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Self-energy of yhonons in an anharmonic crystal of orfler X . II.
An application to a monatomic linear chain*
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The anharmonic contributions of O(X") to the phonon frequency shift and width at high temperatures have
been evaluated for a monatomic-linear-chain model. It has been possible to evaluate most of the
contributions analytically in an exact and closed form. The remaining contributions have been computed
numerically. It is found that the inband phonon width of O(X ) depends on the wave number contrary to the
O(X') contribution. The numerical results are used to obtain the magnitudes of all contributions to the
inband phonon shift and width at k = m for Lennard-Jones systems. A lower-order approximation is found
to be inadequate at temperatures about one third of the melting temperature. Our results also show that all
anharmonic contributions of O(X4) are of the same order of magnitude and strongly cancel each other.

I. INTRODUCTION

Recently there has been interests in the study of
higher-order anharmonic effects in solids. ' ' "
In the first paper of this series, one of us' has de-
rived general expressions for all anharmonic con-
tributions of O(X') to the self-energy of phonons.
A detailed analysis of the phonon self-energy is
needed to understand various dynamical proper-
ties of crystals, for example, the magnitude and
temperature dependence of the width of the in-
frared absorption spectra in ionic crystals; but
so far the anharmonic contributions of only a few
diagrams of O(X') have been examined, ""the
reason being that the expressions involved are
quite lengthy and theii numerical evaluation is
known to be couplex procedure for realistic mod-
els of solids. Therefore the purpose of this paper
is to carry out an exact evaluation of all the an-
harmonic contributions of O(Xe) to the phonon fre-
quency shift and width at high temperature for a
nontrivial model of a monatomic linear chain with
nearest-neighbor interaction. Our model, although
simple, provides guidelines for more realistic
three-dimensional calculations. It has been pos-
sible to evaluate most of the contributions of O(X')
analytically and in closed form. A few most com-
plicated contributions are evaluated partly analy-
tically and partly numerically. The contributions
to O(X') to the phonon frequency shift and width due
to thermal expansion also have been obtained.

It is found that the contribution of O(X') to the in-
band phonon width depends on the wave number.
The corresponding contribution of O(X') is known
to be independent of wave number. In order to get
an idea of the magnitude of the anharmonic con-
tributions of O(X') to the phonon frequency shift
and width, we calculate them at ~ = ~~ and k = m

for Lennard-Jories systems. It is found that all

enharmonic contributions of O(X') are of the same
order of magnitude and there is strong cancella-
tion among them. Thus none of them can be ig-
nored.

Expressions for anharmonic contributions of
O(X') to the phonon frequency shift and width at
high temperature for monatomic-linear -chain
model are given in Sec. II. The calculations, the
numerical procedure, and the results are described
in Sec. III. Section IV contains discussions and
conclusions.

II. Exf'RESSIONS FOR THE PHONON SELF-ENERGY

AT HIGH TEMPERATURES

'The nth order Fourier-transformed anharmonic
force constant for a one-dimensional monatomic
lattice in the nearest-neighbor approxLmation can
be written as

n(kit ksp ' t ke)

Np" (2i)" k " ' sink', sinks ~ sink„'
2MN (&o &o ~ ~

&d )'t'

x e-"st"t"'"e' '&(k +k + ~ +k ) (1)

where k', =-,'k„p" is the nth-order derivative of the
potential energy at the equilibrium position, and

1 for k = 0 or k a reciprocal-lattice vector

0 otherwise.

The normal-mode frequencies are &ot = &os,
~
sink,'

~

and k, is restricted to the first Brillouin zone,
i.e.,- -m~Q, ~m.

