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The frequency dependence of the conductivity of superionic conductors is investigated from a classical-
hopping-model point of view. It is shown both formally and through an example that any hopping model must
yield a conductivity which increases monotonically with frequency up to frequencies comparable with phonon
frequencies. This result is generally consistent with experimental data on B-alumina, but is inconsistent with

data on Agl.

I. INTRODUCTION

The anomalously large dc conductivity observed
in superionic conductors!:? is often interpreted in
terms of a random hopping of mobile ions from
site to site. Although this hopping model is reason-
able for ordinary diffusion in solids, the conduc-
tivity in some superionic conductors is so great
that its applicability can reasonably be ques-
tioned.®** In particular, it is not clear that a
hopping model can explain the frequency-dependent
conductivity of superionic conductors, and some
alternatives to hopping have been proposed to ex-
plain the observed microwave conductivity of Agl
and B-alumina.5™!

A hopping model characterizes the mobile ions
as moving quickly from one metastable equilibrium
position in the lattice to another. In order to make
good sense, the average time between hops 7 should
be considerably larger than the actual hopping time
To. An argument by Rickert® suggests that in some
superionic conductors the hopping model may be
inappropriate because estimates of 7 and 7, yield
similar numbers. In silver iodide at 150 °C, for
example, a mobile silver ion with an average
thermal velocity will take 7,~7X107*3 sec to travel
half a lattice constant. However, the random-
hopping model requires that 7 be only 5X107? to
6X107!2 sec to explain the observed conductivity
of AgI [~1.3(Q cm)™ at 150 °C]. If one considers
AglI at a higher temperature, or postulates a
shorter-hopping distance, the difference between
7 and 7, becomes even smaller. A similar cal-
culation for g-alumina at 150 °C yields a somewhat
larger ratio for 7/7,. These time scale estimates
emphasize the point that the hopping model is an
idealization. Whether or not it is an appropriate
model of a superionic conductor may depend on
the material and temperature range being con-
sidered.

When 7>>7,, the ionic motion can be considered
to consist of vibrations about local equilibria with
occasional hopping from one equilibrium configur-
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ation to another. If gne probes such a solid with
electromagnetic radiation with frequency w, the
response seen when w7,= 1 should reflect primarily
the vibration spectrum of the ionic motion. How-
ever, when wr=1 and wT,<1, the radiation probes
the correlations among the hops. In this low-
frequency range which might typically correspond
to microwave frequencies, the vibrational motion
of the ions contributes only a positive frequency-
independent term to the dielectric constant of the
material.

A familiar simple example of hopping is single-
ion hopping in which a mobile ion in the superionic
conductor moves from one site to another, but the
rest of the crystal remains essentially unchanged.
For an ideal lattice, with independent mobile ions,
the dc conductivity can be written in terms of the
residence time 7 as

o =pp(Ze)*a®/67, 1)

where B is the inverse of the temperature times
Boltzmann’s constant, p and Ze are the mobile
ion density and charge, a is a hopping distance,
and the system is assumed to be cubic. For w7,
<1, the conductivity is essentially frequency in-
dependent for this simple model.

In real solids, the single-ion hopping picture
may be too simplified. Interactions between the
ions, imperfections in the lattice, hopping involv-
ing the motion of larger numbers of mobile ions,
and the response of the immobile lattice to the
mobile-ion hopping can all significantly change
the dec conductivity from the simple expression
given in Eq. (1). Furthermore, because these ef-
fects can introduce correlations between subse-
quent hops, it is no longer true that the hopping
model predicts a frequency-independent conduc-
tivity. Intuitively, one can argue that if an ion
hops from A to B, one might expect the ion to be
“bounced back” to site A fairly often when inter-
actions and imperfections are present. This
“bounce-back” effect would tend to reduce the dc
conductivity relative to the ac conductivity. Al-
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térnatively, one can argue that when one ion hops
it will tend to push other ions in the same direc-
tion in subsequent hops. This “caterpillar mechan-
ism 2 would enhance the dc conductivity relative
to the ac conductivity. The primary result pre-
sented in this paper is a proof that under quite
general conditions, the “bounce-back” mechanism
is dominant so that the conductivity is an increas-
ing function of frequency. The proof of this re-
sult, which is presented in Secs. II and III, is es-
sentially a generalization of work by Kawasaki'?
on the time-dependent Ising model. The general
formalism is applied to a simple soluble hopping
model in Sec. IV. Some of these results are simi-
lar to conclusions obtained by Dieterich, Peschel,
and Schneider and by Richards.’® Discussion and
a comparison of the results with experiments will
be presented in Sec. III.

