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The ground-state properties, the phonon dispersion, and the electrical properties of systems with a
commensurate superstructure are calculated. The superstructure leads to the appearance of a gap at the
Fermi energy. Phonon branches representing oscillations of the phase and amplitude of the superstructure
show strong anomalies at ¢ = 0. The smaller the electronic energy gap, the stronger these anomalies are.
For general commensurate cases the phase mode of finite frequency wph'couples to an external field leading to
a & singularity in the electrical conductivity at @ = w,, This is in contrast to the incommensurate case,
where, due to the translational invariance, the phase-mode frequency vanishes, resulting in metallic electrical
properties. In the special case of a half-filled band the phase and amplitude of the superstructure have the
same degree of freedom in the system. In this case the corresponding phonon mode does not couple to an
external field. However, the lower symmetry of the state with superstructure leads to a coupling of usually
infrared-inactive intramolecular modes to an external field, and, correspondingly, these modes lead to peaks

in the frequency-dependent conductivity.

L. INTRODUCTION

Quasi-one-dimensional conductors like TTF-
TCNQ (tetrathiofulvalinium-tetracyanoquinodime -
thanide) and KCP (potassium-tetracyanoplatinate)
exhibit atlow temperatures a metal -insulator tran-
sition connected to a lattice superstructure.!~*
The properties of these systems have been treated
theoretically using a one-dimensional jellium
model with electron-phonon interaction.®*® This
theory predicts at 7'=0 a periodic lattice defor-
mation and a charge-density wave (CDW) of per-
iod 2k, leading to a gap in the spectrum of one-
electron states at the Fermi energy (Peierls
instability). The resulting system is, however,
no real insulator as, due to the inherent transla-
tional invariance of the jellium model, the phase
of the CDW is not fixed. Allowing for the motion
of this phase one obtains metallike collective con-
duction in addition to the one-electron excitations
across the gap.®*” This model does not agree
with the experimental results which show a mode
of large oscillator strength at extremely low fre-
quency butnotat w=0as predicted.®*® Lee et al.”
pointed out that this discrepancy might be ex-
plained assuming that the CDW and the underlying
lattice are commensurate, i.e., the ratio of the
periods of the lattice to the CDW is a (small)
integer.

However, experiments show that the CDW in
TTF-TCNQ and KCP is incommensurate with
the lattice.?** Therefore the low-frequency mode
is now generally attributed to impurity-pinned .
oscillations of the CDW."+*?

Commensurate CDW’s and the associated lat-
tice superstructure exist in many semiconducting
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quasi-one-dimensional substances. For instance
the alkali-TCNQ salts show a dimerization of the
TCNQ stacks, i.e., the superstructure has twice
the period of the underlying lattice.!*'? TEA-
(TCNQ), (triethylammonium-ditetracyanoquino-
dimethanide) shows a superstructure with the
fourfold period of the underlying lattice.'®* These
superstructures may be understood in terms of
the Peierls instability as the conduction band is
half-filled in the alkali-TCNQ salts and ;-filled
in TEA-(TCNQ),. Current interest in these sub-
stances is especially due to the fact that in the
state with superstructure usually infrared-inac-
tive intramolecular vibrations of the TCNQ
molecule are coupled to the electrons and there-
fore are infrared active.'**®* This makes an ex-
perimental determination of the coupling of the
electrons to the intramolecular vibrations possi-
ble.lG-lS

Another interesting development is the discovery
of a commensurate superstructure of the TCNQ
stacks in TTF-TCNQ at high pressure,'® while at
ambient pressure the superstructure is incom-
mensurate. This has been interpreted as a change
of the charge transfer from the TTF to the TCNQ
molecules. At ambient pressure the charge trans-
fer is 0.59, i.e., the TCNQ electron band is 0.295
filled and the Peierls instability leads to an in-
commensurate superstructure. At high pressure
the charge transfer is 0.66, so that the TCNQ
band is 1-filled and the superstructure has the
threefold period of the underlying lattice.

