
PH Y SI CA L RE VIE% B VOLUME 18, NUMBER 11 1 DECEMBER 1978

Correlation functions for simple hopping in a simple cubic lattice
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We calculate the correlation functions for a single specific particle and for a pair of specific particles in an
ensemble of particles making nearest-neighbor simple jumps in a simple cubic lattice. These correlation
functions can be used to obtain tracer correlation factors and NMR relaxation times due to motionally

altered I-S (unlike spin) or I-I (like spin) dipolar interactions. In particular we calculate T, due to the I-I
dipolar interaction for various concentrations of particles as may be appropriate for some metal hydrides at
different concentrations. Our results show that the T, calculated using the random-walk model is in error by
more than 15% at low concentrations and by almost 100% at high concentrations.

I. INTRODUCTION

Starting with Bloembergen, Purcell, and Pound'
(BPP), an enormous amount has been published on
correlation functions for atomic motion and nu-
clear-magnetic-resonance (NMR) relaxation rates
due to motionally altered dipolar interactions. One
significant improvement on the simple BPP or
single-relaxation-time model is the random-walk
model first used by Torrey' which takes into ac-
count some of the correlations introduced by spec-
ific lattices. Although the random-walk model
predicts significant departures from the single-
relaxation-. time model, the single-relaxation-
time model is still used sometimes for quantitative
analysis. Further, Wolf' has recently introduced
a model of monovacancy hopping which is valid when
the concentration of vacancies in a lattice ap-
proaches zero. Under some conditions the T,
predicted by the monovacancy-hopping model
shows that the single-relaxation-time model can
lead to errors of more than 300~i~ and that random-
walk model can lead to errors of more than 100%.
However, in spite of these rather large discrep-
ancies at high and low temperatures, all of these
models predict almost the same value for T, at
the T, minimum when the relaxation is due to
I -I (, like spin) dipolar interactions.

Becently4 we have developed a formalism which,
at least in principle, allows one to calculate all
correlation functions and thus all relevant re-
laxation rates for any simple-hopping system. In
this paper we apply this formalism to calculating
the correlation functions for one specific particle
and for a pair of specific particles hopping via
nearest-neighbor jumps in a simple-cubic lattice
with an arbitrary concentration of occupied sites.
We find that the random-walk model and the single-
relaxation-time model yield T,'s due to I-I dipolar
interactions that can be in error by as much as
100% and 300%, respectively, at high concen-
trations and by 18% and 230%, respectively, at

low concentrations. Oddly enough, the value of
T, (but not its position) at the T, minimum does
not depend on whether or not a correct theory is
used. The tracer correlation factors obtained
with our theory at various concentrations are
virtually identical to those obtained by computer
simulations. As the concentration of particles
approaches one, our results agree with Wolf' s.
For concentrations of particles between zero and
one, our results will allow a meaningful quan-
titative comparison between different experiments
on some metal hydrides. Further, the techniques
developed in this paper will be useful in calculating
similar results for the fcc lattice and for the
octahedral and tetrahedral interstitial sites in
a bcc lattice. These lattices are believed to de-
scribe the occupied sites in many metal hydrides.

In the remainder of this section we shall dis-
cuss a number of details which are necessary
for an understanding of the problem. This includes
a clarification of the "simple-hopping model, "
which is the model we use. Further, we discuss
the dynamical variables involved Bnd the cor-
relation functions that are relevant to T, cal-
culations. In Sec. II we obtain expressions for
T, in terms of the relevant correlation functions
and briefly review the physics and results of
models which previous investigators have pro-
posed. The results of our calculations are pres-
ented, discussed, and compared with previous
theories and existing experimental data in Sec.
III. Our calculations refer to two distinct ap-
proximations. The first of these is the mean-
field approximation which has a very limited range
of validity and the second is a much better ap-
proximation which we call the multiple-scattering
approximation. 'The details of our calculations
for the single-specific-particle correlation func-
tion apd for the correlation function for a pair
of specific particles are contained in Secs. IV and

V, respectively. Sections IV and p depend heavily
on previous work and might be considered as
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appendixes. We believe that the results of Secs.
I-III can be understood without reading Secs. IV
and V.

In what follows we shall use greek letters to
denote lattice sites that a hopping particle can
occupy. In the simple-hopping problem one as-
sumes that the probabilit:y per unit time that a
particle at the site n will hop to a nearby vacant
site P is given by the hopping rate I'

z and that
this process depends neither on the time nor on
the occupancy of sites other than n and P. How-
ever, a particle can never hop to a site that is
already occupied by another particle. This is the
model that most authors use when refering to
hopping or atomic migration. We note that such
a simple-hopping procedure does not necessarily
obtain. For example, the effective potential well
at a given site could depend on the occupancy of
a number of sites near the given site. In this
case the probability per unit time for a particle
to hop from site o. to site P would depend on the
occupancy of a number of sites near the sites n
and P. Other types of complications could also
occur such as the hopping rate depending on the
lengt;h of time that a particle has already spent
at a site. However, in the remainder of this
paper, we shall ignore the possibility of such
complications.