A. Frequency-independent self~nergy

Substituting V„ from Eq. (1) into Eqs. (31), (32),
and (21b) of Ref. 7 (hereafter referred to as I),
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Pa'(~) = (P-IIC,/16)(~, /P'),

Pa'((o) = (PKC2/8)((da/P'),

P", (~) = PffC, /12)(~, /P'),

yII«II/(pe)3 C (yIIII)2/(y «)4

(3)

(4)

the anharmonic contributions of O(X') to the phonon
self-energy are obtained:

=0"0""'/(4")', and &3=~1,~sin(-'k)~. Here and in
what follows we use the notations of I. Equation
(2) correspond to diagram (lb) whereas Eqs. (3)
and (4) are the results of the diagrams (2c) and
(2e) of I. The last frequency-independent contri-
bution to the phonon self-energy corresponding
to diagram (3d) is given by Eq. (2Va) of L After
taking due care of the repeated pole, the expres-
sion for this contribution is found to be

Paa (~)=- 216PX
4(-kl q» -q» k') V3(-qlI q21 -q3) 3(qlI -q2I q3)

01 C2 03

(1+np, )(1+np, )+np, (1+np, + np, ) p)3np2(1+ np, )(1+np, + np, )P1P3 3 +
Pl 1 P2 2 P3 3) Pl+1+ P2+ 2+P3413

np, (1+np, + np, ) + (1+np, )(l+np, )+
P2+2(P1 1+P2+2+P3 3)

In the high-temperature limit Eq. (5) reduces to

216 x 16P
Pea'(~) = —

p214 kl q2I q2I k )V3( qlI q2I q3) V3(ql -q2 q3)(&01(02(03)
01 02 03

(5)

(6)

For the model of a monatomic linear chain, Eq.
(6) is found to be

p34(~) PSC4 ("a
8 P''

where C yl«I (y«I)2/(y«)3

B. Frequency-dependent self-energy

The frequency-dependent self -energy correspond-
ing to diagram (2b) is obtained from Eq. (19b) of I
and it is written as

2b(~) pSC2 1"a 1
96 P' 4

x &d~P11P22+P3312~1 ~2 7

P1P2P3 Pl 1 P2 2 P3 Q 1 2

(8)
where &o~, 2= ~sin-,'(k-q, —q, )~ and &u is defined
in units of the maximum frequency ~~. This is a
second-order quartic anharmonic contribution. In
second-order perturbation there is another con-

tribution which corresponds to a cubic fifth-order
term in the Hamiltonian and is represented by dia-
gram (2d) of L From Eq. (34) of I we obtain it as

P2dI 1 pIC3 +a 1 ~ P2&a 1-Pl&1
32 P w p p (0+Pl(0a. -P2(da 1

dg1

(9)

where ~,= )sin-,'(k q, ) (. -
In third-order perturbation theory there are

three diagrams (3a), (3b), and (3c). The contri-
bution corresponding to diagram (3a) is given by
the expression (35) of I, which for our model can
be written as

P33( )
P 4 a
]28 p2

(0 — 07

(1O)

The contribution of diagrams (3b), after taking due
care of the repeated pole, is obtained as

216p
aa( )-- „. V, (-k, q„q,)V ( q„q„q„q,)V, (-q„-q„-k')-

013 032 04

1+np, + np, Panp, (1+np, ) ~ + SP1 + SP43P4 +P + +
o,p,p,

' (ld+Pl~l+P4414) ld+Pll" 1+P4ld4 Plldl(ld+P1231+P4214)

Equation (11) for a monatomic-linear-lattice model is found to be
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(12)

„( )
PSC4 (dk 1

k 32 P2 4 2

Pl 1+P2+2 1 P3+k 2+P4+2

»P1P2P3P4 ~1 1 P2 2~1 P4 2 3 ~2 P4 2

32( )
~~C4 ~k 1 g 2(P1(t)1+P210k-1) &P1&1

84 p' pw ., ~,~, td+p, ~, +p, ia~, (td+p, ~, +p,~, ,)')
The last third-order contribution corresponding to diagram (3c) is obtained from Eq. (3V) of I which for
our model, is

P4+2(P1+1+P2+2 1+P3+j!2)

(~+p, td, +p,~. , +p, td~, )(p,~;+p, ~, , -p, td. )) (13)

In fourth-order perturbation there are two diagrams (4a) and (4b) which arise from the cubic anharmonic
term in the Hamiltonian. The contribution corresponding to diagram (4a) is given by E(I. (28b) only for
p, &u, tp3~, . For the case P, &o, =P3(d„ taking due' care of the repeated pole of order 2, we obtain the. expres-
sion

