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The elements of continuum-model planar channeling are discussed using a general planar continuum
potential with an emphasis on the depth-dependent phase-space density. This joint spatial-momentum density
contains all the information concerning continuum-model planar channeled particles and allows a unified
treatment of the depth-dependent and statistical equilibrium, spatial, and momentum densities for an
arbitrary initial density. The Gaussian-beam-divergence case is discussed in some detail. A simple, two-
parameter planar-continuum potential, the tangent-squared potential, is then introduced. We show that this
potential is physically reasonable, and, for many calculations, easier to use than previously used planar
continuum potentials such as the Lindhard, Moliere, and hyperbolic cosine. It simplifies many calculations
because the channeled-particle wavelength function and the solutions of the associated equation of motion can
be written in terms of elementary functions (specifically the square root, inverse sine, and trigonometric
functions) and because the phase-space density has a simple analytic form.

I. INTRODUCTION

Particle-channeling effects in crystalline ma-
terials have been pursued.' A complete under-
standing of the process requires an understanding
of how the phase-space density of the channeled
particles evolves as the particles move through
the crystal. However, a thorough understanding
is difficult since the phase space is six dimen-
sional, the crystal atoms vibrate making the lat-
tice look irregular to the channeled particles and
the channeled particles interact with the crystal
electrons in a complicated way.

In the planar-channeling case (and similarly for
the axial case), it was found that an ion’s motion
can be reasonably approximated by using New-
tonian mechanics, ignoring thermal vibration of
the lattice atoms and electron multiple scattering,
and replacing the atomic planes by continuum
planes. A consequence of these approximations is
that the velocity component of an ion parallel to
the planar-channeling direction is conserved and
the motion transverse to the plane is governed by
a one-degree-of-freedom nonlinear oscillator.
This approximation, called the planar-continuum
model, represents a great simplification over the
six-dimensional model with thermal vibration and
multiple scattering. While it is easy to solve the
nonlinear-oscillator equation numerically, there
are no solutions in terms of elementary functions
for the two most commonly used planar-continuum
potentials of Lindhard and Moliere. An approxi-
mate planar potential, the hyperbolic cosine, which

leads to solutions in terms of Jacobi elliptic func- -

tions, has been used.? However, in certain situa-
tions such as calculations of the depth-dependent
spatial or momentum densities, this does not lead
to a significant simplification.

All the information concerning the motion of
continuum-model planar-channeled particles is
contained in the two-dimensional, depth-dependent,
phase-space density associated with the nonlinear
oscillator. This density plays a fundamental role
in planar channeling because (i) it is a good ap-
proximation to the actual density for depths small
enough so that thermal vibrations and multiple
scattering can be ignored; (ii) it has a simple
representation in terms of an arbitrary initial den-
sity and the solutions of the nonlinear oscillator
equation [see Eq. (2.26)]; (iii) it gives a unified
framework for discussing the one-dimensional
statistical equilibrium or depth-dependent, spa-
tial, or momentum densities for any initial density,
since each of these can be derived from the phase-
space density by integration; (iv) it clarifies the
meaning of the spatial and momentum densities
for an arbitrary initial density and, in some cases,
leads to simplified representations of these den-
sities; (v) its evolution is governed by a differen-
tial equation, the Liouville equation of statistical
mechanics, whereas, in contrast, the evolution of
the one-dimensional spatial and momentum den-
sities is not known to be so governed; and (vi) it
forms a basis upon which departures from the
simple continuum model can be discussed. These
latter effects include thermal vibrations, electron
multiple scattering, and discreteness of the atomic
planes. We expect that a complete treatment of
these effects will, of necessity, involve the phase-
space density.

For channeling applications, it is not the phase-
space density that needs to be determined. Back-
scattering experiments are sensitive to the spatial
density and transmission experiments are sensi-
tive to the momentum density, and it is these one-
dimensional densities which need to be computed.

5948 . © 1978 The American Physical Society



18 CONTINUUM-MODEL PLANAR CHANNELING AND THE... 5949

Even with the continuum model and the simple
representation for the phase-space density, these
one-dimensional densities are not easy to calcu-
late.®* Part of the difficulty is because the non-
linear oscillator does not generally have solutions
in terms of elementary functions.

In the present work, we discuss the elements of
continuum-model planar-channeling with an empha-
sis on the depth-dependent and statistic equilib-
rium phase-space densities for an arbitrary ini-
tial density. The special cases of a Gaussian and
a zero beam divergence are discussed in some de-
tail. A simple new planar-continuum potential,
the tangent-squared potential, is introduced and
some applications making use of it are discussed.
It is our purpose to show that the tangent-squared
potential is both physically reasonable and, for
many applications, easier to use than previously
used potentials. It is a homework exercise in
Landau and Lifshitz,® p. 27, to show that this po-
tential gives rise to a simple expression for the
period (wavelength) as a function of energy. Also,
we have found that the nonlinear oscillator de-
fined by this potential has solutions in terms of
elementary functions [see Egs. (2.7), (2.23), (2.24),
(3.1), and (3.5)—(83.6) of this paper]. In particular,
the solutions can be written in terms of the square
root, the inverse sine, and trigonometric functions.
This leads to a closed-form representation of the
phase-space density and thus, to a simplification
in the calculation of the spatial and momentum
densities.,

In Sec. II, we discuss the planar-channeling non-
linear oscillator and show that it can be defined
not only by the potential, but also by the wave-
length as a function of either transverse energy
or amplitude. The depth-dependent and statistical
equilibrium phase-space densities are then dis-
cussed along with the corresponding spatial and
momentum densities. The tangent-squared poten-
tial is discussed in Sec. III in terms of the ideas
presented in Sec. II. In addition, a simple pro-
cedure is given for determining the (two) parame-
ters in this potential so that it accurately approxi-
mates either the Lindhard or the Moliere poten-
tial. In Sec. IV, we discuss some specific chan-
neling calculations which are significantly sim-
plified by using the tangent-squared potential and
which demonstrate that this potential is physically
reasonable.

II. THEORY OF CONTINUUM-MODEL PLANAR
CHANNELING
A. Equations of motion

Under the continuum approximation for planar
channeling, the equation of motion associated with

$ dp 3 PLANE OF ATOMS
—_—— — — —_— —Z
~\~ \\\\\ '
PLANE OF ATOMS

FIG. 1. Schematic for a particle undergoing channel-
ing between two crystal planes..

a channeled ion oscillating between two crystal
planes (see Fig. 1) is given in Ref. 1(a) p. 154, as

d®x 1 aV(x) .
+———"2=0 (2.1)
dz* 2E, ox ’
where

V(x) = Vy(3d, +x)+ V,(3d, - x) -2V, (34,), (2.2)

and V,(¢) is the planar-continuum potential at a ,
distance £ from the plane, x is the transverse dis-
tance from the center of the channel, z is the dis-
tance down the channel, d, is the interplanar spa-
cing, and E, is the ion’s longitudinal energy (de-
fined by the momentum component in the z direc-
tion) which, for channeling, is approximately the
incident ion energy E.