As discussed in Ref. 4, there are two types of
stochastic variables that a.re of interest in the
hopping problem. One type of variable called n
denotes the occupancy of the site n by any par-
ticle. Thus n =1 if the site is occupied (by any
particle) and n =0 if the site n is vacant. The
other type of variable called P; denotes the oc-
cupancy of the site o. by the specific (distinguish-
able) particle labeled i Thus p. ; =1 if the spe-
cific pa, rticle i is at the site n and P&

—-0 other-
wise.

Correlation functions containing the n variables
can be measured by neutron scattering and can
contribute to NMR relaxation rates due to quad-
rupolar processes. Here, however, we consider
only those correlation functions relevant to dipolar
relaxation. Further, at this point, we also spe-
cialize to Bravais lattices where all sites are equiv-
p,lent. One of the two correlation functions which
~e consider is the two-point distinguishable par-
ticle correlation function defined as

D)(R —&~, t) =&P).(t)P(,(0)) e(t)

p Ql/ 2P

In this equa, tion N is the number of sites in the
lattice, 8 is the step function, the brackets (&)
denote the ensemble average of x, and R is the
lattice position of the site n. The quantity D, in

Eq. (1) is proportional to the probability that the
particle i is at the site P at time zero and at the
site n at a later time t. Thus it describes the
motion of a single particle with respect to the
lattice and can be used to calculate relaxation
rates due to the I-S dipolar interaction between
a hopping spin and other stationary spins.

The other function which we consider is the
four-point, two-time distinguishable particle
correlation function defined as

D g;( R~, R~; R~, Rp', t)

=(p$ (t)py-(t)p&, (0)py,-(0))e(t), (3)

where i and j refer to two different specific par-
ticles. This function is proportional to the prob-
ability that particles i and j are at the sites P and

P, respectively, at time zero and are at the sites
n and OI., respectively, at time t. Actually, the
function in Eq. (3) yields more information than
we need and thus we define

D)g(R, Rq, t)

=N 'QDg, (R +R„,R„;Rg+Rv, Rv', t). (4)
rF

This function is proportional to the probability
that the particles i and j are separated by R at
time zero and by R at time t. This is the func-
tion desired for calculating relaxation rates due
to the I-I dipolar intera. ction between pairs of
hopping spins.

II. EXPRESSIONS FOR Tl

In what follows we shall let c denote the con-
centration of particles (the number of particles
divided by the number of sites) and let c denote
the concentration of vacancies so that

C =1 —C.

Further, it is convenient to Fourier transform
all quantities in space and time. All quantities
A(t) depending on a single time difference are
trans fo'rmed as

A(~) ll dtA(t) e~
4 ~oo

Quantities A(R ) depending on a single-space
coordinate [like D, in Eq. (1)] are transformed as

A(q) = QA(R ) e '~'R (7)

while quantities A(R, R ) depending on two dis-
tinct space coordinates [like D,&

in Eq. (4)] are
transformed as

A (q, q') = p A ( R, R ) exp (-iq ~ R + iq' ~ R&), (8)



5940 PETER A. FEDDERS AND 0. F. SANKEY 18

where q is a wave vector in the first Brillouin
zone. . For a Bravais lattice we have that

r.,= I"g(R.—R,),
where f(R ) =1 if R is a nearest neighbor to the
origin and it equals zero otherwise. Thus I', is
the hopping rate for a particle to hop to a single
vacant nearest neighbor. .The Fourier transform
of I' is I'(q) and [by Eq. (7)j for the sc lattice
we have

(9)

I'(q) =I' f(q), f((q) =2 g cos&,a, (10)

where a is a cube edge and latin subscripts denote
the three Cartesian directions.

The relationship between various relaxation
rates and the correlation functions D, and D,J are
described in many places. ' Although we shall
present results for both D, and D,&

in this section,
we shall comput. e only T, due to the I-I dipolar
interaction between pairs of hopping spins. By
taking advantage of the cubic symmetry of the
sc lattice, one can write T, due to this process as'

T,' = (—,', A) [D,', (&u)(2 5h) +Do, (2+)(8 —20k)

+D,', ((u) (24 + 90h) +D'„(2(o)(96 —240k)

+D,',(~)(6 —15h) +D'„(2~)(24+90h) j,

using Ewald's method' and one can express the
results as

T
~

= (A/(d) [go((dr ) + jig~((d T')j,

where we have defined a correlation time w, and
a correlation rate I', as

I",=1/~, =6c I",. (16)

g (x) - b (~)/x, x» 1

g.(x)-xf„(0), x«I, (17)

The factor of 6 obtains because there are six
nearest neighbors in an sc lattice and the factor
of c because the probability of an arbitrary site
being vacant is c.