648P
+kk (+) tI3 Q ~3( ~t alt 12)~3( Ilt l3t 14)~3( 73t 14t Ql ~)3 ( Ilt 12t ~

C102C3C4

np, (1+np3+np4) . np, (1+np, +np, )z+
p1pkp3p4 ++P2+2 P3+3 P4 4 ( Pl 1+P2+2) Pl+1(+ Pl+1+P2+2)

+(1+np, )(1+np,),+
. 1

(P4(d4+P3(d3+P1(dt) P4(d4+P3(d3+P1~1

(1+np, )(1+np, + rip, )
((d +P 1(d1+P22) (P4(d4+ P 3~3+ P1(d1)

j. 1
(d+P, 40, +P,(0, P,(d, +P,(0, +P, (d, P, (d,

For a monatomic linear chain and at high teinperature, the above equatiori reduces to

PIC3 (02 1
4v ~og cap &1&rP3&4

(()(P,(t),Ap, p2+ (O', A)ip2)
(d+P 07 +P QP +P (0 (15)

where Ap, p,
= ((d+P, ~, +P2&o~, ) ' and C, = (Qt")'/(((k")'. The second and the last anharmonic contribution in

fourth-order perturbation corresponding to diagram (4b) is given by E(I. (39) of I. For the present model
this is found to be

PIC 3 (tt2 1
64 p' 4H

P4(dk-2(P1(dt +P2(dk-1)

p p p p p ((d+P1~1+P210k-1)(10+P4~k-2+P3(t)2)Q2

(OP 1(d1P4CO~ 2

(~+p, td, +p, td~, ) (ra+ p, (u, , +p,~,)(s)+p, ~~, +p, s),., +p,~,) ) (16)

The expressions discussed in this section contribute to both phonon frequency shift and width. It m&y be
noted that expressions (5), (ll), and (14) which apply to the cases of repeated poles have not been obtained
in I. This is why they are given in this section for a general case and for all temperatures which then
completes the expressions for all anharmonic contributions of 0(X4) to the phonon self-energy given in L"
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are defined as

lim —(PS) 'P„.((o+ ic) = &„,((o) —iI'„,(&o) . (17)
6 ~0+

Using the identity

FIG. l. Regions of valid-
ity of the theta functions
6(X) and 6 (p).

lim (x+i&) '= I'/x+im5(x),
6~0

(18) 0
0

(19)

A. Phonon frequency shift

The frequency-independent contributions to the
phonon frequency shift can be read easily from
Eqs. (2)-(4) and (7).

We now obtain the closed-form expressions for
the frequency-dependent contributions by evaluating
the principal values of the integrals appearing in
Eqs. (9), (10), and (12). These contributions to the
phonon frequency shift have been found to be

&"(QJ) = ac, ((d„/p')/(0[x-'"e(x)+ r-'~'e(r)] —2]

(20)

where X= uP -4 cos' —,'k, r =- uP —4 sin' —,'k, and e(x)
is defined as

ex = .
I'1 for x&0

~. 0 for x~0,
(21)

~';((u) =+c,((o,/p')([(ox '~'.e(x)+(or ' 'e(r) —2]'

—[ x-'~2e(x)+ &or-'~'e(r )]')
(22)

&'„'(~) = —,', c,(~,/d8')(8 5~[x-'~'e(x)+ r-'~'e(r)]

+ co'[x ' "e(x)+ r "'e(r)]),
(23)

Xy = -Xand p, = K It is convenient to dis-
cuss the above anharmonic contributions to the
phonon frequency shift with the help of Fig. 1. It
is easily seen that in region I neither of the 8
functions is satisfied. This implies that inband
modes are only shifted by a constant amount due
to anharmonicity. There is a frequency-depen-
dent shift for the modes lying in regions II and

one easily obtains from Eqs. (8)-(10), (12), (13),
(15), and (16) the expressions for the real and the
imaginary parts of the phonon self-energy. The
expression for &„(&o) is (Pk) 'P—~(&o) but now it in-
volves the principal values of the integrals. We
first calculate the phonon frequency shift &„(&o),
and the imaginary part I",(&u) is obtained as the Hil-
bert transform of the real part, i.e.,

III. Further, we note that for ~»2, the anhar-
monic contributions to the phonon frequency shift
given by Eqs. (20) and (23) varies as 1/oP where-
as Eq. (22) varies as 1/&o'.