II. CLASSICAL HOPPING

It is assumed that a superionic conductor poss-
esses metastable equilibrium configurations, and
that ionic motion consists of oscillations about
these local-energy minima with occasional hopping
from one configuration to another. The hopping
can be a generalized motion of many particles of
the type described by Vineyard.®

The configurations, labeled | @), can be taken to
be the orthonormal basis of a real vector space, so

(a|B)=0q,5. (2

A state of the system is defined to be an ensemble
of configurations withnon-negative probabilities P,
such that

Y. P,=1. (3)

The state, which lies in the vector space defined
by the configurations, can be denoted as

IPy=3 P.la). @)

It is assumed that essentially all initial states of
the system naturally evolve in time to an equilib-
rium state denoted by

I¢2>=Za?¢ila>, (5)

where ¢2,=P'? is probability of finding the con-
figuration | @) in equilibrium.

States evolve in time by the hopping of ions or
groups of ions. The hopping rate 'y, from a con-
figuration | @) to |y) is assumed to depend only on
the configurations and temperature. The actual
time it takes to make a hop, 7,, must be small
compared to I‘;;zv' if the hopping model is to be

valid. When the hopping has these properties, the
time dependence of the P’s is determined by the
following mastér equation:

dP
dta = ;(rayp’y"r)’upa): - (6)

where the first term on the right corresponds to
hopping into the configuration |a) and the second
term corresponds to hops out of the | @) configur-
ation,

A formal simplification can be achieved by defin-
ing the real symmetric matrix T, to be

Tay =-(T ay 1-7“)1/2 (azv),
and
Tou= 2 Tya- )
Then the master equation can be written
dP T vz
—_—= —ay
dt ;T‘”(rm) Pr- ®

Physically, the net rate of hopping from the con-
figuration |y) to the configuration | @) must be
zero in the equilibrium state. Hence

Pa7¢27 —rya‘P?x:O; (9)
and
T /2 ¢
— oy =la
(F)™ =2, (10)

with the ¢’s picked to be positive. This means the
master equation can be written

= DT 67 Py (11)
Defining the operators 7 and ¢ by

(a|Tlyy =Ty, (12)

(aloly)=64,y9q, (13)
allows one to rewrite the master equation as

41P) - _y1eIp). (1)

Left multiplication of Eq. (14) by (a| yields Eq.
(11). Integration of Eq. (14) gives a time evolution
operator

U(t)=¢e tTp™ . (15)
Note that since | ¢?) is independent of time

T¢™|¢?) =T|¢) =0, (16)
where

19) =2 ¢cla). (17)
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Since states decay in time to the equilibrium state,
T cannot have negative eigenvalues, and |¢) is a
normalized “ground state” of T with eigenvalue
zero. The ground state \¢) is unique if there is
only one equilibrium state of the system. It is
convenient to think of |¢) as a pseudogquantum
state. For example, the probability of finding a
configuration | @) in equilibrium is

P =Kola)l®. (18)

III. CONDUCTIVITY

The longitudinal conductivity o(q, w) is the ratio
of the electric current to a small applied electric
field. For simplicity the conductivity tensor is
taken to be a scalar. The externally applied in-
finitesimal field is taken to be in the ¥ direction
and

E=E,%cos(q-X)e ivt, (19)

All of the resulting current will not, in general,

be proportional to cos(q+X) because the superionic
conductor may not be perfectly homogeneous. If
the amplitude of the Fourier component of the cur-
rent proportional to cos(q-X)e ¥ along 2 is J (w),
the conductivity is defined to be

0(q, w)=J(w)/E, . (20)
This conductivity is defined even for imperfect
crystals and amorphous systems.

