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Strain interactions and the low-temperature properties of glasses
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It is shown that the anomalous low-temperature specific heat of amorphous materials may arise from strain
interactions between two-level tunneling states, The calculation relates the specific heat to the elastic
constants of the glass. The result suggests a reason for widely different glasses having very similar low-
temperature properties.

The anomalous linear temperature dependence
of the specific heat'~ C, the T dependence of the
thermal conductivity" tt, and the temperature,
frequency, and nonlinear effects" found in the
ultrasonic properties of glassy materials at lorn

temperatures are most successfully explained by
a model presented by Anderson, Halperin, and
Varma' and by Phillips' (AHVP). In this model,
the unusual properties are due to a broad band of
two-leve1 excitations that are attributed to tunnel-
ing. It is assumed that some of the units of the
glass reside in double-well potentials resulting in
ground, -state energy spliitings of E = (e'+ h')' ',
where e is the asymmetry energy of the double
mell. The overlap energy due to tunneling, h
=(2V/1|.)e ~, with A. =d(2trtV)' s/k, depends on the
height V and width 2d of the potential barrier and
the mass. m of the tunneling unit. A specific heat
approximately linear in T requires that the proba-
bility distribution p(E) of the tunneling states be
continuous and nearly constant over at least the
range of energies =0.01-1 K.

It mas originally assumed that the tunneling
states mere essentially isolated. Homever, it has
been shomn' that the strain interactions between
tunneling states should be considered in order to
understand the relaxation phenomena observed in
phonon-echo4 and "hole-burning'~ experiments.
The relaxation phenomena are believed to occur
because of a. fluctuating strain field at a given tun-
neling site caused by thermal transitions between
the two levels at other tunneling sites. The tran-
sitions occur only if E s 47, and hence only a
fraction of the total density of tunneling states con-
tributes to the relaxation phenomena at very lom
temperatures. Nevertheless, those tunneling sites
for which E &kT also contribute static strain fields
at neighboring sites that can modify the distribu-
tion p(E) and hence influence the thermal proper-
ties at lom temperature. It is the purpose of this
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FIG. 1. Distribution of tunneling states p(x) for the
case where p(&) in the absence of strain interactions is
a narrow distribution centered at & = &0. The dotted
lines show the probability distribution of the strain
interaction p($) centered about $ = &0, with the nega-
tive values reflected to + $. The resultant distribution
of buuaeling states is shown by the dashed line.

paper to examine the effect of the static strain in-
teractions on the lom-temperature properties of
glassy materials. We find that the strain interac-
tions alone can give rise to a continuous energy
distribution of tunneling states extending from E
=0 even for cases where p(e), in the absence of in-
teractions, is not continuous and where p(e) =0 for
small e. As an example, the arbitrary p(e) shown
in Fig. 1 by the solid curve is modified to give the
dashed distribution when strain interactions of a
given strength are included. In addition, we find
that the inclusion of the static strain interaction
suggests a possible explanation for the similar
magnitudes of the thermal properties of widely dif-
ferent glasses.

The physical idea of the static strain interaction
is as follows. As in the AHVP model, it is as-
sumed that some. of the units of the glass reside in
double-mell potentials. When the strain interac-
tions are turned on, the strain tensor A.

' located at
an arbitrary origin 0 interacts mith the strain
fields arising from all other tunneling units in the
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W, =-v~PC(e'+e ) —=-X'S, .

Here e~~=g eo~, where e~~ is the strain at site 0
due to a tunneling state located at site o., e~ is the
strain at site 0 due to elastic waves (phonons),
and v, is an effective volume of the tunneling unit.
The tensor So, with units of energy, has orily dia-
gonal components. The expression for (e~ ), in an
isotropic system is~

(e',"),= v, (C,', —C„)D„~,,
=1

with

(3)

Bx,8x, ~(r " r' )

A —B B 3(A —3.B)
y3 ~)j 3 5y r
B(x',. + x',) ISBN', x',

&5 &7

where A =(C„'+C,,')/8v, B=(C~~ —C„')/8w, and r
is the distance between sites 0 and n, r' =Q, , x', .
Note that D,&

is proportional to r ', as can be seen
from Eq. (4) if z/r is replaced by a direction co-
sine. Let the tunneling state Xo have two allowable
orientations A., and X„and let the difference in
strain energy between the two orientations be g.
Then

glass. Let $ be the difference in strain energy be-
tween the two possible configurations of the tunnel-
ing state. The total energy splitting of the tunnel-
ing state is then given by