'The remaining four frequency-dependent con-
tributions to the phonon frequency shift given by
expressions (8), (13), (15), and (16) could not be
completely evaluated analytically. For these, it
haS been possible to carry out one integration. We
thus obtain for the second-order quartic anharmon-
ic contribution to the phonon frequency shift

&~ (&u) =+C, (&o~/P')[4m) 'Is"(k, ~) 1],
where

(24)

4-
P(= P2= )

IE

f

�~=
2 cos Qy&

II

p=-i p=)
2

&c&~&e-

p=i p=-i
2

=2 cosh'&

pap a
l 2

IG

0
0 11 0 0 0

k

FIG. 2. Regions of validity of the theta functions
8(Zp (p2 (x,k, a))) .

I'„"(k, &o) = &u dx g [Z&,&, (x, k, ur)] '~'
PQa

)c e(Z& & (x, k, u)), (25)

Z&,& (x, k, ~) = ((0+p~sinx) —2[1+pz cos(k' x)],
(26)

and k' = —,'k. In the numerical evaluation of the in-
tegral appearing in Eq. (25), it is extremely useful
to know in advance the ranges in which various
9 functions are satisfied. They are shown in Fig.
2. All tQe 8 functions are always satisfied in re-
gion III and are never satisfied in region I, but
they are satisfied in region II in some partial range
of x. It is furthermore interesting the note that
for &o» 3, &2~"(~) behaves as aP'. The integral
I„'"(k, ur) has been evaluated numerically for k = v
using the Gauss quadrature method on the IBM-360
computer. The range of the integration is divided
into many proper subranges and the integration is
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pg p~-I
e-

E
~'icos|~

0
0

pg-I p ~ I

I
g&n~

p al pg "I Pgpg-&

+'&-seng-

OD

-06

FIG. 3. Regions of validity of the theta functions
e(J'~ »(z, k, ~)). /l

made for each subrange. Polynomials of degree
8, 9, 10, 32, and 40 are used in order that the in-
tegrated values remain consi'stent within 5%. A

similar numerical procedure has been used for
subsequent integrals. The numerical results of
I„"(k,v) for k = v are presented in Fig. 4.

The anharmonic contribution to the phonon fre-
quency shift corresponding to Eq. (13), after car-
rying out one integration, is found to be

&"(~)=-'c.(& /p')9 —»[x "'e(x)+F "'e(F)]
-I~s'(k, &o)}, (27)

where

I~g(k, (g)) = P Cx Q Bq,p, (x, k, u))
2 0 pip 83

x [E~~,(x, k, (o)]-'~'

x e(F„„(x,k, ~)) . (28)

Here

E~,~, (x, k, (o) = [(o+p, sin(k' —x)]' —2(1+p, cosy),

2-0-

3
l.2-

nl Cf.

08-

0.4

0.0
0

I

2.4
I I

0-8 l.6 3.2 4.0
Q)

FIG. 4. Plot of I~ (k, a)) vs v at k=m. Actualvalues
are 10 times the plotted values.

(29)
Bp,~ (x, k, (o) = (p, sin@)/[(o+ p, sinx+ p, sin(k' -x)] .

(3o)

-I.8-

0.0 04 2.4
I

3.2

FIG. . 5. Variation of Iz" (k, &) at k ™.~. Actual values
are 10 times the plotted values.

x [F„,,(x, k, (o)] ' ",
x e(F~,~,(i, k, (o)). (32)

Equation (32) hss been computed numerically for
k = n and I z~(k, &o) vs a& is plotted in Fig. 6. It is
seen that for &o» 3, &", (~) varies as &u '. The last
frequency-dependent anharmonic contribution to
the phonon, frequency shift is obtained from Eq.
(16), and after some lengthy and tedious calcula-
tion we obtain it is

&'"(&o)= ——', c (&o /p )([2- &ux 'i e(x) —a)Y 'i'e(F)]'

-I s'(k, ~)] (33)

The regions of validity of e(X) and 8(Y) have al-
ready been discussed in Fig. 1. The regions of
validity of the theta furictions appearing in the in-
tegrand of Eq. (28) are plotted in Fig. 3.for the
whole range of 0 & x & m. These theta functions are
always satisfied in region II, but in region I they
are satisfied within some partial range of x. The
dip in Fig. 3 -is due to the competition between the
values 3 sin-,'k and 2 —sink'. These curves inter-
sect at k =83m/120. Equation (28) has been com-
puted numerically for k = n and results are pre-
sented in Fig. 5. It may be rioted that for ~ »3,
43~'(&o) varies as &u '.