The hopping model is classical, so the conduc-
tivity is given by the classical Kubo formula'’

= _é_. fw iw(t-ty)
olg, w T, dto A dte 0

X J(£)d () (21)

where  is the volume, and the integral over the
“initial time” ¢, is a simple way to obtain a ther-
modynamic average. The averaging time 7, can
be made arbitrarily large. Because the applied
field is proportional to cos(q- %), the quantity J,(¢)
is the cosine transform of the current density at
time £. The current J(¢) is related to the sine
transform of the charge density p(¢) by

Jo(t) == ®), (22)

dtp“

and
po(t)= D V2 Z,e sin[qX,(t)] . (23)

Here Z,e and X,(¢) are the charge and position
(along %) of the éth ion and the sum over ¢ includes
both mobile and immobile ions.

The charge density p,(¢) varies with time only

during the short periods during which the system
hops from one configuration to another. When the
system is in a configuration |a@), the charge den-
sity is denoted p,,. The operator p,, defined by

(alqu’) =an6ay; (24)

will be used later.

Because the currents J, () in an idealized hopping
model are nonzero only during the short hopping
intervals, the conductivity can be written as a sum
of simpler integrals in which ¢ and ¢, are confined
to the periods of a single hop. These terms are
conveniently classified as “single-hop” terms if
the time intervals for ¢ and {, are the same, and
“double-hop” terms if ¢ and #, are integrated over
the periods of two distinct hops. The conductivity
can then be written as the sum of single-hop and
double-hop terms

o(g, w)=0,+0, . (25)

Let the short time interval ¢; < {< {; + 7, encompass
the period of the jth hop. Then :

s +1"° tj¥T
0= QTO Zf toj;o

and

o, = QTO Zzezw(tk-t )

R>j
ti+T t,*T,
XJ‘ Odtj- Cat I (t)d (L),

] ty

CatI(t)IL,), (26)

@7

where we have approximated terms like ¢*“" by 1.
The single-hop conductivity o, would be an exact
expression for the conductivity if there were no
correlations between hops. The double-hop con-
ductivity describes the correlation corrections to
the conductivity which might be produced by the
“bounce-back” or “caterpillar” mechanisms men-
tioned in Sec. I. It is important to recognize that
correlations discussed here differ from the Bar-
deen-Herring correlations which are important in
isotope diffusion.®:®

In a formal sense, Eqs. (26) and (27) are exact
only in the limit that the hopping time T, is infini-
tesimal. When 7,#0 there is the possibility that
hop number j +1 may start before hop number j
has finished. Since the total hopping rate is pro-
portional to the volume, one can find an Q large
enough so that the system is essentially always
hopping. Physically, we know that the large-
volume limit should not cause trouble because
hops which take place at widely separated regions
in the sample will not significantly affect each
other.

If one wishes to formally show that no problems
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occur in the 7,#0 and large © limit, one can pro-
ceed as follows: (i) hops are still l1abeled by a
sequential index j but hop j may not be finished
before hop j +1 is initiated; (ii) the conductivity

J (t) is replaced by J,;(t), where J,;(¢) is the
total current produced only by the jth hop; (iii) the
expression for the single-hop conductivity remains
valid provided that in the integration over the jth
time interval in Eq. (26), J(¢)—~J,;(¢) and J (¢,)
—dJ,4(t,). This modified expression for the single-
hop conductivity is unchanged if one lets 7,~0, and
this justifies assuming that 7, is infinitesimal for
the single-hop conductivity; (iv) the double-hop
conductivity is similarly modified in that J,(¢)

=J x(t) and J(¢,) =+ J;(¢,). Furthermore one must
add the restriction to the integrals in Eq. (27) that
t={,. This last restriction is not independent of
T,. However, if the hopping rate for individual
ions is small compared to 1/7,, then the nearly
simultaneous hops are likely to be separated by
such large distances that they will have negligible
contributions to the double-hop conductivity. Thus
the assumption made earlier that the residence
time 7 is much greater than the hopping time 7,

is sufficient to justify treating 7, as an infinitesi-
mal.

