggest that a lattice
vacancy must be close at hand before F can come
into play. The adiabatic approximation, "which
decouples the ion from the lattice, excludes this
possibility.

It is plain that a direct force which acts on one
gold atom ol ion in a block of pure gold acts
equally on all the gold atoms or ions. And if there
is "no appreciable screening" of one ion then there
is no appreciable screening of any ion.

It is thus easy to sum the direct force on all the
2&& 10"gold atoms or ions in a typical experi-
mental specimen. '

The specimen' is a cylinder, of V g mass, and
having an end face of 30 mxn' area. The voltage
gradient is 10 P m '. The direct force on such a,

cylinder is 3.5 &10~ N, and this produces on the
end face a pressure of 10' MPa. This pressure
is some eight times the room-temperature strength
of gold-the mere survival of, the specimen calls
in question ihe concept of a direct force.

This enormous pressure cannot be discounted on
the ground that "the direct force on each ion is '

ultimately transferred to the lattice via dynamic
ion-lattice interaction. " If we say thai ee forces
are transferred to the lattice we are merely saying
that they act upon the block as a whole. Thus we
are not removing the pressure but merely saying
that it should be experimentally measurable.

As a thought experiment, we might suspend ihe
gold cylinder on long flexible current leads —a. bi-
filar suspension. Conceptually, at least, we can
make such current leads from superconductors.
In a voltage gradient of 10 7 m ', the direct force
now accelerates the block, in the direction anode
to cathode, at the quite respectable rate of 5 x 10'g
(some four orders of magnitude greater than ex-
perienced during re-entry into the earth's atmo-
sphere). It seems reasonable to ask, what has
happened to Newton's third law„what is going
the other way'P Nothing is going the other way,
and the conclusion is surely self-evident, the
concept of a direct force is unsound.

Qne may usefully contrast the direct force with
the electron mind. The electron wind acts on ir-
regularities embedded in a lattice, not decoupled
from a lattice, and we obtain a simple answer
only if we use the lattice as a frame of reference. '
In the lattice frame of reference, the sum of the
crystal momenta is identical to the sum of the real
momenta. " We may thereby include the lattice,
we avoid the adiabatic approximation, and we pre-
serve Newton's third law.

XII. BROKEN TORUS

To demonstrate the existence of a nonzero direct
force, Huntmgton" has cons~dered a piece of metal
in the form of a broken torus. The break is con-
ceptually important. The emf which drives the
electromigration appears across the break. Hunt-
ington carries out a thought experiment in which
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XIII. THERMODYNAMICS

In Eqs. (3)-(5) I have used thermodynamic no-
tation, but the only result I require in this context
is the very simple idea that in planar Cartesian
coordinates a straight line has everywhere one
and the same gradient. Thus if, in a physical
system, a dependent observable y has a. hnear
response to an independent observable x we write

and it is a matter of no great subtlety that the co-
efficient of the linear response, I., is a constant
independent of z and having the same value at
z=O as it has at xt0. This simple point has
serious application to irreversible systems. ""'
In regard to the direct force, Eqs. (3)—(5} and

(10) give

X = —(Dcq/hT) V V.

Like other writers, I postulate a linear response.
Therefor,

Dcq(hT = constant, (13)

a constant independent of V V. Now D, c, k, and T

an ion is displaced through a small distance,
around the torus. The conduction electrons which
shield the ion are first dispersed "equally in both
directions around the homogeneous torus" and then
reassembled at-the new position to which the ion
has moved. It is asserted, wrongly, that in the
dispersal (and equally, in the reassembly) of the
electrons "no current fl.ows. " The basis of the
assertion is that the torus is homogeneous. There
are thus two conflicting specifications, the torus
is broken, in order that an emf may be applied,
and it is continuous, in order that electrons may
disperse equally in both directions.

If the dispersing electrons cross the break, they
change their potential; there is a change in elec-
tostatic energy in the system. We may either
write down the detailed equations of the dispersal
and reassembly or, more simply, we may say
that electric potential is a potential, and therefore,
conservative, so that we onl.y need to write down
the initial and final states of the electrons (before
dispersal and after reassembly) in order to dis-
cover their change in electrostatic energy. By
either method, we conclude that the ion has moved
around the torus through a distance d and a po-
tential difference 4V and that the screening elec-
trons have moved through the same distance d

and the same potential difference 4V. The charges
on the ion and screening electrons are of equal
magnitude but opposite sign, and the direct force
is again zero.

are ail independent of VV. Therefore, q is inde-
pendent of VV and the value of q when V'V0 is
identical. to the value when VV=0.

When other perturbations are absent, the point
V V=0 is the point of thermodynamic equilibrium.
Therefore, the value of q which we require is the
value pertaining to thermodynamic equilibrium.
In texts which deal with equilibrium, ' 4 the Friedel
sum rule specifies that q is zero; the electrons
comp/etely screen each ion.

Therefore, the value of q which we require in
linear thermodynamic disequilibrium, in electro-
migration, is also zero. Thus, in Eq. (10), 0 is
zero; there is no direct force.