The next anharmonic contribution to the phonon
frequency shift corresponding to Eq. (15) after
some lengthy calculation is found as

&~(cu) = — ' C (co /P')(32 —20(o[X '~*e(X)+ F '~'e(F)]

+ 4M'[X-'~'e(X)+ &-' 'e(&)]-I,"(k, ~)], (»)
where

I s4a(k, (o) =—P Ch Q [&p,p, (&p kg &)+&p,p, (&s» &)]
0 PyPPP3
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12-

10-

3 6-
A

~ CfD

0
0

I

0.8 1.6 2.4 32 4.0

FlG. 6. Variation of I@4 (k, co) with ~ at k =7|. Actual
values are 100 times the plotted values.

where

B. Phonon frequency widths

We have evaluated all the anharmonic contribu-
tions to the phonon frequency width using Eq. (19)

1.2

0.8-

Is'(k, (d) = I' dx Q B~,~, (x, k, (o)H(x, k, (o).
PyP2

(34)

H(x, k, (d), being a lengthy expression, is given in
the Appendix. The computed values of I s'(k4, ~)
for k = w are plotted in Fig. 7. It is found that for
(()» 3, +& ((()) varies as (d

and the results for the phonon frequency shift
given in Sec. III A. The Hilbert transform of the
frequency-independent anharmonic contributions
to the phonon frequency shift is zero, and thus
Eqs. (2)-(4} and (7) do not contribute to the phonon
frequency width. The anharmonic contributions
to the phonon frequency width corresponding to
Eqs. (20), (22), and (23) are found to be

r,"(&o)= -'C, (&o„/P')[(OX, '~'8(X, )+ (0r, '~'6(r, )], (35)

I'„'((u) =+c,((d„/p')1[a)x ')'9(x)+ (or '~'6(r) —2]

x [~x-,'~'9(x, )+ (Or-, '~28(r, )) },
(35)

I"',"(~)= ——,', c,(~,/p')(5~[x ~'9(x,)+ r-, '~'e(r, )]

+~'[x "9(x,)+r ~'6(r, )]}.
(37)

The regions in which the theta functions occurring
in Eqs. (35)-(37) hold can be discussed with the
help of Fig. 1. It can be easily seen that neither
of the theta functions 9(X,) and 9(r,) are satisfied
in region III whereas 8(Y,) is satisfied only in
region I. But the theta function 6(X,) is satisfied
always in region II as well as in region I. It is
worth pointing out here that the phonon width at
&o = ur„ is independent of k for Eqs. (35) and (36),
whereas it depends on k for Eq. (37). It may be
noted that the inband phonon width is independent
of k in lower order.

The remaining four anharmonic contributions to
the phonon frequency width could not be completely
worked out analytically. However, we get for
them expressions involving one integration by
taking the Hilbert transform of Eqs. (24), (27),
(31), and (33). We obtain the second-order quartic
anharmonic contribution to the phonon frequency
width as

I","(~)= (C,/4«)(~. /P)I'"(k, ~),
where

04-

3-00
~(I

-04-

-0.e-

-1,2
I

3.2
k

2.4
I

0.80 1.6
Q)

FIG. 7. Plot of I+4" (k, ~) vs co at k= ~. Actual values
are 10 times the plotted values.

(' (k, e)=tdP j dx Q S', , (kk, td)e(Z', ,(kk, td)),
PjP2

(39)

(40)

The regions in which the theta functions 9(Z~,p, (x,
k, &u}) are satisfied can be discussed from Fig. 2.
None of the theta functions is satisfied in region III
whereas all are satisfied in regions I and II either
in the whole range or in some partial range of x.
Using the procedure discussed earlier, Eq. (39)
has been computed riumerically and results for
k = w are plotted in Fig. 8.