Expressions similar to Eq. (11) can be readily
derived for relaxation due to the I-S dipolar inter-
action and also for other relaxation rates such as
T, or T~. The heart of all of these problems is
the calculation D,, and D, . Since all of the numer-
ical summations are rather easily performed on
computers, we shall not display results for all
values of w7, except in the case of the multiple-
scattering approximation with c = 0.85. (However,
tables of T, vs ~7, for any concentration are
available from the author upon request. ) Instead
we shall display the results at high and low fre-
quencies in terms of the dimensionless constants
b (~) and b (0) defined by the equations

where

h- ~I
a6

where n=0 or 1. The b's for various models and
concentrations are displayed in Table I. The

where y is the gyromagnetic moment of the spin
I, w is the frequency of the experiment. , the l,.
are the direction cosines of the external magnetic
field with respect to the cubic axes, and the an-
gular average of h vanishes. Further,

D' ((u) =N Q T (q)D!,(q, q', (u) T*(q'), (l2)

where D' denotes the real part of D and the T, (q)
are given by

T,(q) =T,„(q)+T„(q)-2T„(q),
T,(q) = T,(q) —iT„(q),
T (q) = T„„(q)—T (q) —2iT„„(q), Theory b, (0) bp( ) b, (-)

TABLE I. Dimensionless constants bp(0) bp() and
b~(~) defined by Eq. (17) for the various theories dis-
cussed in the text. The abbreviations SRT, RW, MV,
MF, and MS are used, respectively, for the single-re-
laxation-time model, the random-walk model, the mon-
ovacancy model, the mean-field approximation, and the
multiple-scattering approximation. The MV theory ap-
plies only in the limit as c 1 while the b's for the SRT,
RW, and MF theories do not depend explicitly on c. The
quantity b~(0) is zero for all of the theories. All of the
b's were computed from the equations in this paper ex-
cept for those for the MV theory which were taken from
Wolf's (Ref. 3). The values obtained for the RW model
agree with the work of previous investigators (Refs. 3
and 8),

where the T;;(q) are the Fourier transforms of

T,,(R) =
~ 'It;8, /R', Rx00, R=O

(14)

where R,. is the ith Cartesian component of R.
Given the correlation function D;,.(q, q, (u), the

summations in Eq. (12) are performed numeri-
cally. The functions T;&(q) are easily computed

SRT (any c)
RW (any c)
MV (c-1)
MF (any c)
MS (c= 0.20)
MS (c= 0.40)
MS (c= 0.60)
MS (c=0.80)
MS (c= 0.90)
MS (c 1)

8.40
17.91
28.53
19.87
20.29
21.35
22.84
25.17
27.00
30.86

13.44
10.36
4.57
8.76
8.76
8.76
8,76
8.76
8.76
4.37

-8.30
-7.17
-3.09
-5.67
-5.67
-5.67
-5.67
-5.67
-5.67
-3.00
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D, ((q, (o) = 1/[ —i(o+ (o,(q)],

D, ,(q, q', ~) =N&(q —q')/[ —i~+2~.(q)],

where

~,(q) =I"QL --.'f (q)].

(19a)

(19b)

(20)

As can be seen easily, Eq. (19a) predicts a dif-
fusive behavior at long wavelengths with a diff-
usion coefficient D given by

D=c I', a'= —,
' I",a'. (21)

Torrey's original calculations with this model
included a number of additiona, l approximations
in order to make the numerical integrations
easier. More recently more precise numerical
calculations for the sc lattice have been made
by Wolf' and Sholl. ' As can be seen from Table I,
the random-walk model yields corrections to the
single-relaxation-time model that are of the order
of a factor of 2.

Recently Wolf' has made calculations of T, from
a monovacancy model. This model is the simple-
hopping model applied in the limit where there
is only one vacancy in an infinite crystal and thus
it is applicable only in the limit where c-1 (or
c-0). This limit is an excellent approximation
for normal crystals where typical vacancy con-

monovacancy model is valid only for c «1 while
the g (x) are independent of c for the single-
relaxation-time model, the random-walk model,
and the mean-field approximation. However,
the g (x) depend upon c explicitly in the multiple-
seattering approximation. The error in our nu-
merical computations are less than I%%d .

We shall now give a very brief summary of
the results of some of the currently used models.
In the simple BPP or single-relaxation-time mod-
el' one assumes that the correlation function can
be described by a single rate. Thus the two rel-
evant correlation functions are

D,.(q, (o) = I/(-i(o+ r,), (18a)

D,,(q, q', ~) =N~(q q )/(-i~+ 21,) . (LSb)

These correlation functions do not exhibit a. dif-
fusive character at long wavelengths and, when
Fourier transformed to configuration space, are
proportional to 6 functions in R.

In the random-walk approximation' one assumes
that any specific particle moves through the lattice
in the same way that a single particle would move
through an otherwise empty lattice. In more so-
phisticated versions of this model blocking due to
occupied sites is taken into account by assuming
that the correlation time is given by Eq. (16). The
relevant correlation functions are given by the
equations

centrations due to thermal disorder are less than
10 '. Since the calculations consist essentially
of computing all rearrangements of pairs of atoms
due to an encounter with a single vacancy, these
results should be exact to within the limits of the
numerical computations. Although Wolf's results
in general cannot be easily expressed analytically,
the limiting cases are included in Table I. As
ean easily be seen, his results show that the
random walk theory is in error by more than
100%%uo when c-1 and that the single-relaxation-
time model is even worse.