In the present paper we treat the lattice dyna-
mics and the electrical properties of commen-
surate systems. It turns out that the properties
of the system depend strongly on the ratio of the
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reciprocal-lattice wave number G to the Fermi
wave number k. For small-integer values of the
commensurability index m =G/2k,,%° the phase of
the superstructure and the CDW relative to the
underlying lattice is not free and the jellium
model is thus inadequate in this case. Taking
account of this fact we have used a tight-binding
model which is described in Sec. II. In Sec. III
we use mean-field theory to obtain the energy
bands and lattice configuration of the CDW ground
state for a -, 3-, and L-filled band.?! The
Peierls instability leads to a superstructure with
the twofold, threefold, and fourfold period of the
original lattice, respectively. These types of
superstructure are commonly found experimen-
tally.11-1%:1® Using the band structures and the
corresponding eigenvectors we calculate in Sec.
IV the phonon dispersions of the coupled electron-
phonon system in the CDW ground state. These
dispersions show at ¢ =0 strong anomalies of
some optical-phonon branches which represent
oscillations of the phase and amplitude of the
CDW and the superstructure about their ground-
state values. The influence of the coupled elec-
tron-lattice modes and especially of the phase
mode on the electrical properties is investigated
in Sec. V. For a ;-filled band in the undeformed
state (m =2) the CDW does not couple to an homo-
geneous external field. However the superstruc-
ture leads to a coupling of usually infrared-in-
active intramolecular modes to an homogeneous
external field, so that these modes become infra-
red active. This effect has been used by Rice

et al.'® for the determination of the coupling of the
electrons to the intramolecular vibrations of
TCNQ molecules. For m =3 and m=4 the coupling
of an external field to the phase mode leads to
the appearance of a §-function peak in the elec-
trical conductivity at very low frequency.

The essential results given in this paper are
not restricted to a system with an instability
against the formation of a CDW due to the Peierls
mechanism but should equally be valid for a sys-
tem with a CDW due to the direct electron-elec-
tron interaction.??

II. THE MODEL

The presently known substances which show
quasi-one-dimensional behavior are structurally
rather complicated molecular systems. The
characteristic properties of a one-dimensional
system with a commensurate CDW may however
be shown using a linear chain of harmonically
interacting ions which may be thought to repre-
sent the TCNQ molecules in the quasi-one-di-
mensional TCNQ compounds. The electrons

are treated in the tight-binding approximation and
we take only account of nearest-neighbor overlap
integrals.

The instability against the formation of a CDW
and a superstructure is induced by the electron-
phonon interaction. The electron-electron inter-
action may lead to different ground states.??
Further the electron-electron interaction has a
quantitative effect on the one-electron excitations
of the CDW ground state and is important for the
magnetic properties of the system.?® In the pre-
sent paper we consider however a system with a
superstructure and a CDW in its ground state,
in accord with experiments on almost all quasi-
one-dimensional compounds. As we are mainly
interested in the qualitative effects of the CDW
and the superstructure on the lattice dynamics
and on the electrical properties we can neglect
the electron-electron interaction in our model.

The Hamiltonian is

H=) adle, +?:; gk, qal, a,(b, +b1,)

+3 w blb,, 2.1)
q
with
€, =—~Wcoska. (2.2)

The a, and.b, are destruction operators for elec-
trons and phonons, respectively. The summations
are over the first Brillouin zone, i.e., from

-3G t0 3G.

In the main part of this paper we shall assume
that the electrons interact with acoustical phonons
of the chain. The effect of these phonons is a
modulation of the electronic overlap integrals
and one obtains*

Wy =W, sin‘é'qa| ,
g(k, q) =2i J@NMw,)~/?
x [sinka - sin(k +q)a] , (2.3)

where J is the first derivative of the overlap in-
tegral with respect to the interionic distance, M~
is the ionic mass, and N is the number of ions in
the chain.

In Sec. V we shall also consider the interaction
with symmetric intramolecular vibrations, which
may be assumed to be dispersionless. The effect
of these vibrations is to modulate the local-energy
integrals, and we have

const
Wq =W, glk,q)= N (2.4)

For a 1/m-filled band the Peierls instability
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leads to a superstructure and a CDW of wave
number G/m. The reciprocal-lattice wave num-
ber of the deformed system is therefore @ =G/m
so that the new unit cell consists of m, cells of
the undeformed system. The superstructure
breaks the symmetry and may be described by a
macroscopic occupation of phonons of wave num-
bers vQ (v integer), i.e., by nonzero expectation
values (b, Q)."‘5 These expectation values are the
order parameters of the Peierls transition and
are determined by minimizing the ground-state

energy.
We introduce new phonon operators?®®
Cq=by = (b, (2.5)

which describe displacements of the lattice rela-
tive to the superstructure ground state and obtain
from Eq. (2.1)

H =E€ka:ah +Z g(k, VQ)a1];+uQak(<buQ>+(nyQ>)
kR U,k

+Z gk, q)a11;+¢ak(ca +CI¢) +th ’ (2.6a)
kya
with
H, =¢Z wglel +(0] Ny +(by)) . (2.6b)

