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We answer the criticism in the preceding comment by showing that our formal solutions are correct and

argue against the interpretation of our surface-plasmon data in terms of "guided waves. "

The mathematical problem and solutions in ques-
tion have been stated elsewhere' ' and need not
be repeated here We .note that in Ref. 3, Eq. (8),
there is a misprint which should be readily. spot-
ted by the interested reader: k, is the coefficient
of rP, there is no rP term in U, (g).

There are two major points of criticism which
the preceding comment directs at Ref. 3. First,
it is asserted that the series for U, (q) is in-
correct by virtue of errors in the expansion coef-
ficients. Second, it is pointed out that both ex-
pansions U, (g) and U~ (q) diverge as distance into
the bulk increases (i.e., z- ~). Because of these
objections, it is concluded that the second-branch
dispersion obtained in Ref. 3 is invalid.

We have reexamined the details of our calcula-
tions (Refs. 1 and 3) as well as those of Ref. 5.
We find that the formal power-series solutions to
Eq. (2)(Ref. 3) [or Eq. (2.7)(Ref. 5)] are correct in
both cases. That this is indeed so can be verified
directly by substituting U, (q) into Eq. (2),' and

F,(y) into Eq. (2.V),' to show that the coefficients
of powers of g and y vanish. We have checked
U, (g) to fourth order, and E~(y) to second order,
and find this to be so. At the risk of seriously be-
laboring the point, we describe in detail the solu-
tion of Eq. (2)(Ref. 3) in the Appendix in the hope
of setting at least one question to rest.

Furthermore, since (U„U~)and (E~,E,) are
each linearly independent solutions of the same
equation, U, must be expressible as a linear
combination of F, and F, and vice versa. ' Indeed,
we find the following relationship between the two
sets of solutions:

Fa= U~,

F,= —,
' (q+ n') U, ——,

' (q+ n' 4o.) U~ .

Equation (1) can easily be verified using the coef-
ficients listed in Ref. 5 [Eqs. (3.16) and (3.18)]
and the coefficients given in Ref. 3, more of which
are listed in the Appendix.

In considering the convergence of our series
solutions U, and U~ when z- ~ (deep into the
bulk) we find that these diverge no faster than a

geometric series, as do the equivalent solutions
(3.14) and (3.15) of Ref. 5. Although strictly, the
series diverge only in the limit z-, divergence
is already apparent when z -10a. For practical
purposes the series converge only in the surface
region 0 ~ z ~ 5a. Within these bounds we obtain
a first-order correction due to the assumed in-
homogeneity in the electron concentration at the
metal surface by truncating the series expansion
after the first term. (Solutions which converge
rapidly for 0 & z ( are described in detail in
Ref. 1. These, however, have undesirable pro-
perties for frequencies greater than the surface
plasma frequency ~~, . In particular, when ~ & ~~,
these diverge for 0 (z ~ a but still converge for
a&z «).

That we may truncate the series for U, and U,
near the surface is clear since g is small (q=0.2
at z =0)' and convergence is rapid; fields are then
sufficiently well approximated by retaining just
the first term. The dispersion relation is obtained
by imposing the usual requirements of continuity
on the electric and magnetic fields at z = 0.' '

In our treatment we reject formal solution U,(q)
in the limit of no damping since then g(0 in fre-
quency domains of interest, as shown in Table I,
and for real g, lng is undefined. Note that for an
accumulation layer (g&0) the region &o «u» in-
cludes the entire lower branch (branch I of Ref. 1)
of the dispersion curve. The region &u & (1+@)'~'~

~

encompasses the domain where the second branch
(branch II) is expected to lie. For a depletion
layer (g & 0), although ~ & &u» is outside the do-
main of surface-plasmon dispersion, the region
e&(1—Igl)'~'&u» includes the domain in which all
of branch I lies, and possibly a portion of the do-
main in which branch Q lies.

Finally we comment on the alternate interpreta-
tion offered in the preceding paper for the data
reported in Ref. 4. The "guided wave" concept,
as introduced in Ref. 7, is based on an equation
which is not applicable to either the problem we
have considered or to the data presented in Ref.
4. It is not possible to drop derivatives of & (u&, z)
from a differential equation of the form
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q&p q&p

g&p
CO & Mpb

~&(&+ Igl)'~' p
ps&~& ~pb

TABLE I. Frequency domains where g &0 for a deple-
tion or accumulation surface lager. v&q is the bulk
plasma frequency, ~»=(1+g} ~pb is the plasma fre-
quency at &=0.

z, (~) = g ln [(co» —&o')/(&v~2, —&o»2)]. Solutions of Eq.
(6) of Ref. 8 [or equivalently, Eq. (2) of Ref. 3]
are then sought by expanding about the singular
point z, {ic).