III. RESULTS AND DISCUSSION

where

d, (q, ~) =[ i~+2~, (q)] ',
2

Ii(u&) =1- —I", N ' g(cos'q, a

(23a.)

—cos q„a cos q, a)d, (q, ~) .

(23b)

As mentioned in Sec. I, we have recently de-
veloped a formalism which allows one, in prin-
ciple, to calculate any correlation function using
the simple-hopping model. In this paper we wish
to examine two distinct approximations using our
formalism. The simplest (and least accurate) of
these approximations is the mean-field approxima-
tion which is a well-defined, consistent approxi-
mation both physically and mathematically. Phy-
sically the approximation consists of assuming
that any site that a single specific particle might
hop to has a probability c of being vacant. Fur-
ther, when considering a pair of specific par-
ticles, one assumes that each particle travels
in its own mean field, but with the additional
restriction that the two particles cannot occupy
the sa,me lattice site.

Using our formalism the mean-field approxi-
mation for D, ((q, &u) and D,, (q, q', &u) are both easily
obtained. The details of these approximations
are discussed in Secs. IV and V and we present
only the results here. The mean-field approxi-
mation for D,.(q, &u) is identical with the expression
given by Eq. (19a) and thus the diffusion coef-
ficient D is given by Eq. (21). However, the mean-
field approximation for D,.&(q, q, &u) is not identical
to Eq. (19b). Instead it is effectively' given by
the expression

D„(q, q', ~)= d, (q, ~) N~(q —q')

2 p, d, (q, e)d, (j', v)Q~cos p, a cos p,' a)
+ g(~)

(22)
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f, = (1 —2o.')/ [I + (6c —4) o./(2 —c)],
~ =- 0.1059. (26)

This function agrees with values of f, obtained
from the computer simulations of De Bruin and
Murch" to within the accuracy that one can read
their figure (-1%).

The exact values of D, (q, u) in the multiple-
scattering approximation can be calculated at
each value of (q, a&) using Eqs. (31), (32), and
(37)-(42) from Sec. IV. As a partial simplification
we have noted that as a purely numerical approxi-
mation one can express D,. as

D, (q, (o) = [-i(o +K. (q, (u)] ', (26a)

Nq» = &.(q) (I -P,/[P, (q) —f&]] (26b)

where ~,(q) is given by Eq. (20) and P, and p, (q)
are given by the prescription contained in Eq. (44)
in Sec. III. This numerical approximation pre-
serves the spectral integral of D, (q, u), is exact
at c =0 or c =1, and is in error by no more than
3% at intermediate concentrations for any value
of (q, ~). Using Eqs. (26) can result in an enor-

The first term in Eq. (22) is the random-walk
model result while the second term is a correction
to the random-walk model that arises because
the two particles i and j cannot occupy the same
site. As can be seen from Table I, this restriction
lowers T, by 11% at low frequencies and raises
T, by 18% at high frequencies. As one would ex-
pect, the mean-field approximation becomes ex-
act as c approaches zero or & approaches infinity.
Thus the random-walk model is wrong even in
these relatively trivial limits.

It is easily seen where the mean-field approxi-
mation goes wrong. For example, suppose that
a specific particle has just hopped from site a
to site b. The mean-field approximation now

says that site a has a probability c of being va-
cant when, in fact, site a is surely vacant because
the specific particle has just hopped out of it. In
Sec. III we discuss the multiple-scattering approx-
imation to D,.(q, &u) which is much better than the
mean-field approximation. An exact definition
and discussion of the approximation is given in
Sec. III. Here we only note that the approximation
is exact when c -0 or c -1 and that we believe
it to be exa, ct to about 1% at intermediate con-
centrations. The diffusion coefficient obtained
in this approximation is

D=6 f, r,a',
where f, is the correlation factor""" or tracer
correlation factor. From the multiple-scattering
approximation described in Sec. IV we obtain the
expression

mous savings of computer time since &u, (q), P„
and P,(q) are independent of ~.

The multiple-scattering approximation for
D,~(q, q, &u) is discussed in Sec. IV. The expres-
sion obtained is effectively'

D;&(q, q', (o) =Nb(q —q') d, (q, (u) +~~ I' do(q, (u)

xd, (q', v) +cosy,-acosq,'. a

where d, (q, &o) is given by Eq. (23a),

do)
d, (q, (u) = D, (q, (u)D. ,.(q, (u —a)),

~CO

(28)

and D,.(q, ar) is the function discussed in the pre-
vious paragraph. As discussed in Sec. V, to the
best of our knowledge Eq. (27) is exact to between
4% and 8/0 when c = 1, is better than 4% if c &0.9,
and approaches 2% accuracy as c -0. These
estimates are discussed further at the end of Sec.
V.