The two most commonly used planar-continuum
potentials are based on the Lindhard and the Mo-
liere approximations to the Thomas-Fermi poten-
tial'; for the Lindhard potential,

V(x) = K{[(1+ X)*+ 12D7*]"/>
| +[(1- X +12D7°/* = 2(1+ 12D7)2}
=KW,(X, D) 2.3)

and for the Moliere potential,

Vix)= K(g—;— e~ ®P)[cosh(3XD) - 1]
. 1.1
0.6D

0.7
"0.15D

=KW ,(X,D), (2.4)

e- (o.sD)[cosh(O.GXD) - 1]

e~ ©152)[cosh(0.15XD) — 1])

where X, D, and K are defined as
X=2x/d,, D=d,/ap, K=uZ,Z,e*(Nd,)d,. (2.5)

Here a, is the Thomas-Fermi screening radius,
Z, and Z, are the atomic numbers of the projectile
and target, respectively, e is the electronic charge
and Nd, is the number of atoms per unit area in
the plane. For convenience the minimum value of
V has been chosen as V(0)=0. Notice that the nor-
malized potentials W depend only on the normal-
ized position X and on the normalized interplanar
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FIG. 2. Comparison of the normalized Lindhard and
Moliere potentials for He incident near the {110} planes
of Si.

spacing D. For the case of He incident near the
(110) planes of silicon, a;=0.17 &, d,=1.92 &, and
D=11.3. The normalized Moliere and Lindhard
potentials for this D value are shown in Fig. 2.

If we use Eq. (2.5) and let Z=2/(3d,) and €

= (K/E)"?, then the equation of motion, Eq. (2.1),
becomes

d2X+l 2 0W(X, D)
a2 "2¢ T ax

=0. (2.6)

Since D is simply a scaling parameter in W, it
will be suppressed in the following: Eq. (2.6) can
be written as the first-order system

ax

2.7,
27 €Y=V, (2.7a)
av

Z = lew(X)= 2.
7z SEW(X)=0,, (2.7b)

where the prime denotes differentiation of a func-
tion of one variable and Eq. (2.7a) can be viewed
as the definition of ¥. If y denotes the angle a
trajectory makes with the planes, then tany(Z)
=dx/dz =dX/dZz; for channeling, tany =3, hence

=p/e. (2.8)

This must of course be consistent with Eq. (2.7)
and the value of ¢, that is, the initial conditions
for X and ¥ and € must be such that tane¥(Z2)
~e¥(Z).

B. Properties of the nonlinear oscillator in Eq. (2.7)

Equation (2.7) is the equation of motion of a non-
linear oscillator and has an associated conserva-
tion law

V+W(X)=e,=E /K, (2.9)

where ¢, is a normalized transverse energy, E
is the transverse energy, and K is defined in Eq.
(2.5). For each e,, Eq. (2.9) defines a curve in
the phase plane. Each of these curves is called
an integral curve, and the set of all these curves
is the phase-plane portrait for Eq. (2.7). A typi-
cal phase-plane portrait, for symmetric poten-
tials like Egs. (2.3) and (2.4), is shown by the
concentric ovals in Fig. 3. Notice that our nor-
malization has placed the atomic planes at X
=+1. Because of the symmetry of the potential,
each integral curve has a uniquely associated
amplitude A, defined implicitly by Eq. (2.9) with
¥ =0,

W) =e,. (2.10)

The solutions of Eq. (2.7) are periodic with wave-
length A, depending on which integral curve the
motion takes place. The wavelength as a function
of amplitude can be written

=(4/€)Q(A) =1/ (34d,) , (2.11)

where we have

Q)= f W(A) - W

=n[2w”(0)]7"%, A=0,

E)2de, A0,
(2.12)

and X is the wavelength in absolute units. To con-
veniently write the wavelength as a function of e,
we need the inverse H(Y) of W(X) for X>0, de-
fined by

HW(X))=X, X=0. (2.13)

If W behaves like X2 for small X, which is the
case for W, and W,,, then H has asquare-root sin-
gularity at zero. The derivative of H is defined
by

H'(W(X)=1/W'(X), X>0. (2.14)

The amplitude A as a function of e L can now be
written A =H(e,); hence, the wavelength as a func-
tion of e, is

A=(4/€)T(e,), (2.15)

where T(e,)=Q(H(e,)). That is, from Eq. (2.12)

T(e,)= f

=7[2w”(0)]"*/2, e,=0.

w(E)]"V2dt, e, #0,
(2.16)
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FIG. 3. Phase flow in the phase plane for various depths for particles starting along the line ¥ =¥, with X such that
¥+ W(X)= W(1). The particles never enter the shaded region, hence the density is always zero there.

We remind the reader that the functions @, H, and
T also depend on the parameter D, which has been
suppressed in the notation. Notice that each phase-
space point (X, ¥) has an associated wavelength
given by

A(X, ¥) = (4/€)QH(¥* + W(X))) = (4/€) T(¥* + W(X)).
' (2.17)

The primary qualitative feature of the nonlinear
oscillator for planar channeling is that the wave-
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FIG. 4. Universal curves of normalized wavelength
@ vs normalized amplitude A for planar-channeled part-
icles as a function of the normalized planar spacing
D=dy/ap. These calculated curves are for the Moliere
potential, The A and ¢ are the wavelength and ampli-
tude in absolute units and the other parameters are de-
scribed in Sec. ITA.

length is a monotonically decreasing function of
amplitude with zero slope at zero amplitude (some-
times called a hard-spring oscillator). This is
illustrated in Fig. 4 where we have plotted the re-
sults of numerically computing Q(4, D) in Eq.
(2.12) as a function of A for various D using the
Moliere potential. This figure is taken from Ref.
6; a similar figure results if the Lindhard poten-
tial is used. Using Eq. (2.11) and interpolation in
Fig. 4, the wavelength in absolute units as a func-
tion of amplitude can be determined for an arbi-
trary case. Notice that @ is qualitatively similar
to the cosine function. We pursue some quantita-
tive ramifications of this in Sec. III after show-
ing that the tangent-squared potential gives rise
to a cosine function for .

We now have four functions, W(X), H(Y), Q(4),
and 7(e,), related to the nonlinear oscillator of
Eq. (2.7). Clearly, given either W or H, the re-
maining three functions can be determined. It is
natural to ask whether @ or T determine the other
three. Since W is a symmetric potential, H is
determined from 7 by

nw =t [Tw-orre e ©(@2.18)

hence, T determines the other three functions.
This equation is derived from Eq. (2.16) in Landau
and Lifschitz®, p.27ff. Gibson and Golovchenko’
have made use of Eq. (2.18) to determine the po-
tential from experimental data for 7. Since H
depends linearly on T, superposition is possible.

The analogous relation between H and @ is more
complicated,
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H(Y)=%fY(Y—QE)'”zQ(H(é))dg. (2.19)

This follows from Eq. (2.18) by noting that T(¢)
=Q(H(£)). Equation (2.19) is a nonlinear Volterra
integral equation for the unknown H, given Q. We
have not found general conditions on @ to ensure
that Eq. (2.19) has a solution. However, it can be
shown that if @ is such that a solution exists, and
if @ is differentiable, then the solution H is unique.
Furthermore, under these assumptions, it can be
shown that if @, is close to @, then the corre-
sponding H, and H, must be close. It follows that
under certain assumptions on W [perhaps W(X)
=0(X?) as X-0], H, T, or Q [perhaps Q(0) is fi-
nite and @’(0)=0] the four functions are equiva-
lent. However, because of the nature of Eq. (2.19),
it is difficult to construct H, W, and T given Q.
General conditions aside, it can be shown that the
four functions generated by either the Lindhard,
the Moliere, or the tangent-squared potentials are
equivalent.