"The first two terms in Eq. (2.6a) describe elec-
trons interacting with the superstructure poten-
tial. This interaction leads to a splitting of the
band €, of the undistorted state into m bands B,,
which are determined by the eigenvalue equation

}mj My (B)f nn(®) =Epf1a(®) (2.7)
with
M, (R) =6, €010 +(1 = 8, ,)8(R +mQ, (1-m)Q)
X(B gompa +0L (4-mp? - (2.8)

The electron operators corresponding to the eigen-
values E,, are given by

AL, =Zf,n(k)a;f+,o . (2.9)
7

With these operators we obtain

" =k2" EpnAlnApn +kz,,: Voonley DAY oA nn
) U, l' an
X(Corva +€lqvo) +H,, . (2.10)

This Hamiltonian describes the Bloch electrons
of the system with superstructure interacting

with the phonons of the periodically deformed
lattice. The electron-phonon coupling factors
now read

Vit @) =D g+ 1Q, g +vQ)
m

xf[lq-ll,x(k +q)fu"(k) . (2.11)
The interaction conserves wave number as @ is a
reciprocal-lattice wave number.

III. GROUND STATE

In the mean-field approximation the ground-
state wave function is a product of electron and
phonon wave functions. As the expectation values
{c,’ vanish [Eq. (2.5)] we obtain from Eq. (2.10)
for the ground-state energy

E, =2 EE,,1+Z Wy lbug Y12 (3.1)

The factor of 2 in front of the sum of the one-
electron energies results from the spin summa-
tion.

In order to show the origin of the Peierls super-
structure we consider first small amplitudes of
the superstructure. In this case the gap A be-
tween the highest occupied state and the lowest
empty state is proportional to the amplitude of
the superstructure:

A ocJI(bz,FH , (3.2)

where J is the electron-phonon coupling constant.
Further for small A the electronic part of the
energy is given by

E2(A=0)-E¢(A)xA®InA. (3.3)

The singular behavior for A - 0 stems from the
divergent density of states near the band edge.
From Eq. (3.1) we obtain

E, -E,(A =0)cA%(pJ =2 +InA), (3.4)

where p is a positive proportionality factor inde-
pendent of A and J. This equation shows that for
arbitrarily small electron-phonon coupling the
state with a superstructure is energetically fa-
vored with respect to the metallic state with A
=0.

To obtain the ground-state expectation values
(byq? we first calculate the electronic part of the
energy for arbitrary (b,,q) and then minimize the
resulting energy, i.e., we solve the set of equa-
tions

Wolbug ¥ + 5(1)%.—) ; E,,=0. (3.5)
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In the }-filled-band case the superstructure
leads to a dimerization of the chain. The displace-
ment of the Ith ion is given by i

(u,)=uycos(ml +¢) = (- 1) uy,cosgp . (3.6)

Hence the ground state depends only on the pro-
duct u,cosg. Correspondingly it exists only one
real order parameter and the electron bands are
given by the well-known expression®’

E,,=t[W?cos’ka +5(a sinka)?]V/2. 3.7

For a 5-filled band (m =3) we have a superstruc-
ture given by

{up) =uy[cos(2m1/3) cosy - sin(271/3) sing].

(3.8)
Correspondingly, the order parameter
6e'? =2V 3 J(bg +b1q) ANMWwy) /2

(6, @ real; 6=0) (3.9)

is complex, the phase and amplitude of the order
parameter representing the phase and amplitude
of the superstructure. The electron bands are

E,, =—W(1 +26) cos{3[arccos(C cos3ka)

-2r1n-1)]} =1,2,3),

(3.10)
with

C =(1-35%+26°sin3¢)(1 +26%)~3/2. (3.11)

As can be easily shown the elastic energy of a
statically deformed lattice is independent of ¢
for m+2. Thus the phase dependence of the
energy of the system is only due to the phase de-
pendence of the electronic energy [Eqs. (3.10) and
(3.11)]. In the present case (m =3) the electronic
energy decreases with decreasing C so that in
the ground state we have sin3¢ =-1.

From Eq. (3.5) § is given by

(1 +262)

2+6+5
-36%-25°

= 81(50-3) (45 + 221 K06) -

4y,-3
X <4E(k) * Yo=Yz K(k)>] ’
(3.12)
with
y, =cosq3(arccosC —nm)],
k= 00=9)/o=2) s (3.13)

A =272/ MWw?