The expressions for the single-hop and double-~
hop conductivities can be simplified and written
compactly in the pseudoquantum formalism. The
simplification is somewhat tedious. Anyone in-
terested only in the final result can skip to Eq.
(45).

The symmetry associated with the interchange
of ¢ and {, means that

t.4T t;+T
i o J
[ af
t; to

°atT ()T (t,)

- _;. (ft:’H"'dth(t))Z . (28)

Because ¢J(t) is the derivative of p,(¢) [Eq. (22)],

0-1'= —-ZS_Z_gg—ZIT Z [pa(t:' +To) =p () . (29)
Similarly,
02 QToq Z‘ge“"(%'tl)[p (tk+To) pa(tk)]

x [pa(tj +To) _pq(tj)] . (30)

If the averaging time 7', is made sufficiently
large, the sum over individual hops can be re-
placed by a sum over the initial and final config-
urations of the hops multiplied by the average
number of times each type of hop occurs. For ex-
ample, the average number of hops from config-
uration | @) to configuration |y) which occur in T,
is

Ny =ToT yu PO . (31)

This means

017 567 Zﬂq E(pﬂ ‘paa)zryecp(o) i (32)

The double-hop conductivity can be similarly cal-
culated. After the first hop from |a) to |y), the
probability that the system evolves to configuration
|8) after a time ¢ is (6|U(¢)|ly). The time evolu-
tion operator U(¢) was defined in Eq. (15). Finally
the hopping rate from |8) to |€) is ' 5. Thus

__B -
7:= g 22 (Pac =pes)Ts [ 01Uy e tat
S€

X(Pq'i —pqa)r)’ap(o?) .
(33)

In equilibrium, dP»/dt=0, so the master equa-
tion [Eq. (6)] becomes

ST PP= YT, PO . (34)
o o
Using this relation,
X;F’g*/rmpff) =;P§7ravp(yo')
o
_qua]f‘mp(o) (35)

and the single-hop conductivity can be written as

0= 3 (02 =PeaPey) TP - (36)
Qg T

This can be written in the pseudoquantum formal-
ism as

01=(B8/26* )P |p, To, | ) . (37)

The equivalence of Egs. (36) and (37) can be shown
by expanding the latter expression in terms of the
complete set of configurations |@). Because Pq

is a diagonal operator [Eq. (24)], Eq. (37) becomes

03= =L S0 10) paTuypy(r|o) . (38)
Qq &7

The validity of the pseudoquantum expression can
then be shown from Eq. (18), the definition of T,
[Eq. (7)], and the relation

(rayrya)uz (')’l¢> =<al¢>r'y¢x’

which follows from Eq. (10).
The double-hop conductivity can be simplified.
If [, ] denotes a commutator, the relations

PP =Kela)|?, (39)

Tyo(Pay =Peo) = ﬁ(wl[pq, Tl a)(al¢),
(40)
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re)‘(pqe ~Pqs) =<_¢1z>-<€l[Pq’ T]18)($18) ,

(42)

follow from Eqgs. (18), (7), (24), (10), and (15).
Taking the product of Egs. (39)-(42) and compar-
ing with Eq. (33) yields

02::-ﬁﬁt—]z_j;weiwt(‘pl[pq’T]e-‘T[Pq,T]H))dt. (43)

Finally, o, is obtained by performing the time in-
tegrations and using Eq. (16) to simplify the com-
mutators.

02 =(=B/Q¢% )¢ |p [T*/(T = iw)]p | ¢) .  (44)

The basic formal result is obtained by adding o,
and ¢, to get the total conductivity.