C. Channeled-particle depth-dependent phase-space density

All the information for the continuum-model
planar-channeled particles is contained in the
phase-space density o(Z, X, ¥) where f rodXayv
is a measure of the number of channeled particles
in an area T of the phase plane (see Fig. 3) at a
normalized distance Z down the channel. Since
the number of particles leaving any area in the
phase plane must equal the rate of decrease of the
number of particles in the same area, the diver-
gence theorem can be used to show that the evolu-
tion of o is governed by

29 +v+(0T)=0.

o (2.20a)

Here, V is the divergence vector (8/6X,9/6%) and
0 (X, ¥) is the phase-plane velocity of an ion at
phase point (X, ¥) as defined by its two components
Ux and 4 of Eq. (2.7). [Note that Eq. (2.20a) is
identical in form with the continuity equation of
fluid mechanics.] The right-hand side of Eq. (2.7)
is divergence-free, therefore v- (05) =6 *Vo and
Eq. (2.20a) can be written

o)

—_— Eg_ L 4 ?_0__
+e‘I/3X -zeW(X)B\IJ—O.

Y (2.20b)

This is the Liouville equation of classical statisti~
cal mechanics (for example see Ref. 8, p.76ff).
Since the density governed by Eq. (2.20b) con-

tains all the information for planar-channeled par-
ticles within the continuum approximation it can be
viewed as the fundamental equation of continuum-
model planar channeling. It is natural, therefore,
to use this equation as a starting point for the in-

troduction of thermal vibrations or electron mul-
tiple scattering. Kumakhov® and Kumakhov and
Wedell' have studied multiple scattering from
electrons using a Fokker-Planck equation which
reduces to Eq. (2.20b) when the multiple scattering
is ignored. In order to understand multiple scat-
tering effects and distinguish them from continuum
effects, it is helpful to have a good understanding
of the continuum-model phase-space density.
Equation (2.20b) is a first-order partial differ-
ential equation which can be solved by the method
of characteristics. The idea of this method is to
look for curves (called characteristics) X=X(Z),
¥ =¥(Z) in X-¥-Z space on which the partial dif-
ferential equation reduces to an ordinary differ-
ential equation. On an arbitrary curve, the rate
of change of 0(Z, X(Z), ¥(Z)) with respect to Z
is given by

do 00 8¢ dX 8g d¥

az "9z *oX dz "oV dz" @21
If the curve is now chosen so that X(Z) and ¥(2)
are solutions of Eq. (2.7) then the right-hand side
of Eq. (2.21) is zero [since ¢ is assumed to be a
solution of Eq. (2.20b)] and Eq. (2.21) reduces to the
trivial ordinary differential equationds/dZ =0 along
this curve. Itfollows thatoisa constantonthe curves
in X-¥-Z space determined by solutions of Eq.
(2.7), that is, the density following a particle in
phase space is constant, This is the standard
content of the Liouville theorem in classical
mechanics. If the phase-space density at Z=0 is
denoted by o,(X, ¥), then it follows that

o(Z, X(2),¥(2))=0(0, X,, ¥,) =00(X,, ¥,) , (2.22)

where X; =X(0) and ¥; =¥(0). The relationship
between (X, ¥) and (X;, ¥;) in this equation can be
conveniently written

X) %z, x,,¥,)= ‘pl(Z’Xf"I'f) , (2.23)
\4 ©.(Z, X;, %)

where ¢ satisfies the following initial-value prob-
lem for Eq. (2.7):

%’% =@, ¢00,X,%,)=X,,
(2.24)
M =1 ’ =
oz "z‘EW (@), @(0,X;,%,)=0,.
Equation (2.23) states that the phase point (X;, ¥,)
moves to the phase point (X, ¥) in Z units. Since
Eq. (2.7) does not depend explicitly on Z, the phase
point (X, ¥) must move back to (X;,¥;) in —Z units.
Hence, the inverse relation is

(\)If:)=a(—z,x, ). (2.25)



Using Eqs. (2.22) and (2.25), the solution of the
Liouville equation (2.20b) with the initial density
o, becomes™

O(Z) X? ‘Il) 200(@1(_2’ X: \I’), (pz("Z’ X’ \I')) .
(2.26)

It is important to notice that ¢(a, 8,7) denotes
the phase-space position which has evolved from
phase point (8,y) in @ units. Also, the inverse re-
lations (2.23) and (2.25) are a special case of the
more general property

V(2 +Z,, X, 0)=0(Z,, ¢,(Z,, X, ¥), 0,(Z,, X, ¥)),
(2.27)

which follows from the fact that both sides of Eq.
(2.27) satisfy the same initial value problem for
Eq. (2.7) in the independent variable Z,. Geo-
metrically, this equation says that moving Z, units
from phase point (X, ¥) and then Z, units from the
evolved phase point (¢,(Z,,X, ¥), ¢,(Z;, X, ¥)) is
the same as moving Z, + Z, units from (X, ¥).

Equation (2.26) is our fundamental result con-
cerning the phase-space density. It is both simple
in form and contains all the information concern-
ing planar-channeled particles for an arbitrary
initial density. It represents a unification in that
all depth-dependent or statistical equilibrium,
spatial or momentum densities for any o, can be
derived from it. In comparison with previously
derived representations for the spatial or momen-
tum density, it is both more general (o, is arbi-
trary) and simpler in form. It gives a closed-form
expression for the phase-space density if the func-
tions ¢, and @, can be determined analytically.
This is the case for the tangent-squared potential
to be discussed in Sec. III. To compute ¢(Z, X, ¥)
in the case where ¢, and ¢, cannot be determined
analytically (which is the case for most planar-
channeling potentials), the differential equations
in Eq. (2.7) must be integrated backward, Z units
from the phase point (X,¥). For large Z, it is
convenient to take advantage of the periodicity of
o in Z, that is, o(Z+ A(X, ¥), X, ¥)=0(Z, X, ¥),
where A(X, ¥) is defined in Eq. (2.17). This pe-
riodicity follows from Eq. (2.26) and the period-
icity of ¢, and @,.

We define a particle to be channeled if its am-
plitude A <A_, where A_is a critical amplitude;
hence, Eq. (2.26) holds for all X and ¥ such that
¥+ W(X) <W(A,). Since ¢ represents the channeled
density, 0 =0 for all X, ¥ such that ¥%+ W(X)
>W(A,). To complete the picture, the nonchanneled
particles must also be incorporated':*; however,
these particles will not be considered in this pa-
per.
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The results of a channeling experiment are
typically sensitive to either the spatial density
px(Z, X) or the momentum density p +(Z, ¥); hence,
for comparison with experiment, it is not the joint
density o, but the corresponding one-dimensional
densities which need to be computed. These den-

‘sities are the integral of the phase-space density

o over the ¥ interval [-b,b] where b>=W(4,)

— W(X) or over the X interval [~b,b], where &
=H(W(A,) - ¥%). This makes clear the meaning of
these one-dimensional densities in the case of an
arbitrary initial density o,.

D. Density discussion for special o,

In a channeling experiment, it is generally as-
sumed that the initial spatial density is uniform
and the initial momentum density is Gaussian with
small variance. The latter corresponds to a small
beam divergence with a Gaussian distribution. We
first pursue the idealized case of zero beam di~
vergence; hence,

0o(X, ) =35(¥ ~ T,) , (2.28)
where 6 denotes the delta function,
¥, =tan(y,/€) = ho/€ = (E/K) %), , (2.29)

and 9, is the incident angle in radians. The initial
positions of the particles in the phase plane are
shown by the horizontal line in Fig. 3 and the ini-

" tal density is uniformly distributed along this

line. The channeled-particle phase-space density
in Eq. (2.26) becomes

o(Z,X,¥)= %5(902_("2’ X, 1) - ¥y),
Y+ W(X)<W(A,).