The results of our T, computations in the asy-
mptotic regions at a variety of concentrations
are included in Table I. As mentioned earlier,
all of the models and approximations listed yield
virtually identical values of T, (the value of T,
at the T, minimum). We find this observation
somewhat surprising in view of the large variations
in the asymptotic regions and we have no explan-
ation for it. The value of &r, for which Tg Tl
varies by a factor of 2 over the range of theories.
However, because the T, minimum is rather
broad, flat, and asymmetric, we feeI that an
accurate experimental determination of the po-
sition of a T, minimum would be very difficult.

Vfe wish to note that there is a quirk in the
results for u&r, » 1 in the monovacancy (c -1)
limit. This quirk arises because there are two
different frequency (or time) scales in the prob-
lem. One characteristic frequency is F, =6c I'„
the mean-field rate for a specific particle to hop
to any nearest neighbor. The other characteristic
frequency is a vacancy frequency I'„=6I'„ the
rate for a vacancy to move to any nearest neighbor.
Now K(q, ~) [see Eq. (26a)] scales as I', but the
frequency dependence of K(q, u&) is largely con-
trolled by the dimensionless parameter &u/I'„.
Although this distinction between frequency scales
is largely irrelevant for most values of c, it
becomes vital as c-0. For example, the mean-
field approximation becomes exact for high enough
frequencies which means ~» F„, not u» F,. Thus
for any fixed value of &ov, =~/I'„ the value of
&u/I „will always approach zero as c-0 and one
ca,n never pass to the regime where co» F„,. This
is the reason why bo(~) and b, ( )~in the c-1 limit
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are not given by the mean-field approximation.
For fixed but very small values of c the mani-
festation of these two frequency scales is the
existence of three distinct frequency regimes:
(i) low frequencies or ~ « I'„(ii) intermediate
frequencies or I' «tu« I'„, and (iii) high fre-
quencies or F„«(d. In this situation Ty occurs
between regimes (i) and (ii) but T, will have a
different asymptotic value in regime (iii) than it
does in regime (ii).

In Fig. 1 we have plotted I/g, ((ov,), which is
proportional to the angular averaged T„as a
function of vv, for e = 0.85 or c = 0.15. One fea-
ture of Fig. 1 that should be noted is that the
asymptotic limits at high and low values of cov',

indicated by the dashed straight lines in the figure,
are not approached very quickly. For example,
the value of T, is about 25% above the asymptotic
limits when T, =3T, . This type of behavior is
not new to our theory and can be noted in other
calculations. ~' The reason for it is that there
is a distribution of relaxation rates in a BPP
sense. This rather slow approach to the asymptot-
ic limits is particularly insidious because over
a limited range of &v„T,appears to approach in-
correct asymptotic values. Further, the asymp-
totic value of Ty at low frequencies is unusually
sensitive to effects of a finite lattices with correc-
tions proportional to N ' ', where N is the number
of sites in the lattice. Thus computer simulations
with a finite lattice could easily be in error by
order X ' ' at low frequencies.

The other noteworthy feature in Fig. 1 is the
very small glitch in the curve near co7', =0.14.
Since this glitch is barely larger than the in-
accuracies in our numerical calculations, not
very much weight should be attached to it. In
fact, it is possible that it is an artifact of our
numerical computations. On the other hand, sim-
ilar glitches have been observed experimentally
by Korn and Zamir. " whether it is an artifact
or not, the reason for the glitch is that the dis-
tribution of relaxation rates in a BPP sense is
very dependent on both the magnitude and direction
of q, especially for values of q near the Brillouin-
zone edge. The anisotropy as a function of the
direction of q is considerably greater for the sc
lattice than for other Bravais lattices and, for
small concentrations of vacancies, is greater in
the multiple-scattering approximation than in the
mean-field approximation. These effects lead
to a rather sharp change in the distribution of
relaxation rates which, in turn, leads to a very
weak glitch in T,.

There are a number of difficulties encountered
when trying to fit a T, theory to experimental
results. For instance, corrections due to con-

IO

O. I

O.OI O. l

4U7C

/
/

/

~ s /I

I.O IO.O

FIG. 1. Dimensionless function [g&((dv, )] vs cov,
in the multiple-scattering approximation with c = 0.85.
This function is directly proportional [see Eq. {15)]to
the angular averaged T&. The arrow points to the small
glitch in the curve which is discussed in the text. The
dashed straight lines are the asymptotic limits for cu, v
sufficiently large and small.

duction electrons can be significant or even dom-
inant especially in the asymptotic regimes. Fur-
ther, it is not obvious that 1"0 must take the simple
exponential form

-E /OT
0 0 t (29)

where ~0 and E are independent of temperature,
although it, is widely believed to be valid if a
single-diffusion mechanism causes the atomic
motion in the entire temperature range considered.
In our opinion, a temperature dependent &0 is
certainly not impossible. It is also possible that
measurements on both sides of the T, minimum
are not experimentally accessible. If this occurs
almost any theory can be made to fit the T, data
alone even if T, is exponential in temperature.
However, we wish to note that D/T, is independent
of 1"0 at high temperatures or low frequencies
and that DT, is independent of 1"0 at low temper-
atures on high frequencies. Since the diffusion
coefficient D can be measured independently of
T

y by various magnetic fie ld gradient techniques,
a meaningful comparison between theory and ex-
periment can be made even if both sides of the

T, minimum are not experimentally accessible.
The appropriate value of D can be obtained from
Eqs. (24) and (25) while the asymptotic values
of T, can be obtained from Eqs. (15), (17), and
Table I.