The next anharmonic contribution to the phonon
frequency width worked out from Eq. (27) can be



SELF-ENERGY OF PHONONS IN AN ANHARMONIC CRYSTAL. . .

l6-

3
l2

O.B

04

0.0
0.80 I.S 2.4

CO

FIG. 8. Variation of 1&2 (k, (d) with (d at k=-71. Actual
values are 10 times the plotted values.

3.2

written as

I'", (or}= ',C,(or,-/P')(2or[x, '"e(X,)+ Y,'"e(Y,)]
+Io'(k, or)], (41)

%e note that the region in which the theta functions
appearing in Eq. (42) are satisfied in the whole or
in some partial range of x is region I of Fig. 3.
They are never satisfied in region Ij:. For prin-
cipal value we use the representation P/y =y/
(y'+e'). It is found that values of c lying between
0.001 and 0.02 give computed results for I o'(k, or)

which are consistent within 5%. These are plotted
for k=m in Fig. 9.

Another anharmonic contribution to the phonon
frequency width after taking the Hilbert transform
of Eq. (31) is found to be

I'", (or) = „',C,(or,/P')(20or[x r'e(x, )+ Y,'r'e(Y, )]

+4or'[X r'e(X, )+ Y,'r'e(Y, )]
+ 4I o'(k, or) +I ~'(k, or)], (44)

where

1jla, ~)= Pf dh Q B, , (x, k, ~')
PyP2+

x [E~r ~ (x k or)] '~'

x e(F,'...(x, k, ~)}. (45)

ln order to compute Eq. (45) numerically we use
the representation

where
P/y' = (y' —e')/(y'+ ~')', (46)

Fp~s(Ãr kr Or) Fpppg(+p kp +) ' (43)

r
I~o'(k, or)= P Ch Q &r,,r,,(x, k, or)

PyP2P3

x [F~ ~,(g, k, or)] '~'

x e(F', ,(g, k, or)}, (42)

where c is assumed small but finite. With this
representation we find that the results for Io'(k, or)

increase monotonically with decreasing c and when
e is chosen very small the results behave in an
unpredictable way. The reason for this is that
though e is assumed small it cannot be smaller
than the smallest increment in y. 'The optimum
value of e is dependent on the smallest increment
in y. Using Eq. (46}we first compute the principal
value of the known integral,

06- 1J'k, or =P dx
[or +p1 siBx+pI sin(k —x)]

~ 0.2

04

-0.2-

-04-

I

24
I I I

0 0.8 I.6 3.2

FIG. 9. Plot of 1&(k, co) vs co at k=vr. Actual values
are 10 times the plotted values.

for 0 = m to determine z. The values of e lying be-
tween 0.02 and 0.001 reproduce the known results
for the above integral with a 5% consistency for
various values of ~. Using these values of e,
I ~ (k, or) is computed for k = v and the results are
presented in Fig. 10. The last anharmonic con-
tribution to the phonon frequency width has been
obtained from Eq. (33) using Eq. (19). After lengthy
calculations it can be written as

&;"(or)= ——,', C, (or,/P')(2or'(X, Y) 'r'e(X, )e(Y)
-4or[X 'e(X,)+ Y 'r e(Y )]
-I~'(k, or}], (48)
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$0-

2.0- ).0-
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3

o ~ 0.0

2.0

3
~.0

D~

—
&.0

0.0

-20
- (.0

0.8 t.6
td

2.4 0.4 0.8 t.6 2,0

FIG. 10. Plot of I& (k, co) vs ~ at k=~. Actual values
are 10 times the plotted values.

FIG. 11. Variation of I&" (k, co) with cu at k=7(. Actual
values are 100 times the plotted values.

where

Ig~(k, &) =
2m dxQ &, „(~,k, ~)Hi(&, » &).

(49)

II, (&, k, &) can be read from Eq. (A25) in the Appen-
dix. The computed values of I ~b(k, ~) consistent
within 5/g for k = v are presented in Fig. 11.