It should be pointed out, first of all, that z, (&o)

is an irregular singular point of Eq. (6) of Ref. 8,
which, by the way, is misprinted and should read

g&p
Cg & CcPpb

cu &(1+g}~~2copb
Cups &u &trpb

+ (P ' ——6 z e'~") 6 = 0 .dz' a dz dz 0 C'
(6)

d H& 1 df de
dz 6 dz dz (2)

without seriously distorting the structure of the
equation. If this is done the equation becomes

d'H, ~2(z)
e (z) dz' c(z)

which has solutions

(3)

H„(z)=Ae"e+Be "s (4)

with A. and 8 arbitrary constants. In contrast, if
no terms are dropped, Eq. (2) has solutions

H„(z)= s "~'[A J,(z)+ BP, (z)],

with P, (z), Pa (z) the series expansions discussed
at the beginning of this response. At best one can
expect (4) to be an acceptable approximation to
(6) in the limit that e (z) is a slowly varying func-
tion. of z. When c (z) varies exponentially on a
scale small compared with the wavelength of the
electromagnetic field, this condition is not met.
The guided wave concept may indeed have merit
for the description of semiconductors with accu-
mulation or depletion layers a few p, m thick, but
we doubt it is of any use at metallic surfaces for
which the scale length of the inhomogeneity is
more like 10 or 50 A. Moreover, the conditions
stated in Ref. 7 for the existence of guided waves
are not satisfied in our experiments. To wit, it is
required that z, (z, &o) &0, which is equivalent to
ic & ic» in the free-electron limit, and that e~(z, &u)

decrease with distance below the surface, which
corresponds to an accumulation layer. In our ex-
periments on Cs-Hg there is a depletion layer,
and the observed second branch lies entirely be-
Icec ur». Thus c„(&c)(0 along the entire branch we
observe, and the guided wave interpretation is not
tenable.

In a second publication on guided modes, Conwell
and Kao approach the solution of Eq. (2) differ-
ently. e It is pointed out by them that when z (z, ~)
is real, there exists a range of frequencies for
which z (z, ~) =0 at some point z, (~d), where

Because z, (&o) is irregular, a nontrivial regular
solution may or may not exist at z =zo and the de-
tails of the solution become important.

Second, for the depletion layer considered in
Ref. 8, when ic «c~„zc&0(i.e., outside the con-
ducting medium). 'c Clear1y Eq. (6)(Ref. 8) is not
applicable when z &0, which is the dielectric half
space. In addition, when (d&co», z, has no mean-
ing as the argument of the logarithm becomes neg-
ative. In Fig. I of Ref. 8, however, continuous
guided mode dispersion curves are shown to be un-
effected when passing through co = (dpb. In short,
solutions of Eq. (6)(Ref. 8) expanded about z, (ic),
if these exist and are nontrivial, can only be valid
in the 'region o)p &or &(d».

Finally, when damping is introduced into the
problem, no matter how small, z (~, z) will no
longer be zero at some set of points zc (&u) and this
particular singularity is removed from the prob-
lem.

It is clear that the guided mode concept intro-
duced in Ref. 8 is not applicable to the Cs-Hg case
we have studied.

In Ref. 1 we obtained. an exact description of the
surface-plasmon dispersion at a metal surface
overlaid with a thin film of a different metal {dis-
continuous boundary case). In Refs. 1, 2, and 3
the dissimilar metal boundary was removed by
adopting the exponential dielectric function model
described above and approximate dispersion rela-
tions were obtained. These reduced properly to
the exact results for the discontinuous boundary
case. A second dispersion branch is predicted for
both discontinuous boundary model and exponential
dielectric function model —and the two forms, one
exact and one approximate, are seen to be closely
related. Specifically, they agree with respect to
(i) slopes of the depletion and accumulation layer
dispersion curves, (ii) dependence on the degree
of inhomogeneity g, (iii) dependence on the scale
length of the inhomogeneity a, and (iv) frequency
limits outside of which the second branch does not
exist. The dispersion curve we have observed and
reported in Ref. 4 falls within the theoretical
frequency bounds, is consistent with 0.1 &g & 0.3
as expected, and indicates that there is a depletion
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layer at the surface of liquid Hg-Cs, as is re-
quired by thermodynamic arguments. %e see no
validity in the proposed reinterpretation of these
experimental observations.