One physical system that we know of where
varying concentrations of particles are believed
to hop around in a sc lattice is the system of
protons in the y phase of TiH . However, there
is some dispute about whether the proton hopping
is via nearest neighbor or not. Extensive T,
measurements have been made on TiH„by Korn
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and Zamir'" at a variety of concentrations. We
have tried to fit their data to our theory for
TiH, , (c =0.85) with a =2.22 A since this is the
case where they publish T, data with the con-
duction-electron contribution subtracted off. If
we assume that 1, is strictly exponential as in

Eq. (29) and interpret the straight lines in their
Fig. 3 as the asymptotic values of T, for ~7,» 1
and ~7, «1, the values of &, obtained from the
two regimes differ by about a factor of 2. This
discrepancy could be due to a number of things
including the failure of the simple-hopping model
or the possibility that the jumps are not to nearest
neighbors. However, we also note that their
In(T, )~ plot fits a straight line extremely well when

T, ~ 2Ty Since our results predict T, should
differ from its asymptotic values by about 40%
when T, =2T, , this could account for the discrep-
ancy.

IV. CALCULATION OF D;(q,u)

In this section we present the derivation and

solution of the equations for D, (q, tu) in an approxi-
mation that we call the multiple-scattering ap-
proximation. Many of the equations used in this
section can be taken directly from R.ef. 14.
[Reference 14 will hereafter be referred to as
I and Eq. (n) of that paper will be referred to as
Eq. (I-n).] In particular, we shall assume that the
reader is acquainted with Secs. I and II of that
paper. Although I describes a calculation per-
taining to a one-dimensional system, many of the

equations apply to any three-dimensional Bravais
system with virtually no alterations except that
the function which we call D; here is denoted by
D there.

The basis for our formalism is that all moments
of any correlation function can be described by
diagrammatic rules described elsewhere. 4 How-
ever, since one can neither evaluate or sum all
of the moments exactly, one must devise a pro-
cedure to recognize, evaluate, and sum the most
important contributions. In practice we have found

it much easier to work with the self-energy or
memory function K(q, &u) defined by the equation

one particle (dashed) lines. This diagrammatic
method is described in I but, although it is an
exact description, it is not very physical. In a
scattering sense the approximation can be de-
scribed as including the multiple scattering of
the specific particle with a single vacancy (or
other particle) exactly while the rest of the vacan-
cies or particles are taken into account in a mean-
field approximation.

The approximation is exact when c- 1 because
the specific particle can encounter only one vacan-
cy at a time. The approximation is also exact
when c -0. At intermediate concentrations we have
checked the approximation by computing the first
five moments of K exactly. For the sc lattice
our approximation reproduces these moments to
within 1%. Further, as discussed in Sec. II, our
approximation yields a tracer correlation factor
that is within 1% of the values obta. ined from
computer simulations at all concentrations. Thus
we believe that the approximation is good to within

1% at all values of q and ar.

Equations (I-5), (I-10), (I-20), (I-21), a.nd

(I-23)-(I-25) can be taken over from I directly.
The only change is that I' is given by Eq. (9)
instead of Eq. (I-16). Further, the Fourier trans-
forms of functions of three independent-space
variables can be defined in a manner analogous to

Eq. (I-12). Thus, the Fourier transforms of
Eqs. (I-10), (I-20), and (I-21) as applied to our
problem are

K(q, ~) =4cI', +sin' —q,.a —16cc I",
g

2

x G s, , s,. s in —,
'

q; a s in —,
'

q,.a,
i, Jt

(31)

G(s„s,.) =P(s, , s, ) —4cI', Q P(s„s,)G(s„s,),
k

(32)

and P(q', q") is the solution to the equation

P(q', q") N6(q' —q") —1 -N 'Q H(q', fig)P(q„q'),

(33)

[-i~+R(q, ~)]D,.(q, ~) = 1, (30) H(q', q") = I'0 (N5(q' —q") [6(2 —c) -f (q,') —cf(q')]

than to work with D,.(q, (o) directly. A(q, (u) can
be interpreted as a wave-vector-dependent hopping
frequency and [see Eq. (19a)] is equal to ~,(q) in

the mean-field approximation.
The approximation that we use is discussed in

detail in I. Here we shall briefly describe it in

a number of different ways. First, the approxi-
mation includes all moment diagrams for K that
have one or fewer occupancy (solid) lines and

-6(2 —c) —(2 —c)f((q' —q") +f(q,')

+f(q.")+cf(q')+cf(q')f. (34)

In writing these equations we have used a certain
amount of shorthand notation. We have suppressed
the q and & dependence of G, P, and H so that

G(q', q") =- G(q', q", q; ~),
and similarly with P and H. We have also in-
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troduced the notation

G(t, ~) =M' g G(q', q")t(q') x(q'), (36)

tan p,a = (1 —c)(tan —,
'

q,.a)/(1+c),

a, = [(1+c)cos' ~ q, a y (1 —c) sin' ~ q, a]'~', (37)

where t and r are trigonometric functions of q'
or q" and s,. denotes sinq', -a, while c; will be used
to denote cosq!.a. P(t, x) is defined similarly and
finally q,'= q'+ 2 q.