U(q’ w) =(B/Qq2)<¢ Ipq[T _Tz/(T - iw)]pqld)) . (45)

Note that this implies that the real part of the con-
ductivity is an increasing function of frequency for
w>0 because T is a positive operator and

Ty Relo(a, @)1 =(olod[T°/(T+ &) 1ol 9)

(46)
which is clearly non-negative. :
Practically speaking, the g—0 limit of the con-
ductivity [=o(w)] is particularly important because
in the microwave frequency range q is essentially

zero. In this limit, and for systems with reflec-
tion symmetry across the x =0 plane, an alterna-
tive to Eq. (44) is often easier to use. The re-
flection symmetry means that if p,, is redefined as

Paa= 2 expligX,y)eZ; , - (47)

the resulting conductivity is an average of con-
ductivities for electric fields which are even and
odd with respect to the reflection symmetry. De-
fine the operator J by

-0

J=1im [ ;T] : (48)
Then
1T@) =iTyuT )2 D eZi(AX,)yy,  (49)

where (AX;),, is the distance moved by the sth ion

in the hop from |a) to |y). When this definition of
J is inserted into the ¢--0 limit of Eq. (43), we ob-
tain the alternative expression for o,(w)

0, (@) = 2 (ST /T -iw)]T 1) . (50)
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In the same ¢-0 limit it is often simplest not to
use the pseudoquantum formalism to calculate
0,(w). Instead, taking the limit ¢-0 in Eq. (32)
yields a standard result

01(0) = o T, PODY, , (51)
Yo .
and
DYoc:ZeZi(AXi))’ot . (52)

IV. APPLICATIONS

The fundamental result of this paper is the ex-
pression for the general structure of the conduc-
tivity [Eq. (45)], which shows that the conductivity
is always a nondecreasing function of frequency for
any hopping model. The general significance of
this result to experiments will be discussed in Sec.
V. In this section the general result will be applied
to a simple example of interacting ions hopping on
rings. This example shows how ion-ion interaction
can produce a significant frequency dependence in
the conductivity.

One of the simplest hopping models which gives
an interesting result for the frequency-dependent
conductivity is a ring of six sites occupied by three .
identical mobile ions. The sites are separated by
a distance a and the ions have charge Ze. The ions
in this model hop, one at a time, only to nearest-
neighbor unoccupied sites, and the hopping rates
are chosen to reflect the effect of an effective
short-range ion-ion potential. Any allowed near-
est-neighbor hop which does not change the num-
ber of nearest-neighbor mobile-ion pairs is as-
sumed to proceed at a rate I'. Hops which de-
crease the number of nearest-neighbor pairs by
one occur at a rate yI" and hops which increase
the number of nearest-neighbor pairs by one oc-
cur at a rate y'T". This choice of hopping rates
means that the equilibrium probability of a con-
figuration | o) is

PO =gy~ (53)

where K is a constant and N is the number of
nearest-neighbor ion pairs in configuration |a).
The same values of P{?’ would be obtained in a
simple lattice-gas model for the ions in which the
nearest-neighbor ion-ion potential V is given by

BV=2Iny. (54)

For simplicity, only the ¢ =0 conductivity of this
model will be presented here. To obtain o, using
Eq. (51), the 20 possible configurations of the ions
|@) are multiplied by the appropriate probabilities
P9 and hopping rates I's,. When these products
are summed over o and 8, we obtain
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01=0, 2y(P + v +1)/(y* +69°+3) , - (55)
where

0o=3B(Ze)? a®/Q (56)

is 3 times the conductivity of a single ion on the
ring. Note that wheny=1, o, =%, which is the
probability that a site adjacent to a mobile ion
will be vacant if the ions are noninteracting.

The expression for the double-hop conductivity
of this model [Eq. (50)] can be written

02(0) = 2 30,1719 2 —

€, —tw ’
where |3,) and €, are the eigenfunctions and eigen-
values of the operator T. )

The task of finding the relevant |y,) and €,, can
be simplified by a consideration of the symmetries
of this problem. The ring has rotation and reflec-
tion symmetry, and |¢) is unchanged when the
ring is rotated or reflected. This means the states
|#,) which contribute to the conductivity in Eq.
(54) must also be rotationally invariant. Also,
since J is reflection antisymmetric only antisym-
metric |,) need be considered. One cannot con-
struct such states with only two ions, so the simp-
lest ring which exhibits a frequency-dependent
conductivity is the half-filled ring with six sites.
The necessity of considering three mobile ions is
related to the fact that interaction effects appear
in T in the form of many-body terms rather than
more familiar two-body terms.