The position of the particles at three depths, Z,
<Z,< Zs4, are shown by the nonoval (phase flow)
curves in Fig. 3. It should be noted, however, that
the density is not uniform along these curves.

The spatial density, obtained by integrating Eq.
(2.30) over ¥, is given by'?

pX(Z,X)=";~ Z
i

where the sum is over all { such that ¥,(Z, X, ¥,)
satisfies

(2.30)

9 -1
3‘%(—2, x, %) (2.31a)

wz(—Z,X,‘Il-)—\If(,:O and \IIZ+W(X)SW(AC).
i .i
(2.31b)

Similarly, the momentum density is found to be

puz,¥)=5 T

where the sum is over all ¢ such that X;(Z, ¥, %)
satisfies

-1
2—(;2("25‘}(1" lI’)

e , (2.32a)
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@x(~Z,X;, )= ¥,=0 and ¥+ W(X,;)<W(A,).
(2.32b)

Equivalent representations for the spatial and
momentum densities can be derived geometrically
using the phase plane as discussed in Ref. 4.
Briefly, the argument for the momentum density
is that

, p\y(Z,‘II)A‘II'ﬁ% 2AX0i, (2.33)
=
where AX,; is the ith initial spatial interval which
gets mapped into the interval A¥ at normalized
depth Z. The N intervals {AX,;} are neighborhoods
of the initial points X,; satisfying ¢,(Z, X;, ¥,)
- ¥=0, Therefore,

puz, =3 &

where the sum is over all 7 such that X, satisfies

(2.34a)

(U]

¢ -1
—é}z(z,x )l

0o(Z, Xy, W) =¥ =0 and 2+ W(X,;) <W(A,).

(2.34b)
Similarly, the spatial density is given by
1 9 ~ -t
022,05 1 |33@ X ¥, (2.3%)

where the sum is over all i such that X,; satisfies
0, (Z, Xy, ¥) - X=0 and ¥+ W(X,,)<W(4,).
(2.35b)

The representations of Egqs. (2.34) and (2.35) ap-
pear to be a simplification of Eqs. (2.31) and
(2.32), since the latter requires knowledge of
@(~Z,X,¥) for all X and ¥ whereas the former re-
quires knowledge of ¢(Z, X, ¥,) for all X but ¥,
fixed. The depth-dependent spatial density p, has
been computed by Abel et al.® using Eq. (2.35) with
a simple approximation to ¢, and ¥,=0.0 and by
Ellison® using Eq. (2.35) with 8¢,/8X determined
by numerically computing the solution of Eq. (2.7)
and the associated variational equation.

The equivalence of the corresponding represen-
tations can be derived by differentiating Eq. (2.23)
with respect to X and ¥ (with X; and ¥, as in Eq.
(2.25)), making use of the fact that the Jacobian of
the transformation ¢(Z, -, -) is 1, that is

3¢, 2y
x :;’ -1, (2.36)
__1(22 2
ax ov

and noting that the ¥; and X,; can be chosen so
that

Xy

"gE(Z,)Z’O,.,\IIO)=(‘I)’i ) or F(-2, X, q/,.)=( x ) (2.372)

0
and that the X; and X,; can be chosen so that

- X, — X,
‘P(Z’Xoi,‘l’o)_‘(q:) or ‘P(—Z,Xoi;‘1’)=(\1,°:)-

(2.3.7b)

In the more general case of a Gaussian beam di-
vergence, the initial density is given by

OO(Xy ‘Il) =§g(‘1’ - \II()) ’ (2.38)

where g is a Gaussian density and ¥, is the mean
value of the initial momenta. The spatial density
in this case is

1 b
pX(ZyX;g)=—2' fbg(¢2(_z’ X’ ‘I’)—‘I’o)d‘l",

(2.39)

where 5>=W(A4,) = W(X). The integrand can be
written fg(g - ‘1’0)5(‘!72(—2, X’ lII) - € )dg 5 hencey
another representation of this density is

px(Z, X; ) =f gt =¥,

x (% f_:a(%(—z,x, ¥) —£) d%) dt .
' (2.40)

This representation is not surprising since the
term in brackets is just the spatial density for the
case of zero beam divergence as given in either
Eq. (2.31) or Eq. (2.35). In contrast to the zero
beam divergence case, the representation of Eq.
(2.39) derived directly from the phase-space den-
sity, is easier to use for computing the density
than is Eq. (2.40). The momentum density is sim-
ilar. )

E. Densities in statistical equilibrium

Since 0(Z, X, ¥) is a periodic function of Z, the
associated statistical equilibrium density 7 is
given by the average of ¢ over one period. Using
Eq. (2.26),

1
A

A
o(X,¥)=
0

[ ooz, x, 1), 9.2, X, 9 az,

(2.41)

where A(X, ¥) is defined in Eq. (2.17) and we have
made the change of variable from Z to —Z. The
periodicity of @ and the fact that, by Eq. (2.27),
there exists an a(X, ¥) such that »(Z, X, ¥) =
P(Z+a,0,e?), allow 7 to be rewritten
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1 (4/€)T(ey)
(X, ) =fle,(X, V)= YA, [ ooley (2,0,€/?), 9,(Z,0,eY?))dz.

Here e, and T(e,) are defined in Eqgs. (2.9) and
(2.16). This shows explicitly that the statistical-
equilibrium density at phase point (X, ¥) depends
only on the transverse energy associated with
that point. Equation (2.42) is a line integral around
the closed-integral curve y(e,) defined by Eq. (2.9),
and can be written
1

F(X, ¥) = ——

2 1w/ 21-1/2
4T(e,) 7(el)({q’ +3[W QP 0o(X, V) ds

(2.43)

where s is the arc length along y and is related to
Z by (ds/dz)?=e?{¥? + (W' (X)[’}. The X and ¥ in
the integrand denote the phase point on the inte-
gral curve y as a function of arc length and should
not be confused with arguments the X and ¥ of©.

Added insight into Eqgs. (2.42) and (2.43) can be
gained by deriving the statistical-equilibrium-
phase space density in an alternate way. This
derivation proceeds by introducing a new set of
coordinates, determining the density in these new
coordinates, and then transforming back to X and
v,

The phase point represented by the coordinates
(X, ¥) can be equivalently represented by the co-
ordinates (Z, e,), where these are related by

X\ —
(‘I’)= v(Z,0, ell/z) ,

for 0<Z<(4/€)T(e,). The transverse energy e,
fixes one of the integral curves (ovals, as shown
in Fig. 3) and Z, which is the distance down the
channel traveled by a particle which starts at X
=0, U =¢Y/?, tags the particular phase point on the
integral curve. The Jacobian 8(X, ¥)/8(Z,e,) of
the transformation Eq. (2.44) is ¢; hence, the
densities in two-coordinate systems are related
by

3(X, V) =05, (Z,e,)(2/e). (2.45)

Let p(Z/e,)AZ denote the conditional probability
of a channeled ion being in the interval of distance
down the channel, AZ, given it has transverse en-
ergy e,. Since the particle moves down the chan-
nel at a constant velocity, this probability is given
by

(2.44)

AZ
(4/€)T(e,)’

If p,(e,) denotes the transverse—enérgy density,
which does not change as the ions penetrate the

pc(Z/e;)AZ = (2.46)

(2.42)

crystal because of the conservation of the energy,

then the joint density is given by

= €

OZBL(Z,eL)=Pc(Z/€;)Pe(€1)=Z‘TT(e—)Pe(6L) . (2.47)
L

Using Eq. (2.45), the density in (X, ¥) coordinates
is given by

E(X, ‘I’) =Pe(el)/2 T(eJ_) )

and is seen to be proportional to the transverse-
energy density divided by the wavelength. The
transverse-energy density can be determined by
noting that Eq. (2.45) also holds for the initial
density o,; hence,

(2.48)

(4/€)T ()
poled=f Goze,(Z,¢,) dZ
0

€ (4/5)T{el)
=3 f oo, (2,0, 611./2), (2,0, elilz))

0

X dzZ. (2.49)

Combining Egs. (2.48) and (2.49) yields the den-
sity as derived in Eq. (2.42). .Also, it is seen that
the integrals in Eqs. (2.42) and (2.43) are propor-
tional to the transverse-energy density.