Although Eq. (33) appears to be very formidable,
it is actually an integral equation whose kernel is
a sum of separate terms. Further, a simple
transformation simplifies the equation consider-
ably. First we define

P(q', q") = P (q' —p, q" —p) . (38)

It is now straightforward (but tedious) to obtain
the following equations:

P(s.2 s~) = 5!~cos p! QP(st) sg)

+ sin p, a.sin p, a P(c;, c~),

P(s, , s,) =F(s,')/[1 —2(1+c)1',F(s', )],
(39)

(40)

consider (P,-} and (a,.}to be vectors, and define

P(c;, ca) =F(c,c&) a (F[ (12+ ) 2(F)c- +2a F(c,cc)2P((, cc)]

Q [2(l ac) F(c,. c,) —2 a, F(c,)]P(c„c,.)), (41)

P(l, c&) =F(cc)+F (g[ (21 +)2F(1)- 2aaF( c)]P(1;c&)++ [2(1+c)F(c,l — 2a(c1F)]P(c , a))c.c (42)

Here we have introduced the notation

Z(t) =A]-' g
C

Cl, (t(') = 2l' (l(2 - c) —g a,. ceca[a),
i

(43)

p~ = 2CFO ]

p, (q) =2cI', ~,(q)/[~, (q) -K(q, o)],

and K(q, 0) is the memory function obtained from
Eq. (31) with &o =0. By construction, this numer-
ical approximation reproduces the solution to Eq.

(44)

where, as in Eq. (36), f is a trigonometric func-
tion such as 1, s',. = sin'q', .a, c,. = cos q,'- a, or
c,c ~

= cos q,' a cos q& a. We note that F depends
on q and !0 as do P(t, r), P(t, r), and G (t, r)
while a, p, and 0, depend on q but not on (d. The
equations above now describe an algebraic so-
lution to the problem. Once the appropriate sum-
mations for the E's are done P(s„s~) is trivially
evaluated and the solution to Eqs. (41) and (42)
for P(c;,c,.) is a 4 X4 matrix inversion. Then
one can proceed via Eqs. (38), (32), and (31) to
the solution. The procedure is somewhat involved
but not a very big job for modern computers.

Since the above equations must be solved for
each value of (q, ~), we have also investigated
a number of purely numerical approximations.
One such approximation, motivated by Pade
approximations investigated earlier, ' is given
by Eq. (26b) where

(45)

We have also tested the numerical approximation

K(q, 0) =4cl'g, g sin' —q,.a,
5

(46)

where f, is the exact tracer correlation factor.
As can be easily seen, Eq. (46) is constructed
to give the correct diffusion coefficient and to
make K(q, 0) proportional to &u, (q). For c -1 this
is a terrible approximation in that it introduces
errors of up to 50%%u() when q is near (v, v, v)/a.
However, when c &0.9 it introduces errors of no
more than 4%%uo. Further Eq. (46) yield a K that
is almost always too small. However, the numer-
ical approximations given by Eq. (26b) with Eqs.
(44) and (46) yield errors of no more than 4%%uo if
c &0.9 and about 2'%%uo of c &0.7. This obtains be-
cause the errors introduced by the two numerical
approximations tend to cancel each other.

(31) exactly when (2) «I", or e»I', . Also, by
construction, the approximation is exact when
c -0 or c -1. We have tested the approximation
numerically for a number of values of (q, (2)) at
various concentrations and found that it reproduces
D, (q, (d) to w. ithin 3% for any (q, (d) and all c and
to within 2% if c &0.7. Over most of the (q, &u)

range the approximation is much better than this.
Further, the approximation preserves the sum
rule
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V. CALCULATION OF D;;(g,q', ~)

In this section we shall investigate some ap-
proxima. tions for D,&(q., q, ~). As with D, , it is
also sometimes convenient to express D,.z in
terms of a memory function or self-energy. In
this case the appropriate form for the equation
in configuration space is"
—D;y(R, R-; R, R -;t)

+ Q

dt's(R~,

R~; R„,R„-;t —I)
yP

x D;q(R„,R „;R,R-;Qt-
=6 5--(l —5 -)5(t) . (47)

If we Fourier transform this equation according
to Eq. (8) we obtain the equation

i &u D, ,—((q', q"-,.&u) +N ' PK(q', q„~)D,,(q„q", ur)
11

=N[5(q —q-) —1], (48a)

where K is defined in terms of K in the same way
that D,zi.s defined in terms of D,Jby. Eq. (4).

