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Spatially variable dielectric functions in semiconductors and ionized-impurity-limited mobility
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Recently, the ionized-impurity-limited mobility has been calculated by Paesler in terms of a scattering
potential based on a spatially variable dielectric function. We demonstrate that the relaxation time used in
his treatment does not reduce to the expected form in the nondegenerate limit. This discrepancy casts doubts
upon the correctness of the resulting mobility curves. An alternative expression for the relaxation time is
presented along with new curves and their. interpretation.

Ionized-impurity scattering in doped semicon-
ductors has been investigated primarily in terms
of the traditional Brooks-Herring' (BH) theory
which represented the first attempt in semicon-
ductor physics to allow directly for the fact that
carriers may collect around an impurity center
and partly screen its Coulomb potential. The
actual derivation and requisite assumptions of this
theory have been given by Falicov and Cuevas. '
Strictly speaking, we are interested here in the
treatment of Dingle' and Mansfield, 4 who make the
assumption that all impurities are ionized, where-
as the BH theory includes the concentration of
neutrals as mell as ionized centers in the screen-
ing.

The BH theory assumes that the first Born ap-
proximation applies, the relaxation time is a
scalar, the constant-energy surfaces are spheres,
the impurities scatter the carriers independently,
perturbing effects of the impurities on the carrier
energy levels and wave functions are negligible,
carrier-carrier interactions are unimportant,
impurity-cell effects can be ignored, and the car-
riers are scattered by a screened Coulomb poten-
tial scaled by the static dielectric constant g, of
the semiconducting medium. Various workers
have aimed at removing one or more of these re-
strictions and a recent effort, due to C savinszky, '
attempts to generalize Dingle's treatment by re-
placing &0 by the spatially variable dielectric func-
tion g(r) of the medium.

The analytical form for z(r) follows from the
analysis of Azuma and Shindo' for silicon and from
Okuro and Azuma' for germanium. These authors
base their wave-vector-dependent dielectric func-
tion on the formula given by Penn, ' who used a
model isotropic semiconductor. The result of
Csavinszky's calculations is an impurity-ion po-
tential P(r) consisting of a linear combination of
two exponentially screened Coulomb potentials
scaled by z,. In detail,

P(r) = (e/a, x)[Ce " "'+ (1 —C)e " s'].

Here, e is the magnitude of the electronic charge,
C is a dimensionless parameter characteristic of
the material, while R, and R, act as screening
lengths. Of course, interest in constructing scat-
tering potentials having the screened Coulomb
form lies in the usefulness they afford in Born-
type expansions for the transition rate. In the
nondegenerate limit, R, and R, are equal to the
Dingle screening length R„Cbecomes 0.5, and
$(r) reduces to the Dingle potential,

y, (r) =(e/g, r)e "~~.

Therefore, one would expect that any quantity cal-
culated in terms of Q(r) should reduce to the same
quantity calculated in terms of P,(r) in this limit.
In Ref. 5, it is shown that the new potential is
most important in the case of heavy doping.

In order to study the effects of introducing a
spatially dependent dielectric function into the BH
theoretical treatment of carrier mobility, Paes-
ler' used p(r) to develop an expression for the
relaxation time 7' for ionized impurity scattering.
%e have noted his calculation with interest as it
parallels our own work on this problem. " How-
ever, we believe there to be. an inconsistency in
his form for & which, if corrected, would con-
siderably alter his stated conclusions. In Eq. (7)
of Ref. 9 we are given the relationship (we assume
an obvious misprint in that his r should read v '):

I

7 ' ~ C' [ln(l + p', ) —p,'/(1+ p,') ]
+ (1 —C)'[ln(1+ P', ) —P', /(1+ P', ) ]
+4C(l —C)(in[(1+ p, '+ p2'+ p, 'p, 2)/(p, 'p, ')]
+ [ p, 'p. '/(p, '- p. ')1

xln[p (1+ p )/p (1+ p )]].
Here& Pl and P2 are abbreviations for 2M' a
2AR„respectively. In the nondegenerate limit,
EcI. (3) becomes

-' [»(I+ p'.) p'. /(1+ p'.)]-
+ 21n(1+ P', ) —(1+ P', ) ',
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Comparison of the right-hand side of Eqs. (3) and

(5) shows immediately that one difference between
them occurs in the third term where a prefactor of
4 appears in the former equation, in place of unity

in the latter. The other difference is Seen in the
second part of the third term where Eq. (3) shows

p, 'p, ', as opposed to p, '+ p,
' in Eq. (5). It can

readily be shown that Eq. (5}does reduce to the

Dingle form in the nondegenerate limit.
The ratio of the calculated mobility to the BH

mobility is given by

u/Ass = [»(I+ Po) —Po/(I+ Po)]/0 ~

In Fig. 1, we have plotted this ratio as a function
of the carrier density for Si and Ge at room tem-
perature. The most noteworthy feature of these
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FIG. 1. Ratio of the calculated mobility to the Brooks-
Herring mobility as a function of carrier concentration.
The calculations for Si (solid line) and Ge (dashed line)
are shown at room temperature (T= 300 K).

where p, = 2kR, . Because the square-bracketed
term in Eq. (4) is itself proportional to the in-
verse relaxation time &p' found with the Dingle po-
tential, it is obvious that Eq. (3) fails to fulfill the
previously stated consistericy requirement. Nu-

merically, Paesler's 7 is approximately 0.4 of vp

in the nondegenerate limit. This discrepancy
would explain why his curves (Fig. 1 of Ref. 9)
asymptote out to, again, nearly 0.4 instead of
unity.