[(~ + g)
2 + ~2]1/2

with g either positive or negative. The strain en-
ergy and its probability distribution p, (g) can be
derived from fundament'al considerations. The cal-
culation is done using the elastic constants for a
cubic crystal, since this mathematically simplifies
the stress S, strain ~, and elastic constant tensor
C. For simplicity, the tunneling entities are as-
sumed to be elongated in one direction and to be
symmetrical in the perpendicular direction. " It is
also assumed that the riet volume charige introduced
by the distortion of the tunneling uriit is zero.
Therefore, the tensor X will have only diagonal
components" "and a vanishing trace. The diagon-
al components ~, of the strain tensor at site e
having its major axis in the direction of l can be
written in the form A. , = p, (36„—I), where i = I, 2,
or 3, and p. is the fractional distortion of the unit
due to its nonspherical shape. Since X is diagonal,
only the diagonal components of the strain are of
interest so that PC =C A~ =(C» —C»)X~. The strain
energy of the tunneling state is" "

g = (V, -P,)(S) (6)

f = (C„-C„)'(C„'-C„')(~,q)'N/2w.

Equation (6) will provide the breadth for the distri-
bution of excitations necessary to explain the low-
temperature properties of a glass.

There may be a question as to the validity of a
prob'ability distribution of the form p, (g) given in
Eq. (6). It has been argued in connection with the
spin-glass problem that the probability distribution
p(H) of the internal magnetic fields H must tend to
zero as H goes to zero." If this argument is valid,
the tunnelirig-states model should also have a
"hole" in p(E) at E =0 if strain interactions are
present. Since there is good evidence that strairi
interactions indeed do exist between tunneling
sites, ' ' the distribution of Eq. (6), ox that as-
sumed in the origional AHVP model should then
contain a hole at E =0, and the calculated low-tem-
perature properties mould be modified. Indeed, the
apparent distribution p(E) of many glassy materials
does vary as' "E, m~0.

Recognizing that Eq. (6) may be only an approxi-
mation to the actual distribution, we proceed to a
calculation of some low- temperature properties of
glassy materials when strain interactions are pres-
ent. First, however, we briefly review previous
work to provide a comparison. The original AHVP
model assumes an energy-independent density of
states, ' 7 2~ P(e, A, ) =N~/(e, „q) =p(c)p(A)N~, where.

where ( ) indicates thermal average of the strain
field S. Examining Eqs. (2)-(4), we find that g at
site 0 depends on the positions as mell as the ther-
mal averages for all other tunneling state tensors
(X"). Since each of these quantities is a random
variable, .g will also be a random variable with a
probability distribution p, ($). To obtain p, ($), we
use a modified Bethe- Peierls-%'eiss approxima-
tion' or mean random-field approximation. " The
distribution is calculated in a manner analogous to
that used for dipolar interactions, "except that in-
stead of the dipole-dipole interaction we have a
strain interaction. The distribution of the tensorial
strain fields mill have a number of components.
However, because X, .and X~ are fixed in space and
because we are interested only in the "projection"
Gf the strain fields upon A,,—Ao„we have a one-di-
mensional (Ising-like) distribution. Only the final
result of the low-temperature calculation is pre-
sented".

(6)

Here 6=3wh(V, /N), whereN„ isthe number of tun-
neling sites per unit volume, ~V is the number of
units of the glass per unit volume, and b is the
strength of the strain interaction, given by
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q =A, —A. ;„. P(e, A. ) depends on the number of
tunneling units N„and the widths of the distribu-
tions over & and A, . The energy-independent density
of states gives a specific heat proportional to T

C = i~w k'T(No/e ) (8)

in the long-time limit, where' "g(t)/g = 1. This
density of states also gives a mean free path for a
phonon of frequency v

t ' = (wy'/pv')(v tanh(5 '/2kT)(N~/e, „q),

which results in a thermal conductivity varying as
T . The mean free path depends on the density p
of the glass, the phonon velocity v, and the strength
of the coupling parameter y between the two-level
states and the phonons. The last quantities in par-
entheses in Eqs. (8) and (9) are both referred to as
densities of states. The difference in the densities
of states deduced from thermal conductivity and
specific-heat experiments indicates'" that q is
roughly 10.