The mean-field approximation for K in terms
of I has been derived elsewhere" and, after
Fourier transforming, one obtains

I('(q', q", &o) =2c I',(N5(q'-q")[6-f(q')] 6

-f(q' —q") +f(q') +f(q")}.
(48b)

The most striking fea.ture of Eqs. (48) is that in the
mean-field approximation the equations for D,.&

are
much more complex than are the equations for
D;. This is not entirely unexpected because D,.
keeps track of only one specific particle while
D,&

must keep track of a pair of specific par-
ticles. In any case, Eqs. (48) describe an integral
equation whose kernel is a sum of separable terms
and thus obtaining a solution is straightforward.
After a small amount of algebra one obtains

(49)

D(qj', v,),=d, [q, e)[Nile —q') —i]+4c I', d„(q, w)[ Pd, (q', w) Hinq, a Hinq[a [i —4c i' F[s', , w)])
i

]

+ 3 — cosp,.a d, q', e 1 ——,
' cos&J. a -F 1-c„,& 1 —4c I',E 3- 6c„+c,'+2c„c„co

i

P(cos q,- a —1)d,(q', ~)
~
cos q,' a — —', Q cos qz a [1 —4c &,7(c'x —c„c„,&o)]

~ ~.

In this equation,

F(t, ~) =N ' g t(q) d, (q, ~), (50)

CO

D,",)(q, q', ~) =N5((q —q') '~ D, (q, ~)D~(q, &o —~) .
4 ~ 277

(51)

Other terms in D,J would arise because of the
interactions between particles i and j. In fact,
Eq. (49) describes just such a situation since
d, (q, &u) is the convolution described by Eq. (51),
where D,. is given by the mean-field approxima-
tion. Thus, at least in this approximation, the

where t is a trigonometric function as in Sec. III
and d, (q, a&) is given by Eq. (23). The only part
of D&z that contributes to T, (or T, or T,~) is given
by Eq. (22).

In most many-body problems the leading ap-
proximation (D,.",.") to an exact two-particle cor-
relation function (D,,) would be the convolution of
exact one-particle correlation functions. Because
the center-of-mass coordinate has been integrated
out in our ease, this approximation would take the
form

first term in Eq. (49) describes each pa, rticle
moving in its own mean field and the second term
describes interactions or collisions between the
particles.

Now the mean-field approximation for D,.(q, e)
can be in error by as much as 100% for concen-
trations near one so that Eq. (49) cannot be a
very good approximation. However, motivated
by the discussion in the previous paragraph we
shall try to obtain better approximation for D, &

by splitting the problem up. That is, we let

D]g(q, q', ~) =DIP(q, q', ~) + t] D;,(q, q', ~), (52)

where D [' (q, q', (u) is given by Eq. (51) but with
D;(q, ~).given by the exact (or the best we can
obtain) single-particle correlation function. The
corrections due to interactions between the two
particles will then be included in M), &. In fact
this procedure is much more rigorous than just
an analog to the mean-field approximation or an
analog to other many-body theories. A rigorous
expansion of A"(q, q', e) in terms of its moments
will yield some terms proportional to N5(q —q').
These terms will then produce exactly the term
given by Eq. (51) for D,&(q, q', &i)).
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The problem thus is reduced to finding a reas-
onable approximation for M),-, As mentioned
in Sec. II, the mean-field approximation M,.&

contributes about 11% of T, at low frequencies,
about 18% at high frequencies, and less in between.
We expect the situation to be similar with a better
theory and thus M), , need not be calculated as
precisely as D,.'&'. The approximation that we use
for M),&

is

m),.(q, q', (u) = 2c I'0 do(q, u))f(q —q') do(q', (o),

(53)

and the only part of this that contributes to T,
is given in Eq. (2I). The reasons for this choice
are as follows. The lowest-order moment diagram
that includes interactions between the two par-
ticles is given in Fig. (2g) or Fig. (3c) of Ref.
15. In Ref. 4, a procedure was described for
turning moment diagrams into frequency' and wave-
vector-dependent contributions to correhtion
functions. The approximation described by Eq.
(53) is an application of this procedure with the
external lines replaced by mean-field single-
particle correhtion functions.

The relative accuracy of this approximation
has been estimated in the following way. At all
concentrations we have calculated the effects of
a number of other converted moment diagrams.

At low concentrations we find contributions from
these other diagrams are of order 12% of the one
which we have included. However, since .~,,
contributes less than 18% of T„ this could be
expected to introduce errors of about 2%. In
fact, a comparison with the exact mean-field
approximation shows this 2% to be correct.

As c-1, the contributions from these other
diagrams are comparable to the contribution from
the one diagram which we included. In this case,
we appeal to a comparison with WoU's results and
find at most an 8% error in T, or D, , However,
these diagrams that are important as c - 1 de-
crease in magnitude drastically as c is lowered.
En fact, they are typically reduced by a factor of
two if c &0.9. Thus we estimate an error of about
4% if c &0.9. On the other hand, if Wolf's results
are in error by 4% at low frequencies because
of the effects of a finite lattice as discussed in
Sec. III, our results are at most in error by 4%
when c -1.
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