The "linear response formalism" of Kubo' is
another expression of Eq. (11}and of necessity
it gives the same result.

XIV. ELECTRQLYTES

By way of example, consider an aqueous solution
of sodium chloride. During electrolysis, chlorine
ions drift to the anode and are liberated as chlorine
gas, but sodium ions do not drift to the cathode.
Instead hydrogen is liberated at the cathode.

We may imagine, within the body of the electro-
lyte, a rectangular box. The box defines a volume,
We may look within this box, at any instant, and
compute the electrostatic energy of the particles
in the box, the anions and cations, We may look
at a subsequent instant, when a specified anion
has drifted perhaps halfway across the box, and

again compute the electrostatic energy of the
particles in the box. We obtain the same trivial
result as in electromigration; the electrostatic
energy of the particles in the box has not changed,
and if the specified anion has drifted a distance d,
Eq, (1), applied to the box, gives b,E=O and F
=0

As in electromigration, the total charge within
the box is zero; the cation charges balance the
anion charges.

We may increase the size of this imaginary box
until two of its faces are close to the two elec-
trodes. The conclusion continues to hold; for
any d, hE and 0 are zero.

Within the definition of Eq. (1), the drift of
anions and cations within the box is not due to an
electrostatic force on each species, but to the
imput, or extraction, of ions, at the faces of the
box, by interface reactions at the electrodes.

As with the electron wind of electromigration,
the significant quantity is the flux of particles
across the faces of the box. This flux is plainly
dependent on the interface reaction, in that it may
be changed by changing the material of the elec-
trodes.
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Within the definition of Eq. (1), and within the
acceptance of interface reaction as the controlling
quantity, we do not have to seek a reason why the
chlorine ions drift and the sodium ions do not.

It is possible to set aside Eq. . (1) and, as for the
"bare ion" of Sec. X, to postulate, ab initio, an
electrostatic force on each species of ion. As in
Sec. X, this is a matter of definition, of concept,
and one must follow where the definition l.eads.
In the present example, it becomes necessary to
explain why the chlorine ions drift under the in-
fluence of their electrostatic force but the sodium
ions do not drift under the influence of theA elec-
trostatic force. Doubtless it can be done, but it
i.s simpler to accept the more operational defini-
tion of Eq. (1).

XV. PLASMAS

If we apply an electric field across a gaseous
plasma, we obtain a steep voltage gradient at the
entrance and exit faces of the plasma, over a
short distance, and a shallow voltage gradient
in the body of the plasma.

Suppose we have a solid plasma instead of a
gaseous plasma. We again have a steep voltage
gradient over a short distance at the entrance and

exit faces and a much shalI. ower gradient in the
interior. The conclusion that the direct force is
identically zero can scarcely be strengthened,
but the magnitude of the screening length' ' gives
a further cause to doubt the detection of a direct
force by experiment.

XVI. EXPERIMENT

In the lattice frame of reference, for tin as an
impurity in gold, Herzig and Wiemann' find
—23.4&Z*&-14.1 (their Table 3}. An electron
wind is admittedly present, and the lattice is
therefore the appropriate frame of reference (see
Sec. VI}. The figures for tin, —23.4 to —14.1,
are comparable to those for gold in gold, ' '
—19+5. They are of the sign and magnitude to be
expected from the electron wind alone. ' They
offer no immediate evidence of a direct force.

Herzig and Wiemann's Eq. (5) is an invalid
Galilean transformation; it takes them away from

the lattice frame of reference without accounting
for the momentum of the lattice itself. Their
subsequent conclusions accordingly fail.

Erckmann and Wipf'find 0.5 &Z*&2.5 for hydro-
gen and deuterium electromigrating in sol.id
vanadium, niobium, or tantalum. The positive
sign and the magnitude (spanning the value +1)
they consider to be evidence of an electrostatic
force acting upon the single electric charge of a
proton or deuteron.

A second explanation is possible; the gas atom
may be bound to a lattice vacancy with a binding
enthalpy of -0.1 eV. If so, the observed Z* is
principally that of the vacancy. As thermal agita-
tion frees the gas atoms from the vacancies, Z*
decreases with increasing temperature. At high
gas concentrations, a greater fraction of gas is
unbound and Z* decreases with increasing con-
centration. (Both these variations are observed).
It is possible to estimate g~ for the electron
mind, ' and for lattice vacancies in V, Nb, and Ta
one expects Z*-+1. It is therefore possible that
lattice vacancies dominate the results of Erck-
mann and Wipf.

The behavior to these same two gases in iron
and nickel"'" suggests that vacancies play a
significant role. In particular, the reversal of
the sign of thermomigration" at l.ow temperatures
indicates that gas atoms are then bound to lattice
vacancies and move in the sense which the vacan-
cies dictate.

Thus there is presently no strong experimental
evidence of a direct force in electromigration.

XVII. ELECTRON WIND

In the absence of a direct force we may discard
F from Eq. (5).

If we have a simple expression for F, which is
free from adjustable parameters, we may assess
the experimental data on a range of metals in the
hope that electromigration is a tractable pheno-
menon with a comparatively simple cause. This
appears to be the case. '
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