The following notation is used in the construc-
tion of rotation-invariant states. The ionic sites
on the ring are labeled 1 through 6. The config-
uration with ions at sites 1, 2, and 4 is denoted
as |1,2,4),. The subscript “0”" is deleted for
rotationally invariant states constructed from
these configurations. For example,

11,2,4) =(1/VE)(|1,2,4)+2, 3,5),+]3, 4, 6),
+14,5,1),+15,6,2),+|6,1,3),),

(67

(58)

and

11,3,5) = 7-(11,3,5)5+12,4,6),).

The ground state | ¢) can be obtained from the
relation P =[(a|¢)|? [Eq. (18)], so
l¢y =[11,2,3) +7[1,2,4) +71,2,5)
+(?/V3)|1, 3,5)] /(1 +292+ 9%/3)V2 ,

(59)

The only rotation invariant, inversion-antisym-
metric state which can be constructed for this six-
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site ring is

19y =(/2Z)(11,2,4) -11,2,5)). (60)
The eigenvalue € associated with |y) is
@ITIY) =Ty +y*+4) . (61)

The matrix element of the current operator is
(oI 19y =iTly =1 [2/(1+29% +9*/3)] 2. (62)

Substitution of Eqs. (61) and (62) into Eq. (57) gives
0,(w). This is added to ¢, from Eq. (55) to yield
the conductivity for the six-site ring.

o2 (y-1)* >
0, vi+69%+3 (y+y1+4) —iw/T /°

(63)

The real part of ¢ (w)/o, for v =20 is plotted as a
function of w/T" in Fig. 1. We also show In[g(0)/0,]
and Inf[o()/5,] as functions of In(y) in Fig. 2. If
21In(y) is associated with 8V as is described in Eq.
(54), then Fig. 2 clearly shows that the low-fre-
quency and high-frequency conductivities are
thermally activated. Note that the effective activ-
ation associated with the dc conductivity is about
twice the high-frequency activation energy.

It is our contention that the results for the six-
site ring are a good approximation to the conduc-
tivity of an infinite one-dimensional hopping model.
One bit of evidence in favor of this contention can
be obtained from a comparison of the conductivity
for the six- and eight-site rings. A calculation of
the conductivity of the eight-site ring involves only
a little extra effort because there are two nonzero
matrix elements which determine ¢,. The result is

o(w)/5,=2(A+B+C)/(4 +18+% +127* + ),
A=1+2y +47y2+293 + 9%,

B=-(y -1)*/ly +7y*+2-iw), (64)
C==y¥y =1)*/(y +3y™* +2 —iw).

A numerical comparison of the high- and low-fre-
quency conductivities of the two chains for -1<Iny
<7 indicates a better than 10% agreement. For
large negative values of Iny the agreement is
worse because the effective ion-ion attraction tends
to place the ions in lumps and the conductivity is
no longer proportional to the number of ions.

In two and three dimensions, interaction effects
appear to inhibit the conductivity even more strong-
ly. To get at least a qualitative idea of the effects
of dimensionality, the conductivity of two coupled
chains of four sites was also calculated. This
model is essentially a two-dimensional lattice only
two-sites wide and four-sites long with periodic
boundary conditions applied in the long direction.
Ions are allowed to hop only along the long direc-

(7(72+ y+1) -
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FIG. 1. Frequency dependence of the conductivity for
three ions hopping on a six-site ring. The parameter
vy which characterizes the relative hopping rates is 20.
The high-frequency limit of ¢ /o is shown by the dotted
line.

tion, hopping rates are determined by
Tyo =Y (65)

where N, is the total number of nearest neighbor
sites on or between the two chains, in configuration
o.

Two ions are placed in each chain. Again sym-
metry considerations make the conductivity cal-
culation relatively simple (|¢) is symmetric with
respect to interchange of the two chains). The re-
sult is

o(w)/o,=2(A+B)/(2+4y* +11y%+4®),
A=y (1+2y +292+9%),

B=(1-2y+vy%*)?2/(®+2+2y +y 2 _jw).
The high- and low-frequency conductivities are
compared with the single-chain results in Fig. 2.
As one expects, the localization effect is more
important for this crude approximation of a two-
dimensional system than for the one-dimensional
rings.