The fact that & depends only on e, means that
all the information concerning the statistical equi-
librium motion of continuum-model planar-chan-
neled particles is contained in a function of one

‘variable once the potential W and the initial den-

sity o, have been chosen. This suggests the fol-
lowing simple algorithm for computing either the
equilibrium, spatial, or momentum densities in
the case of arbitrary o,: (i) Compute f(e,) of Eq.
(2.42) for a few values of ¢, in the interval
[0,W(A,)] and fit with an interpolating cubic spline.
@ii) Find, for example, o, by numerical evaluation
of the integral p(X) = [ fle, (X, ¥))d¥ where b
=[w,) - w2 ,

The function f(e,) can be determined from Eq.
(2.42) after ¢, and ¢, are found by numerically
integrating the differential equations, Eq. 2.7).
However, if the change of variable from Z to £ by
£=¢,(Z,0,€Y? is made in the integral of Eq. (2.42)
then ¢,(Z,0,eY?) =+[e, - W(£)]/? and Eq. (2.42) be-
comes

1 fﬁ(egoo(g,\IJ(};))+00(§,-—‘I’(€)) dt

f(eJ')=4T(el) ey \I’(g)
(2.50)
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where ¥(¢)=[e, — W(£)]/%. This integral bypasses
solving the differential equations for ¢, and ¢,
and is easy to evaluate numerically.

Of particular interest in channeling studies is

the case of a Gaussian beam divergence where

the o, in Eq. (2.50) is replaced by Eq.
(2.38). For zero beam divergence this reduces
t01.2

N
5=f(el)={ 0 , e,<¥,and eL>W(AC) . (2.51)
[2T(e )W H (e, - ¥2))] ™, V2<e, <W(A,)

This can be derived directly without introducing
the 6 function. From Fig. 3 it can be seen that
the ions with transverse energy in Ae, are ini-
tially in the spatial interval [H(e, — ¥2),H(e,
+Ae, —¥2)] and its negative counterpart. There-
fore, p (e.)=H'(e, — ¥2) for ¥i<e, <W(A,) and
equals zero otherwise. Equation (2.51) follows
from Egs. (2.13), (2.14), and (2.48). Notice that
the transverse-energy density, and hence G, is
zero in both the central shaded region and the re-
gion outside the oval with transverse energy
W(A,), as shown in Fig. 3. Also, Eq. (2.51) and
Eq. (18) of Ref. 6(b) are the same, if the identity
T(e,) =Q(H(e,)) is noted.

The statistical equilibrium spatial density for
the case of zero beam divergence, which can be
obtained by integrating Eq. (2.51), has been de-
rived®®® by an argument which is similar to the
content of Eq. (2.46) but does not use the phase-
space density. (A thorough discussion of this den-
sity is contained in Ref. 6.) A nonzero beam di-
vergence could be incorporated by convoluting
this density with a Gaussian density as discussed
in Sec. IID. However, the representation in Eq.
(2.50) combined with the algorithm discussed
prior to this equation appears to be a simpler ap-
proach.

The usefulness of the statistical equilibrium
densities depends on knowledge of the conditions
under which they can replace the'corresponding
depth-dependent densities. In Ref, 13 it is shown
that for the case of zero beam divergence the in-
tegral of p,(Z, X) over an X interval I approaches
the integral of b‘X(X) over I, for large Z. Similar
results presumably hold for other densities and
general 0,. For channeling studies, however, it
is also important to know how fast statistical equi-
librium is reached. Work is in progress on the
rate of its approach to equilibrium and some pre-
liminary results show that if p,(Z, X) is integrated
over both 7 and depth, then the approach is very
rapid. )

III. TANGENT-SQUARED POTENTIAL
A. Properties

The tangent-squared potential is given by
WrX)=Btan®? aX , (3.1)

where ~1<X <1, 0< @< 37and 8>0. The other
three equivalent functions discussed in Sec. II B
are

Hy(Y)=(1/a)arctan (Y/B)'2, 0<Y<ptana,
(3.2)

T
Qr(4) “2ap cosaA, 0sAs1, (3.3)
and

Tr(e,)=(m/2a)(B +e. )12, O<e, <pBtan?a.  (3.4)

The solutions of Eq. (2.24) can be written'*

¢r,(Z,X,¥)=(1/a)arcsin[v X, ¥)sinw@, X, ¥)],

(3.5a)
@r,(Z,X,¥)=el2(X ¥) cosw/(1- 72 sin?w) 2,
(3.5b)
where
¥=>0, (3.6a)
e, (X,¥)="24 gtan’aX =Btanad ", (3.6b)
7(X,¥)=[e, /(B +e, )} =sinaA | (3.6¢)
and
w(Z,X,¥)=ae, +B)’2eZ +arcsin(sinaX fy) .
(3.6d)

From phase-plane symmetry it is seen that

9—0(Z +%A(){; \IJ)’Xy\I’)r‘(LP_(Z,_X, _‘I/)y (3.7
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which can be used with Eqs. (3.5) and (3.6) to deter-
mine @z(Z,X,¥) for ¥< 0,
When ¥ =0, ¢, simplifies to

¢ (Z,X,0)=(1/a)arcsin{sinaxX cos[ f (X)Z ]}

(3.82a)
and y
— B2 tanaX sinfZ '
(pTz(Z,X, 0) = (1 —SiHZO'X coszfz)llz ’ (3.8b)
where
f(X)=€ap'”/cosaX . (3.8¢)

We now have a simple analytic expression for
the depth-dependent phase-space density as given
in Egs. (2.26) and (3.5) which can be used to deter-
mine the spatial and momentum densities. We have
not found any reasonable 0, which give simple an-
alytical expressions for the associated one-dimen-
sional densities. However, the above knowledge of
¢7, and @7, simplifies the amount of work involved
in computing these densities.

For example, consider the.problem of finding
Px(Z,X) when 0,=30(¥ - ¥ ), From Eq. (2.35), it
is seen that the only real numerical work is to
find all the X ; such that

o (Z,Xy,,¥,)-X =0, (3.9)

The partial derivative of ¢, with respect to X can
be determined analytically from Eq. (3.5a) and the
density can be determined by evaluating these
derivatives at each X ;.'* An example of this will
be discussed in Sec. IV. This technique is simpler
than the one outlined in Ref, 4 for use with the
Lindhard or Moliere potentials in which case
¢Z,X,¥) and its partial derivatives must be
determined for a large number of X values by
numerically computing the solutions of Eq. (2.7)
and the associated variational equations. Also,
because of the explicit form of Eq. (3.5), it is
easier to increase the accuracy of the density cal-
culation in the tangent-squared case than in the
Lindhard or Moliere case. A simpler technique
which yields an approximation to the one-dimen-
sional densities for the tangent-squared potential
and the §-function initial condition will also be
discussed in Sec.IV.