K and E are the complete elliptic integrals of the
first and second kind, respectively.?®

The energy bands in the ground state and the
lattice configuration for some values of ¢ are
shown in Fig. 1. The ground-state lattice con-
figuration is given by ¢ =37 or ¢ =¢7 which differ

only by a primitive translation of the lattice. The

¢ =27 structure corresponds to a maximum of
the energy.

In the %-filled band case (m =4) a similar cal-
culation as for m =3 gives a phase dependence of
the energy of the form

E(p) —E(0) < 6*(cosdp - 1), (3.14)

where § is proportional to the amplitude of the
superstructure.

In the ground state the electronic energy bands
are

E,, =t W{} +26%% [cos® 2ka(} — 25%)? + 46%]/%1/2

(3.15)

The phase dependence of the energy of the system
[Egs. (3.10) and (3.14)] agrees with the general
considerations of Lee et al.”

If the interaction with the mtramolecular vibra-
tions [Eq. (2.4)] is taken into account, the re-
sults given here remain essentially unchanged,
however in general the ground state is no more
inversion symmetric. This is in contrast to the
case of interaction with the acoustic phonons
alone which we have treated above.

w
1=3
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or -
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-W\ l=‘|

'
l=
x
[~
gk

e 0o o
9=F oo @ oo o

z e o o °
(b)

FIG. 1. 3-filled band case: (a) the band structure in the
the state with superstructure; (b) the lattice configuration
for some values of the phase,
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IV. PHONONS
A. General

In the mean-field approximation the appearance
of the Peierls superstructure is due to the log-
arithmic divergence of the electronic susceptibil-
ity x(2kz, w =0) for T— 0 in the metallic state.”’
Because of this divergence the frequency of the
2k, phonons goes to zero for some T =T [Fig.
2(a)]. The resulting superstructure leads to a
reduction of the first Brillouin zone by a factor
1/m for a 1/m-filled band, so that each phonon
branch is split up into m branches. The points
¢ =0 and g =2k, are transformed into equivalent
points of the zone scheme of the distorted lat-
tice. In Fig. 2(b) the dispersion of an acoustical-
phonon branch is drawn in the first Brillouin
zone of the distorted state for 7' =T, and m =3.
For T< Tp only the frequency of the acoustical
mode of the distorted lattice is zero, the fre-
quencies of the two other modes being consider-
ably lowered with respect to the usual phonon
dispersion of a linear triatomic chain [Fig. 2(c)].
This lowering is due to the small energy gap in
the electronic spectrum which leads to a sharp
maximum of the electronic susceptibility at ¢ =0.

From the displacement patterns of the two
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FIG. 2. Schematic drawing of the phonon dispersion of
a system with a 3-filled band (m=3): (a) at the Peierls
transition temperature in the Brillouin zone of the undis-
torted system; (b) same as (a), however, in the Brillouin
zone of the distorted system; (c) below the Peierls trans-
ition, the dashed line is the usual dispersion of a linear
chain with three atoms in the unit cell.

low-lying optical modes at ¢ =0 one can see that
the lowest mode represents a shift of the phase
of the superstructure out of its equilibrium posi-
tion (the phase mode), while the second mode
corresponds to a change of the amplitude (amp-
litude mode). Especially the frequency of the
phase mode is very low due to the independence
of the elastic energy of the lattice on the phase
of the superstructure. Therefore a restoring
force against displacements of the phase is only
due to the weak phase dependence of the electronic
part of the ground-state energy [Egs. (3.10) and
(3.14)]. As the phase independence of the lattice
energy results essentially from the harmonic
interaction between the ions, anharmonic inter-
actions are expected to have an important influ-

~ ence on the phase-mode frequencies. In the mo-

del considered here the finite frequency of the
phase mode is however entirely due to the phase
dependence of the electronic part of the energy.
As shown in Sec. III, in the special case of a
3 -filled band the phase and amplitude of the sys-
tem are the same degree of freedom of the sys-
tem. Therefore the phase and amplitude modes
are identical in this case. As will be shown the
behavior of this mode is similar to that of the
amplitude mode for m+ 2 and thus we will call
this mode the amplitude mode for m =2 as well.