'We trust that the last suggestion in the preceding
comment about our observations, namely, that in
30%%uo Cs-Hg the Cs lies atop the Hg and that there
is a discontinuous change in e (s} as distance into
the bulk increases (so that this system is like a
thin film atop a metal), will be seen to be non-
sense. W'e kame studied a liquid, with mobile ions.
How could one develop a discontinuous boundary
bebveen pure Cs and Cs-Hg in a one-pause liquid
system? Given the high mobility of the ions, and
the fact that solutions are stable (one-phase sys-
tem) diffusion will remove sharp (one atomic
diameter) boundaries. The scale length of the in-
homogeneity might not be large but surely no one
expects there to be a discontinuous boundary be-
tween two mutually soluble species in a one-phase
fluid system.

In conclusion, we have answered all of the cri-
tical remarks in the preceding paper in some de-
tail. We have shown that our formal solutions of
Eq. (2)(Ref. 3) are not in error, that both these
and the formal solutions of Ref. 5 do indeed satisfy
Eq. (2).' We have obtained a relationship between
the two sets of solutions, and have shown them to
be equivalent. We have answered the suggestion
that the data in Ref. 4 could be reinterpreted in
terms of guided modes, and we have commented
on the thermodynamics of miscible fluids and
argued against discontinuous fluid separation in
such a mixture.

Solutions of

APPENDIX

U Q a gB+2 (A2a)

U2= Q b„g"+CU~lng, (A2b)
n=0

where C is an arbitrary constant. The coefficients
a„and b„areobtained by direct substitution into
Eq. (A1). A recusion relation for a„is

(n+ 3)(n+ 1)a„„+[(n+ 2)(n+ 1)+2u (n+ 2) —u] a
„

-qa„,=0, n~ 1, (AS)

with ao arbitrary and a, = --,' (2+ Su) a .

dU dUn(@+1) .+ («n 1) - (-u+ qn) U= o (Al)dg

may be expanded about the regular singular point
g=0. The indical equation then has roots 0 and 2,
and solutions are of the form

U, =Ca U, +b, U, (A5)

where

Ua= U&»~+ ~o+ &~a+ ~2 g'+ ~3 n'+

= U~ ln q+ ho+ h, q+ g Q h„q"
g

Uq=q +f~rl3+f q4+ ~ ~ ~

(A6)

(A7)

Therefore, U, is the general solution.
That U, is indeed a solution of Eq. (Al) is veri-

fied by direct substitution. We obtain, to fourth
order,

-(h, + uh, ) rl'+ (2+ uh, —q h, ) q'

+ (3+ 4 a, + 2u+3h2 —qh, ) rP

+ [6a,+ (5+ 2u) a, + (5u+ 6) h, + 8h, ]q'

+[(12+7u}h + 15h4 —qh~

+ (V+ 2u) a2+8as]q4+ ~ ~ ~ =0. (A8)

The coefficient of each power of g is identically
zero and U, therefore satisfies the differential
equation. Given Eq. (1) it follows that E~ is a
solution of Eq. (Al) since U~ is also.

A few additional coefficients are listed explicitly
below for convenience:

a, = ao [ -' (6+ 5u)(2+ 3u) + ~ q],
a, [(12+Vu)(6+ 5u)(2+ Su)+ q(52+ 45u)];

(A9)

-3b3= cao[(& —2u)+ 2uq/(q+ u2)+ (2+ 3u) b2,

-8b~ = c[a,(5+2u)+ 6a,j+ (5u+ 6) b~ —qb, ,

-15b, = c [a {2u+7)+ 8a j qb + (7u + 12-) b .

From the coefficients b„weobtain f„andh„:

(A10)

The coefficients b„areobtained from

Ca„[2u+ (Sn+ 3}]+2a„„(n+2) C —q b„„
+b„,[(3+2n)u+(n+1)(n+2)]

+ b„.,(n+ 1)(n+ 3) = 0, n ~ 0, (A4)

with

bo=Cao/~{q+u'), b, = -ubo. , ba arbitrary.

Note that each b„for n~ 3 can be separated into
bvo parts; one that depends on do and one that de-
pends on b, . Separation generates, respectively,
the new coefficients h„andf„=a„/a, in terms of
which U, is rewritten
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fj = a~
=

aj,/a

f, =a, -=a,/ao

fn=an=an ao ~

(A11)

ho= ho=2/(q+ n'),

p~ = -nho,
—,
' [(-,' 2n)+ 2nq/(q+ n')]j,

8h, =(5+2n) a, + 6a, +(5n+6) k, ,

-15'= (2n +V)an+ 8a, —q I,+ (12+ 7n) k, .

(A12)
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