The incorporation of a Guassian beam divergence
into the spatial density using Eq. (2.39) involves
only a simple integration since & and ¢, are
known. This calculation is more straightforward
and perhaps easier than the zero beam divergence
case just discussed.

The calculation of the statistical equilibrium
phase-space density is also simplified since the
period function T and the inverse of the potential

CHANNELING AND THE... 5957

H needed in Egs. (2.50) are given analytically in
Egs. (3.2) and (3.4). Also, for the 6-function in-
itial condition, Eq. (2.51) takes the particularly
simple form

0, e, <V¥2
(X, ¥)=¢
G(Xx,¥) B1/z (B+ej_)l/2 ¢ >
21 (Bre -2, - WEZ s TLT Tor
(3.10)

The one-dimensional statistical equilibrium spatial
density for ¥ =0 can be determined from Eq. (3.10)
in terms of the elliptic integral of the first kind.
We suspect that the spatial density for ¥ ;>0 and
the momentum density for arbitrary ¥, can be de-
termined in terms of elliptic integrals of the first,
second, and third kinds. However, this does not
appear to be very useful since it is straightforward
to numerically compute the one-dimensional sta-
tistical equilibrium densities for a general poten-
tial as is demonstrated in Ref. 6.

The usefulness of the tangent-squared potential
depends upon whether the @ and B8 can be chosen so
that there is good agreement between the densities
computed using it and the densities computed using
either the Lindhard or Moliere potentials. In Sec.
IV it is shown that this is possible.

B. Comparison with the Lindhard and Moliere potentials

In Sec. II B we pointed out that @ (@ determined
from the Moliere potential W) is qualitatively
similar to a cosine function; this is also true for
@ as can be seen in Fig. 5 where we have plotted
Q. and @, for D=11.3, Here we show that the

o
o
T

o
[e]

»
o

o
3]

L > ad

o
[}

NORMALIZED WAVELENGTH:Q(A,D)
IS
[e]

25 1 1 1 1 1 1 1 1
’ 02 03 04 05 06 O7 ©08 09 10

NORMALIZED AMPLITUDE:A

1
0.0 Ol

FIG. 5. Normalized wavelength @ vs normalized ampli-
tude A for channeled particles for D=11.3, which corres-
ponds to He in (110) Si. The upper curve is computed
using the Lindhard potential and the lower using the
Moliere potential. The open symbols are the tangent-
squared approximation.



5958 J. A. ELLISON 18

parameters, « and B, in the tangent-squared po-
tential can be chosen so that reasonable quantita-
tive agreement can also be obtained. We do not
pursue the question of best fit since W, and Wy
are only approximate planar-continuum poten-
tials which differ in significant ways.

Since W, H, @, and T each equivalently deter-
mine the planar-continuum oscillator, « and B
can be chosen by finding a good fit between any
one of these and the corresponding function for
the tangent-squared potential. Because the mono-
tonic decrease of wavelength with amplitude (or
transverse energy) is the primary qualitative fea-
ture of the planar-channeling oscillator, we favor
determining « and B by fitting @, to @ or T to T.
We choose to fit the @’s because of the availability
of the curves in Fig. 4.

If we let

Qr(A)=Ccosad , (3.11)

and determine C and @ by requiring that @ +(0)
=Q(0) and @1 (A,) =Q (4,) for some A;>0, then

C=QO)=1/[2Ww"(0)}" (3.12a)

a=(1/A,) arccos[Q (4,)/Q(0)], (3.12b)
and from Eq. (3.3)

B =(1/2aCy . (3.12¢)

The normalized wavelength at amplitude A, for
either the Lindhard potential @ (A, D) or the
Moliere potential @(A,, D) is determined from
Eq. (2.12) by numerical integration. However, be-
cause of the availability of the curves in Fig. 4,
Qy(A,, D) can be obtained by interpolation in the
parameter D, A similar set of universal curves
is easily constructed for use with the Lindhard
potential.

If we choose A;=0.8 and consider the case of
1-MeV He incident near the (110) planes of Si
(D=11.3), then Eq. (3.12) yields (a, 8)y =(0.86,
0.15), and (o, B); =(1.10,0.07). In Fig. 5 the
tangent-squared approximations to both the Lind-
hard and the Moliere wavelength functions are
shown by the open symbols for D =11.3. Similar
agreement is obtained for other values of D.

Note that @, with @ and B chosen using @, (@u), is
much closer to @ (Qy) than is @,4(@.). It appears,
therefore, that based on current knowledge the
tangent-squared potential is a satisfactory planar-
continuum potential and it would be interesting to
determine if this potential can be derived from a

physically-reasonable screened Coulomb potential.

IV. APPLICATION
A Depth-dependent spatial-density calculations

In Ref, 4, spatial-density calculations using the
Lindhard potential are presented for ¥, =0.0° and
0.16° for several depths in the case of 1-MeV He
incident near the (110) planes of Si (in this case
€ =0,0153 and D =11.3). These calculations were
based on Eq. (2.35) as briefly discussed in the par-
agraph following the equation. For comparison,
the spatial density has been calculated for ¥,
=0.0° by using the tangent-squared potential as
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FIG. 6. Continuum-model spatial density at normalized
depths of 0, 100, 200, and 300 for a perfectly aligned
1-MeV beam of He ions, uniformly distributed initially,
channeled along the (110) planes of Si. Position of the
jump discontinuities and infinities are marked and the
density is given only for X=0 since it is symmetric
about the origin: (a) Lindhard potential is used, (b) Tan-
gent-squared potential with @ =1.10 and 8=0.07 is used.
The open symbols in (b) for Z=100 are the result of -
the particle-trajectory approximation discussed in Sec.
IV B.



discussed in the paragraph containing Eq. (3.9),
with € =0.0153 and (e, 8); =(1.10, 0.07) as deter-
mined in Sec. IIIB. As discussed in Sec, IIT A, the
tangent-squared calculation is both simpler and
easier to make more accurate than the correspond-
ing calculation using the Lindhard potential.

The results of calculations for both potentials are
presented in Figs. 6 and 7 for ¥, =0.0° and normal-
ized depths'® Z =0,100, 200, 300, 400,500, and 600.
The depth, in absolute units, is determined by
multiplying Z by 3d,=0.96 A, as can be seen from
the normalization in Sec. IIA, The overall agree-
ment is quite good. The positions of the infinities
are the same with the exception of Z =400. In Fig.
5, it is seen that the Lindhard and the tangent-
squared wavelength functions are in excellent
agreement except for those ions which start near
the planes. It is these particles which cause the
infinity for Z =400 (see Ref. 4), hence the different
values for the position of the infinity. Since the
position of the jump discontinuity is determined by
those particles starting nearest the planes,* the
position of the jump discontinuities differ consid-
erably for the two potentials. ’

The depth-dependent spatial density using the
Moliere potential can, of course,also be calculated.

2:400 ——
2=500 ----
Z:600 —-—

R 5[\ TANGENT SQUARED 7]

[\ x.=ni0 - 0.07 )

LOE_ t fi —

boeoo -

o5F 0 T —— _

ol by o by Aeesoopouagegege| 1 ]
0070l 02 03 04 05 06 07 08 09 10

X

FIG. 7. As in Fig. 6 for normalized depths of 400,
500, and 600. The open sumbols in (b) for Z =600 are
the result of the particle-trajectory approximation dis-
cussed in Sec. IV B.
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This density will differ significantly from the Lind-
hard calculation relative to the above results using
the tangent-squared approximation. Hence, based
on the current knowledge of atomic potentials, it
appears reasonable to use the simpler tangent-
squared potential with the two parameters, « and
B, chosen by some procedure motivated by the
particular situation.