Within the same BH framework, our calculation
of the modified relaxation time yields

7 ' ~ C'[ln(1+ p', ) —p', /(I+ p', )]
(I —C)'[I (I.P'.) —P'./(I. P.')]

+C(l C}(»[(I+P +P +P P )/P P ]

[(p,"p. ')/(p, '- p. ')]

&»[P.'(I+ P, ')/P, '(I+ P. '}]].
(5)
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FIG. 2. Ratio of the calculated mobility to the Brooks-
Herring mobility as a function of temperature. The cal-
culations are for Si only and are displayed for four dif-
ferent values of the Dingle screening length RO.

curves is that they asymptote to unity at low car-
rier concentration n in contrast to Fig. 1 of Ref.-

9. It can be seen that, in the high-n region, the
calculated mobility is larger than that predicted
by the BH theory. The incorporation of the spa-
tially variable dielectric function in the impurity-
ion potential increases the effectiveness of the
screening and hence, due to the increase in the
relaxation time, the carriers will have a greater
mobility. We may also note. that, while Fig. 1 of
Ref. 9 shows a greater deviation from the asymp-
totic value for Ge than for Si, our curves show

the opposite result. That is, for a given ~, the
mobility ratio is closer to unity for Ge than for
Si. We feel that ours is a more reasonable result
in view of the behavior of the n (not to be confused
with the carrier conceritration) and C parameters
which characterize the potential used. As can be
seen from Tables II and III of Ref. 5, for a given
value of R„ the n and C values for Ge are closer to
their nondegenerate values (0 and 0.5) than are
those for Si. Thus we would expect that quantities
calculated for Ge will deviate less from the same
quantities calculated using the Dingle potential
than would those quantities calculated for Si.

In Fig. 2 we have plotted the mobility ratio as
a function of temperature for several values of the
screening length R,. It can be seen that the most
interesting variation occurs for low values of Rp.
The higher the screening length, the more rapidly
the mobility ratio levels out. For Rp=90 and for
all higher values of R„ the variation with tempera-
ture will be negligible, with the ratio keeping a
fairly constant profile at unity. In the higher-tem-
perature region, the ratio can be seen to decrease
with increasing R, for a constant temperature.
This is to be expected since, as R, increases at
fixed temperature, the carrier density will be
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decreasing and we have seen in Fig. 1 that, un-
der these conditions, the mobility ratio also will
decrease. In the low-temperature region, the
general trend is also toward decreasing ratio with
increasing R, but, as the curve crossing shows,
there are competing effects which complicate the
analysis. We have plotted only Si in our Fig. 2
because Ge, remaining in the degenerate region
throughout the considered temperature range,
shows virtually no temperature dependence. It is
apparent that, if we were to plot our actual mo-
bility values p, on a curve similar to that of Fig.
2 of Ref. 9, our values would lie slightly above
the p.~„curve of that graph. This difference be-
tween p, and p.~„would be an increasing function
of temperature. Another version of Csavinszky's
potential, " in which a more plausible boundary
condition at x= 0 is used, will provide refinements
on the above results. We are presently considering
this potential. .

In conclusion, it has been shown that the effect

of taking the spatial variation of the dielectric
constant of the semiconducting medium into ac-
count is to enhance the screening around the im-
purity ions so that the carrier mobi1ity is in-
creased. This increase is concentration depen-
dent, being largest in the heavily doped region.
The mobility ratio has also been shown to increase
with temperature for a given value of the screen-
ing length.

ACKNOWI. EDGMENTS

The authors are grateful to the University of
Vermont for an Institutional Grant and for making
available the resources of its Academic Computing
Center. This paper is an outgrowth of work ini-
tiated under contract with the International Busi-
ness Machines Corporation, Essex Junction,
Vermont, and we are indebted to Dr. E. E. Gardner
for his interest and support. Thanks are also due
to H. A. Slack and T. A. Fennell for computational
assistance.

'H. Brooks, Phys. Rev. 83, 779 (1951);H. Brooks,
Adv. Electron. Electron Phys. 1, 128 (1955); C. Her-
ring (unpublished).

2L. M. Falicov and M. Cuevas, Phys. Rev. 164, 1025
(1967).

3R. B. Dingle, Philos. Mag. 46, 831 (1955).
48. Mansfield, Proc. Phys. Soc. Lond. B 69, 76 (1956).
P. Csavinszky, Phys. Rev. B 14, 1649 (1976).

6M. Azuma and K. Shindo, J. Phys. Soc. Jpn. 19, 424

(1964).
YJ. Okuro and M. Azuma, J. Phys. Soc; Jpn. 20, 1099

(1964).
D. R. Penn, Phys. Rev. 128, 2093 (1962).
M. A. Paesler, Phys. Rev. B 17, 2059 (1978).
L. M. Richardson and L. M. Scarfone, Bull. Am.
Phys. Soc. 23, 115 (1978).
'P. Csavinsky, Int. J.Quant. Chem. 13, 221 {1978).