(86)

V. DISCUSSION

The basic result obtained here is that the con-
ductivity of any hopping model must be a nonde-

Ln(o/adp)

-3 -2 -1
Attraction “‘4‘—“ Repulsion
Ln(7)

FIG. 2. High-frequency and low-frequency conductiv-
ities of the six-site ring and the double four-site ring.
Since 2lny can be related to BV, where V is an ion-ion
interaction, this figure indicates thermally activated
hopping for both the high-frequency and low-frequency
conductivities.

creasing function of frequency. This result is ex-
pressed formally and generally in Eq. (45) and it
was illustrated in the examples sited in Sec. IV.
Only at high frequencies can one expect the con-
ductivity to be simply proportional to the hopping
rate. The time correlations between subsequent
hops can only decrease the dc conductivity relative
to the high-frequency conductivity. Another char-
acteristic of hopping models is that the imaginary
part of the conductivity is always negative, which
means these systems are capacitive rather than
inductive.

A phenomenological form for the real part of the
conductivity which satisfies the exact conditions of
a hopping model is

Re[o(w)]=0,{1-R/[1+(0D?]}. (67)

An example of such a curve is shown in Fig. 1.
Physically, o, can be associated with the simple
hopping conductivity of the form given in Eq. (1),
R represents the fraction of the time that an ion is
forced to return to its original site after making a
hop and 7 is the average time it takes to return. If
the frequency dependence of the conductivity arises
primarily from impurity effects, then one would
expect the factor R to be relatively independent of
temperature. However, if ion-ion interactions are
important in limiting the current, the factor R
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should approach 1 as the temperature is lowered.
The high-frequency and low-frequency conductivi-
ties should exhibit differing activation energies as
is illustrated, in Fig. 2.

Other models of ionic motion in superionic con-
ductors have been proposed.®™** In general, these
models yield predictions for the frequency depen-~
dence of the conductivity which differ significantly
from the prediction of the hopping model. Hence
an examination of the frequency-dependent con-
ductivity can yield a clear indication of which mod-
el is most accurate even when the models may be
nearly indistinguishable when only dc experiments
are performed.®®

Consider, for example, a comparison of the con-
ductivities one would expect from a hopping model
and a free-ion-like model. The free-ion model
conductivity has been calculated by Rice and Roth°
They obtained a Drude-like result

o(w)=a(0)/[1+(wT))?], (68)

where 7, is the mean lifetime of the free ion. Of
course, the free-ion model can make sense only
if 7; is greater than 7,, the time necessary to
travel from one interstitial site to another. This
result clearly differs from the hopping model re-
sult because ¢(w) decreases with frequency.

The imaginary parts of the conductivities for the
free-ion and hopping models differ in sign because

the free-ion model is inductive and the hopping
model is capacitive.

Experimental microwave data have been obtained
for B-alumina by Strom et al.® and Barker et al.®
and for Agl by Funke and Jost.”~Although these
data are imprecise, it appears that the data on g-
alumina are generally consistent with the theoreti-
cal results presented here, since ¢(w) increases
with w, approaching a high-frequency plateau. For
example, a reasonable fit to the data of Strom e?
al. at 180 K can be obtained using the phenomeno-
logical Eq. (37) witho,~10"2 (Q cm)™, R~2, and
T7~10"8 sec. Note that 7 is much greater than the
transmit time 7,. Strom et al. offer another ex-
planation of these data involving tunneling which
cannot be treated in a classical hopping model.

The microwave data on Agl are clearly incon-
sistent with the hopping results presented here be-
cause o(w) is a decreasing function of w which ap-
pears to show some structure. A phenomenologi-
cal Drude conductivity of the type given in Eq. (68)
with

T, 22X 107 sec

could be used to approximately fit the observed
low-frequency data on Agl. The peak seen in the
Agl microwave data cannot be explained by a free-
ion or a hopping model.
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