B. Particle trajectory approximation to the densities

The axial-channeling spatial and momentum
depth-dependent densities have been developed in
a manner similar to that in Sec. IIC, and, as ex-
pected, these densities are technically more diffi-
“cult to compute than the planar densities. Approx-
imations have been developed and used to compute
the axial depth-dependent densities and these cal-
culations are in good agreement with data obtained
from transmission experiments in thin crystals.!”
However, since exact calculations do not exist,
the accuracy of the approximations is difficult to
assess. One of these approximations, the particle
trajectory approximation (PTA), is easy to use in
the planar-channeling case and particularly easy
if the tangent-squared potential is used. In this
section, we show that the PTA accurately approxi-
mates the densities of Eqs. (2.34) and (2.35). This
gives added confider\lce in the application of this
approximation to the axial case.

The PTA is based on the observation that an
approximation to the depth-dependent densities
Py and Py of Egs. (2.34) and (2.35) can be deter-
mined by numerically computing the solution of
Eq. (2.7) for a large number of initial positions
that are uniformly distributed over the initial in-
terval [ -1,1]. The momentum density, for ex-
ample, can then be approximated by noting that
pPy(Z,¥)AY is approximately equal to the number
of ions in AY at depth Z, divided by the total num-
ber of ions. This approach has been used to com-
pute an approximation to the momentum density in
an axial channeling case!” and a similar approach
has been used in a planar case'®; in both cases,
there is good agreement with data obtained from
transmission experiments in thin crystals,

We have used the tangent-squared potential with
@ =0.86, B=0.15, and € =0.0153 to compute the
momentum density using Eq. (2.34) and to compute
an approximation to this density using the PTA for
Po =0.0° at a normalized depth of Z =600, To com-
pute the PTA to the density, one simply calculates
¢1,(600,X,0) from Eq. (3.8b) for a large number of
X values uniformly distributed on [ -1,1], and then
counts the number of function values in a given A¥
interval. Again the parameters @, B8, and € corre-
spond to the case of 1-MeV He incident near the
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FIG. 8. Continuum-model momentum density at a
normalized depth Z =600 for a perfectly aligned 1 - MeV
beam of He ions, uniformly distributed initially, chan-
neled along the (110) planes of Si. The solid line is the
result of the exact calculation using the tangent-squared
approximation to the Moliere potential and the open sym-
bols are the result of the particle-trajectory approxima-
tion: (a) 600 particles, (b) 1000 particles, (c) 1400 part-
icles, (d) 1800 particles.

(110) planes of Si with @ and B as determined in
Sec. III B for the tangent-squared approximation
to the Moliere potential. In Figs. 8(a)-8(d), we
show the results of this calculation for the cases
of 600, 1000, 1400, and 1800 particles uniformly
distributed initially over the spatial interval

[ -1,1]. The open symbols are the PTA and the
solid line is the actual density. For convenience,
the abscissa has been taken as ¥ /¥, where ¥,_,,
is the maximum possible ¥ for a channeled par-
ticle, in this case ¥%,,=Btan?a =0.20, Because of
symmetry the density is presented only for ¥=0,
The momentum density has been appropriately
normalized so that its integral in the new variable,
V¥ /¥, is unity. The PTA is sensitive to the
“box size” AV and for the results shown in Fig. 8
we used AY /¥, =0.02,

The exact calculation shows that the momentum
density has the value of 15.57 for ¥ =0.0, becomes
infinite at ¥ /¥, ., =0.007, and drops to zero at
v /¥ ., just slightly less than 1.0 (only the latter

is shown on the figure). The approximation to the
density for 1800 particles as shown in Fig. 8(d) is
excellent; however, even the case for only 600
particles [Fig. 8(a)] shows the correct overall be-
havior. A characteristic feature of the approxi-
mation is that it oscillates about the true density
with the oscillations becoming smaller as the num-
ber of particles increases. The magnitude of the
oscillation in the interval [0.4, 0.9] in each case
is due to a difference of one particle per box. In
one view, the oscillations are there because the
particle trajectory approximation only allows dis-
crete values for the density, hence if the approxi-
mation overestimates the density at some value
then it compensates by underestimating at a nearby
value.

The PTA to the spatial density can also be com-
puted. We have done this for the situation dis-
cussed in Sec. IVA, where @=1,10, $=0.07, and
€ =0.0153, and the results are shown by the open
symbols in Fig. 6(p) for Z =100 and in Fig. 7(b)
for Z =600. In each case, 2000 particles have been
used and the “box size” AX =0,02 and in each case
the agreement is excellent. For Z =100, the ap-
proximation appears to take the average value at
the jump discontinuity (X =0.47) in the density, and
for Z =600 it takes a value near the position of the
infinity representative of the area under the infinity.

We have shown that the particle-trajectory ap-
proach can lead to excellent approximations to
either the spatial or momentum density. This
gives us added confidence in the axial calculations
to be presented in Ref. 17. A further question of
interest is how the approximation depends on depth

Z, the number of particles considered, and the

“box size”. Apparently, the tangent-squared po-
tential gives the simplest context in which to
answer this question. It is not, however, our pur-
pose to pursue this here.

C. Deduction of continuum potentials
from planar-channeling data

Gibson and Golovchenko” have measured the
channeled-particle wavelength as a function of
transverse energy in the case of 1.8-MeV He in-
cident along the (111) planes of Au and used the
relationships in Eqs. (2.16) and (2.18) to deter-
mine an approximate continuum potential from the
measured data. They used the potential-wave-
length pair in absolute coordinates

V(x)=3a,%% +3a.x* 4.1)

ME D =2 2/m)(1 +4a,E, /a2) 1/
X %3 —3(1 +4a,E, fa2)172) 4.2)
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FIG. 9. Wavelength vs transverse energy for 1.8-MeV:
He in (111) Au channels. The open symbols are the
experimental data, the dashed line is the fit to the
data by Gibson and Golovchenko (Ref. 7) and the solid
line is the fit to the data using the tangent-squared wave-
length function.

where >t°=7t(0)=21r(2E/al)1/2 and X(m) is the com-
plete elliptic integral of the first kind, with argu-
ment the parameter m, Equation (4.2) and the
parameters A, and a,/a? (or equivalently @, and a,)
were then used to find a fit to the data; they’
found a good fit for A;=1408 A and a,/a? =0.035.
The experimental data and the fitting function are
shown in Fig. 9 by the open symbols and dashed
line, respectively. The data points in the interval
20s E, < 80 are considered to be the most reliable.
The process of finding a good fit to the data when
the tangent-squared potential is used is particular-
ly simple because of the form of Eq. (3.4). Using
this equation, the reciprocal of the wavelength
squared can be written as a linear function of E,

A2(EL)=nE, +b 4.3)
where
n =(12/1I2d§E and b =pKn , (4.4)

. The quantities E, K, and d, are defined in Sec.
IIA and a, 3 are the parameters of the tangent-
squared potential defined in Eq. (3.1). The data
points can now be fitted with a straight line to
determine 7 and b,

Using the fact that the most reliable data points
are for 20s E, < 80, we found a good straight-line
approximation to the data with #=9,39X107° A™2
eV ™! and 6 =6.69X10"7 A72, The wavelength func-,
tion for these parameters is shown by the solid
line in Fig. 9.