The specific heat from our formulation is

C =N~(4kT) ' to+ oO
max

d$
0

~max (f + e 2 + ~o'l l/2 )
de dh p, (g)p(e)p(x)[(g+ e)'+ a'] sech'~ '

2kT (10)

For an experiment of sufficiently long time duration
so that all sites with 6 ~ kT have had time to relax
to thermal equilibrium, the specific heat is approx-
imately

Thus, we estimate the magnitude of the coupling to
be y = 2 vog(C» —C»), which also gives yo/b
=-,'wN '(Co4' —C,,') '. Equation (14) can then be re
written

(:= N, (4&1 )
' f dE) (e)

0
C & xs w'k ' T(C4~' —C„') 'y (15)

Using an arbitrary sum of 5 functions from which
a specific p(e) could be constructed, namely p(e)
= (1/n)P,",6(e- e, ), for 6 of Eq. (6) greater than
all e, we obtain

3N
4n' ONE

(13)

This is equivalent to replacing the density of states
P(&, A.) by P(a+ g, A, ) =3N/4w'bq. Thus the specific
heat for this case depends solely on the strength of
the strain interaction and is independent of N„

C ~ Nk'T/85. (14)

This expression is valid provided the interaction is
sufficiently strong, or that the density of tunneling
states N„/N is sufficiently large. The strength of
the coupling between phonon and tunneling state can
be expressed using the same parameters. From
Eq. (5), we obtain an average coupling constant

y= &+5) ~ o -o
0 a b

= —,v (A. —A. )C.

,(E i
dg p, ($)E' sech

),2kT j
(11)

In the low-temperature limit, only the values near
E =0 contribute to the integral. Thus p(c) can be
replaced by p(-g), giving

Comparing Eq. (8) with Eq. (15) shows the differ-
ence brought about by inclusion of strain interac-
tions. Previously the specific heat was explicitly
proportional to the number of tunneling states N~,
whereas in the present description the specific
heat is, at least for some forms of p(e), indepen-
dent of N„The re.sult of Eq. (15) may be compared
w'ith published data for vitreous silica. Using y
=1.6 eV from phonon-echo measurements, 4 the up-
per bound on the specific heat is" =300 T (erg/
cm'K), a factor of f larger than obtained experi-
mentally. ' The magnitude of y and the density of
tunneling states, ""N~/N & O. l%%uo, should be suffi-
cient for Eq. (15) to be applicable to fused silica.
The distortion parameter p. for fused silica, as-
suming the tunneling units to be Sio„would be
W.1, or similar to values found for impurities in
crystals. '0

Consideration of other properties, such as the
thermal conductivity, requires a knowledge of the
distribution over 6 in Eq. (1). A broad distribution
in ~ is needed to describe the apparent spectrum of
relaxation times between tunneling states and the
phonon bath. For example, a single, discrete val-
ue of ~ would give a thermal conductivity propor-
tional to T' for temperatures greater than t),/k.
Although the strain interactions could provide
(note added in proof [see, for example, H. U.
Beyeler, Phys. Rev. B 11, 3078 (1975)]) the
required breadth in 6, we have so far not
carried out the calculations. We therefore, with

AHVP, make the ad hoc but reasonable assumption
that a distribution over ~ does exist. The trans-
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verse yhonon mean free path then becomes

l ' s38 v '(1 —C«/C») 'g '&u tanh(k&u/2kT). (16)
If the dependence of p(E) on 6 is similar for differ-
ent amorphous materials, the mean phonon life-
time 7 =l/v would be nearly independent of material
parameters as, in fact, is observed experimental-
ly.

If there does exist a broad spectrum in 6, the
magnitude of the specific heat in the AHVP (or
present) calculation should depend on the duration
of the measurement. ' ' The recent "fast" heat-
capacity measurements of Kummer et al." suggest
that such a time dependence may not exist. How-
ever, there is some question of interpretation at
the lowest temperatures (where ballistic phonons
and the Debye contribution are not masking the
sought-for effect). First, the phonons to which the
tunneling states relax in that experiment were ini-
tially an order of magnitude higher in (effective)
temperature than the ambient temperature. " Sec-
ond, the effect of cross relaxation in enhancing the
flow of heat between the phonons and the complete
set of tunneling states was not considered. The
calculations of Ref. 7 do reflect on the mechanism
of cross relation via strain interactions to those
tunneling states that interact strongly with phonons.
However, it appears'to us that the magnitude of
cross relaxation would not be sufficient to explain

the data of Kummer et al. In brief, there remain
some important questions concerning the distribu-
tion in ~.

In conclusion, we review the description of a
glass (i) without and (ii) with strain interactions.
Both assume a set of two-level tunneling states.
For (i) the ad Roc assumption is made that p(c) is
constant for small c. Both C and z are proportional
to N„, which might be expected to vary appreciably
from material to material. For (ii) the final p(E)
is essentially constant at small E even for p(e) (in
the absence of strain interactions) zero for small

Both C and ~ are approximately independent of
N~ for a range of concentrations N~/N and for a
variety of p(e). Also, the upper limit of C for vi-
treous silica, using no adjustable parameters, lies
within an order of magnitude of the measured val-
ue." In brief, these low-temperature properties
of glasses can be explained by considering the en-
ergy distribution caused by strain interactions
alone. It is possible, of course, that some other
mechanism also contributes to the distribution in

p(E)
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