The derivatives of the potential p" occurring in
the expression for phonon frequency shift and width
given in this section are evaluated at the nearest-
neighbor separation ~, at temperature T. 'There-
fore it is necessary to expand the derivatives about
the minimum of the potential energy at F,. Thus
we obtain the so-called thermal-expansion con-
tribution to O(X') to the phonon frequency shift

and width Z'

+2' = o 5(o„a~F,A"'.(F,)/y" (F.),
(g Q

lllll
(Fo ) Q

Ill
(Fo )Q

IIII
(Fo) [y III (

—
)]3

0 lI 2 ' II 3 ~ II

kT'~.e"'(F.) . . . 24'"(F.) 0"'(F.) '
l+0 5(Oy

( )
+0 250 T~F 0

( ) (—

-z g2 -x y2 0"(Fo)4'""(Fo) [4"(Fo)]+0.125
p

eaTF, [X e(X)+ Y' e(Y)] [ „( )]~
2.5

[

(50)

+0.5 ' "', [4 cos'-,'kX '~'e(X)+4 sin' —,'k Y '~'e(Y)][4"(Fo)]'

I' =0.125 ~ (uaTF [X '~'e(X )+1' '~'e(Y )] ' 0 2 54 ' 0 1 1 1 1 pg
— 3 ' Ig — & 7

where a and b are defined through the thermal
strain according to the relation

g= aT+bT . (53)

'The general expressions for a and b are now avail-

able" fo& a more realistic model than our model.
The explicit anharmonic contributions to the phon-
on frequency shift and width are still given by
the exp'ressions of Sec. IIA and IIB, respectively,
but it should be understood that the derivatives
P" are now to be evaluated at F,.
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1V. DISCUSSIONS AND CONCLUSIONS

TABLE I. Various anharmonic contributions to (a) the
inband phonon frequency shift at k =7r and (b) the inband
phonon width at k =x.

Contributions Values Partial sums

(a) +1a
~2a
~TE

2

~Lb

g2b
+2C
+25
+2e
+3a
g3b
+3c
+3d
g4a
g4b
~TE

4

p2a

I 2b

+25
I3a

13b
P3c
p4a

I 4b

I TE

1.2882
-1.5312
-1.5309

1.3807
-1.8229
-3.3189
-6.5220
-2.1740

0.00
3.9451

17.4649
3.9451

-8.2783
-7.5910

0.0043

1.5312
7.1422
6.5220

-7.8902

-5.9176
-40.2928

24.3991
10.8959
3.8326

-1.7740

1.3807

-13.8448

25.3551

-15.8694

0.0043

1.5312
13.6643

-54.1005

37.2951

3.8326

In Sec. III we have obtained expressions for the
anharmonie contributions to the phonon frequency
shift and width. Some complicated contributions
have been calculated only for k = w. At least for
this model it has been clearly demonstrated that
it is possible to have exact numerical results of
O(X') for the phonon frequency shift and width. The
contribution of 0 (X') to the inband phonon width
is found to depend on the wave number, contrary
to the corresponding width of O(A.'), which is known
to be wave-number independent. In order to find
the magnitude of each of the anharmonic contribu-
tions of O(X') to the phonon frequency shift and
width we evaluate them for ~ = ~„and 0 = w using the
Lennard- Jones potential. The calculated results
for the phonon frequency shift and width are pre-
sented in Tables I(a) and I(b), respectively. In
Table I(a) the first two rows give anharmonic con-
tributions of O(X') whereas the third row is the
thermal-expansion contribution of the same order
to the phonon frequency shift. They are given in
units of ~z, (ksT/e, ). In Table I(b) the first row is
the phonon width of O(X') in the same units. We
have given lower-order results"' for the sake of
comparison and completeness. The last rows of

&(X')/&(X') = 1.6765(kaT/c, ),

I'(X')/(X') = 0.4515(k T/f ) .

(54)

(55)

It is known that for inert-gas crystals the poten-
tial depth a, is roughly twice the melting tempera-
ture. Therefore we conclude from Eqs. (54) and
(55) that lower-order perturbation is inadequate
for temperatures greater than about one third of
the melting temperature. This is in agreement
with previous conclusions. "
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APPENDIX

In this Appendix the full expression for H(x, k, u&)

occurring in the integral I zb(k, &u) is presented.