The wavelength function of Eq. (4.2) gives
slightly better agreement in the region where the
datais most reliable; however, bothwavelengthfunc-
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tions appear tobe withinthe experimental error. In
order to choose between the two, more accurate
information is needed for small transverse ener-
gies.

Because of the linear nature of Eq. (2.18), one
could superpose wavelength functions of the form
of Eq. (3.4), giving more flexibility in fitting the
data. The parameters would be more difficult to
determine but still simpler than, say, adding the
x® term in Eq. (4.1). The potential would no longer
have a simple analytical form but it would be easy
to determine from its inverse which would be a sum
of arctangents [see Eq. (3.2)].

V. CONCLUSION

The elements of continuum-model planar-chan-
neling with an emphasis on the phase-space densi-
ty, which is the joint spatial-momentum density,
have been discussed. This density contains all the
information concerning the motion of channeled
particles and its evolution is governed by the
Liouville equation, which can be derived using
particle conservation in the phase plane. The
Liouville equation has been solved for a general
initial condition by the method of characteristics
giving a simple representation for the depth-de-
pendent phase-space density as shown in Eq. (2.26).
The statistical equilibrium phase-space density
is easily obtained from the depth-dependent phase-

.space density, as was shown in Sec. IIE, Thus,

Eq. (2.26) allowed a unified treatment of the depth-
dependent and statistical equilibrium, spatial and
momentum densities for an arbitrary initial den-
sity, since all of these densities are obtained by
integration from the depth-dependent phase-space
density. Special attention was given to the initial
density corresponding to the physically interesting
case of a Gaussian-beam divergence. This led to
new representations for the associated densities [see
Egs. (2.39), (2.50) and discussion following Eq.
(2.50)] which would be easier to use than equivalent
representations obtained by convoluting the zero
beam divergence densities with a Gaussian.

A new planar-continuum potential, the tangent-
squared potential, has been introduced and it is
shown that the wavelength function and the solutions
of the equations of motion can be written in terms
of elementary functions. This gives an elementary
expression for the phase-space density of Eq.
(2.26). After comparing this potential with the
Lindhard and the Moliere potentials, and after
using it to analyze some experimental data of Gib-
son and Golovchenko,” we conclude that it is a phy-
sically reasonable potential. We also demonstra-
ted that in certain calculations it is much easier
to use than the potentials of either Lindhard or
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Moliere. In fact, for computations which can make
use of the wavelength function or the solutions of
the equations of motion, it is easier to use than
either the hyperbolic cosine potential or the simple
anharmonic potential (3¢,%2 +3a,%*), both of which
were introduced to simplify channeling calcula-
tions. This is because the wavelength function and
the solutions of the equation of motion for the lat-
ter two potentials require the use of the more com-
plex complete elliptic integrals and Jacobi elliptic
functions. Finally, we have shown that the par-
ticle-trajectory approximation, which is quite use-
ful in the axial case,!” gives excellent agreement
with the exact calculation in the planar case.

Since useful perturbation schemes rely on being
able to find, in some reasonable form, the zeroth
order approximation, we are investigating the pos-

sibility of studying thermal vibrations and elec-
tron multiple scattering by a perturbation analysis
based on the Liouville equation and the tangent-
squared potential.

ACKNOWLEDGMENTS

The major portion of this work was completed
during a sabbatical leave spent with the Physics
Department at the State University of New York
in Albany. I appreciated the congenial atmosphere
they created and I gratefully acknowledge their
support. My thanks to D. K. Brice, S. T, Chui,
W. M. Gibson and S. T. Picraux for many enjoy-
able and helpful discussions concerning the nature
and applications of channeling.

*Present address: Dept. of Mathematics, University of
New Mexico, Albuquerque, N. M. 87131,

L(a) Channeling: Theory, Obsevvation and Applications,
edited by D. V. Morgan (Wiley, New York, 1973); (b)
D. S. Gemmell, Rev. Mod. Phys. 46, 129 (1973).

%3, Datz, C. D. Moak, T. S. Noggle, B. R. Appleton, and
H. D. Lutz, Phys. Rev. 179, 315 (1969); and M. T.
Robinson, ibid. 179, 327 (1969). e

3F. Abel, G. Amsel, M. Bruneaux, C. Cohen, and A.
L’Hoir, Phys. Rev. B 13, 993 (1976).

43. A. Ellison, Phys. Rev. B 12, 4771 (1975).

L. D. Landau and E, M, Lifshitz, Mechanics (Addison-
Wesley, Reading, Mass., 1969).

63, A. Ellison and S. T. Picraux, (a) Sandia Laboratories
Report No. SAND 77-0361 (unpublished, 1977); and
(b) Phys.Rev.B 18, 1028 (1978).

"W. M. Gibson and J. Golovchenko, Phys. Rev. Lett.
_2§, 1301 (1972).

8K. Huang, Statistical Mechanics (Wiley, New York,
1963).

%M. A. Kumakhov, Radiat. Eff. 26, 43 (1975).

10y, A. Kumakhov and R. Wedell, Radiat. Eff. 30, 1
(1976). -

U This equation can be derived directly by probabilistic
methods. In fact, the entire development of the spa-
tial, momentum, and phase-space densities, in Secs.
IIC-IIE could proceed from the equations X(Z)
=¢4(Z,X;,¥;) and ¥(Z2)=¢,(Z,X;,¥;), where ¢, and
@, are defined in Eq. (2.24). Here, X; and ¥; are to
be considered random variables defined by their joint
density 0y, and X(Z) and ¥(Z) are depth-dependent
functions of these random variables. The various den-
sities associated withX(Z) and ¥(Z) are determined

by the standard methods for finding densities of non-
linear functions of random variables. A discussion
of this approach is contained in T. L. Saaty, Modevn
Nonlinear Equations (McGraw-Hill, New York, 1967),
p. 350 ff,

2The identity 6( f(x))=8(x-x,)/|f’'(x,)| where f(x,)=0 has
been used.

133, A. Ellison and T. Guinn, Phys. Rev. B 13, 1880
(1976). -

l4These solutions can be derived by solving the first-
order ordinary differential equation associated with
the energy equation, Eq. (2.9), using the fact that an

" indefinite integral of [(1+ E)/(E -tan?x)]!/2 ig

sin"{[(1+ E)/EI}?sin x}.

15Abel et al. in Ref. 3 have apparently used this approach
to compute the spatial density for ¥ =0.0 after finding
an analytic approximation to the function ¢,(Z,X,0)
as determined by the Lindhard potential.

181 Ref. 4, it is incorrectly stated that the depth is in
angstroms. The mistake in the paper is corrected if
so, as defined in Eq. (4) of that paper, is taken to be
+dp [which is 0.96 A for (110)Si] rather than 1A as
stated on p. 4773. Hence, Fig. 2 of that paper is
corrected by multiplying the ordinate by 0.96 and
Figs. 6-11 are corrected by multiplying the values
of the abscissa by 0.96. For example, in Fig. 8 [which
corresponds to Fig. 7a of this paper], the curves given
are for depths of 384, 480, and 576 A rather than 400,
500, and 6004 as stated.

173, A. Ellison, S. T. Chui, and W. M. Gibson, Phys.
Rev. B (to be published).

18y, O. Lutz, R. Ambros, C. Mayer-Boricke, J. Reich-
elt,and M. Rogge, Z. Naturforsch. A 26, 1105 (1971).