Tables I(a) and I(b) are thermal-expansion contri-
butions of O(X') to the phonon frequency shift
and width, respectively. In the evaluation to
O(X } of anharmonic contributions due to ther-
mal expansion, wehave used for our mod-
el a=0.1458(ks/c, ) and b= 0. 2699(ks/&, ), as
obtained from free-energy expressions. '" The
remaining res of the tables give the explicit an-
harmonic contribution of O(A.'}to the phonon fre-
quency shift and width. These are given in units
of &o~(k~T/c, )'. It can be easily seen from the
tables that the partial sums of the anharmonic con-
tributions of O(X') to the phonon frequency shift
and width in the various order of perturbation the-
ory are of the same order of magnitude and there
is strong cancellation among them. There are
many anharmonic contributions of O(X'). There-
fore it seems difficult to predict a priori the im-
portance of a particular anharmonic contribution
in a given order of perturbation as all of them
are of the same order of magnitude. Thus none
of the anharmonic contributions of O(X') to the pho-
non frequency shift and width can be ignored. In
view of this we feel that in order to find the tem-
perature dependence of the fundamental lattice
absorption peak in ionic crystals, the contributions
of anharmonic terms of the same order should be
taken into account instead of discussing the contri-
butions of only a few diagrams. "Work on this is
in progress and will be reported in a subsequent
paper in this series.

Finally, we examine the convergence of our
perturbation expansion for the present model. We
find the ratios of the anharmonic shifts and widths
of O(X') and O(X'), respectively. These are found
to be
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For this, we define a&, =sin(k' —x) and

a, = sink' —sinx —sin(k' —x),
a, = &a(cosk' —cosx) -p, &o,(l —cosk'),

a, = &o(sink' —sinx) +p, &o, sink',
2 2 2

j = Qs+ Q2 —C~

T, = [a, sink' —&o(a, cosk'+ a, sink')]/D„

T, = {a,[sink' —sin(k' —x)] —(&o+p, (o,)

(Al)

(A2)

(AS)

(A4)

(A5)

2 2D2= Qs+ CES —N~ ~ (A9)

x (a, cosk'+ a, sink' ))/D» (A6)

a, = sink' —sinx'+ sin(k' —x},
a, = &o(cosk' —coax}+p, &o,(1+cosk'), (A8)

T, = [as sink' —~(a, cosk'+ a, sink')]/D„

Ts = {as[sink'+ sin(k' —x)] —((o+p, ro, )

x (a, cosk'+ a, sink')]/D„

a, = sink'+ sinx —sin(k' —x),

a» = ur(cosk'+ cosx)+ p, &o,(1+cosk'),
2 2

~
—Qs+ Q~O —Qg ~

T, = [a, sink' —&o(a» cosk'+ a, sink')]/D„

T, = (a,[sink' —sin(k' —x)] —(&o+p, (o,)

x (a» cosk'+ a, sink')j/D„

X,= (&o+p, e,)' —2(1+ cosx),

Y, = (&a+ p, &u, )' —2(1-cosx),

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A2S)

(A24)

T, = [a4 sink' —&o(a, cosk'+ a, sink')]/D» (A10)

T4 = (a,[sink'+ sin(k' —x)] —(&s+p, ar, )

Using above notations, H(x, k, &o) can be written
as

x (a, cosk'+ a, sink')]/D„

a, = sink'+ sinx+ sin(k' —x),

a, = &@(cosk'+ cosx) -p, &u, (1 —coqk'),

a, = (o(sink'+ sinx)+ p, (o, sink',
2 2 2D3= gs+ + —g6 ~

(A11)

(A12)

(AlS)

(A14}

(A15)

H(x, k, &o) = (T,+T,)Y ' 'e(Y)+ (T, + T,)X '~'e(X)

-(Ts+ Ts)Y.' "e(Ys)
—(T,+ T,)X'i'e(X, ), (A25)

The integrand H, (x, k, &o) occurring in the integral
I ~"(k, &o) can be obtained from Eil. (A25) by replac-

bp'X]p Y bp Y„X2bp -X2y RQd Y2 bp'-Y2 ~
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