B. Green’s functions

The phonon dispersions are calculated by means
of the retarded Green’s function

Duu(q: t)
=«ca+#0(t) +CIG-VQ(t)’c-q-VQ +C;+VQ>>r . (4'1)

Umklapp processes in the deformed lattice lead
to the appearance of off-diagonal elements of
Dy,(q, t). The equations of motion give for the
Fourier transform of Dy, (q,t)

-Duu(Q,w)
=2D%q, w)(b,,,, +E Vit =g, 9)G (R, q, w)) s
I,n )

' (4.2)
where G, (¢, g, w) is the Fourier transform of
Gnlv(k’ q’ t)

=(ALq, s A (D), g +ediva)) . (4.3)
and
D} (g, @) = g, yo/l(w +58)* — w?, uol (4.4)

is the phonon Green’s function of the noninteracting
system. The equation of motion for G, (%, g, t)
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leads to higher-order Green’s functions. Corres-
ponding to the RPA approximation we replace the
electron-density operators by their ground-state
expectation values in these higher Green’s func-
tions:

«A;re-q. n (t)Ak-p. 1 (t)[cmuo(t)
+CIP—M o], é-q—vo +CT:+ v

= 6¢pdnl"k—q,1Duv(% t) . (45)

This leads to a closed system of equations for
the phonon Green’s functions:

;[6”. =2D{(q, w)T;u (g, w)] Dy (g, w)

=26;,D0(q,w), (4.6)

where the electronic susceptibilities T, (g, w)
are

Tuu(qr w) =4Z an(k; q) Vllln(k} q)
k,n

X Ekn - Ek-l-q al
(@ +38)2 = (Eyy — Epyq,1)*

(4.7)

Here the time-inversion symmetry of the Bloch
states has been taken into account. The phonon
frequencies are obtained from the polesof D, (g, w).
The diagonal elements of the electronic
susceptibility 7,,(q, w) lead to a renormalization
of the phonon frequencies whilst the primary ef-
fect of the off-diagonal elements, which are gen-
erally much smaller than the diagonal elements,
is to split the dispersions at the zone center and
at the zone boundary where otherwise some
branches would be degenerate.

The susceptibilities [Eq. (4.7)] have been cal-
culated numerically using the analytically given
eigenvalues and eigenvectors of Eq. (2.7). T,

(g, w) has been approximated by 7,,(g,0). A test
of this approximation showed that it results in
negligible errors as long as the maximum phonon
energy given by w, is smaller than half the elec-
tronic energy gap. This is a reasonable assump-
tion as the optical data of TTF-TCNQ and KCP
indicate a gap of the order of 0.1 eV at low temp-
erature while the phonon frequencies are of the
order of some meV. For larger w, the phonon
frequencies must be determined self-consistently
from Eq. (4.6).

C. Dispersions

The phonon dispersions for a £-, 3-, and %-fil-
led bands are shown in Figs. 3, 5, and 6. Also

Wol ™" A-01W

wiq)

0
0 q %

FIG. 3. Phonon dispersion for m =2 and the displace-
ment pattern of the optical mode at ¢=0, This optical
branch is the amplitude mode.

shown are the displacement patterns of the ions
of the unit cell of the deformed system corres-
ponding to the optical modes at ¢ =0. These pat-
terns can be calculated from the residues of the
Green’s functions at the corresponding poles.
half-filled band. In this case we have two phonon
branches (Fig. 3) which are the acoustical and
optical branch of a dimerized chain, the optical
branch being the amplitude mode. The most in-
teresting feature is the strong lowering of the
frequency of this mode at small wave numbers
with respect to the usual dispersion of a diatomic
chain. This lowering is due to the fact that the
denominator of T;,(q, 0) becomes very small for
g¢=0, k=@, and T;,(g, 0) has therefore a sharp
maximum for g =0 (Fig. 4). In the Brillouin zone
of the undeformed system T},(q, 0) is the electronic
susceptibility y(2kp +¢,0). The low frequency of
the amplitude mode is therefore the low-tempera-
ture analog of the soft 2k, phonon for T> Tp

(giant Kohn anomaly). The effect is the larger the
smaller the electronic gap and therefore the

Tylq.0) (arb. units)

-
-~ —
———

% 3 1

FIG. 4. Electronic susceptibility Ty, (q,0) for m=2
and two values of the energy gap.
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FIG. 5. Phonon dispersion and the displacement pat-
terns of the two optical modes at ¢=0 for m=3, The
lowest optical mode is the phase mode, the second-low-
est optical mode is the amplitude mode.

weaker the electron-phonon coupling. For v+1 or
v#1 T,,,,(q, 0) has no peak as in this case the ma-
trix elements vanish for ¢=0. For large wave
numbers we obtain the usual dispersion of a dia-
tomic linear chain. The splitting between the
acoustical and optical modes at the zone boundary
grows with increasing electron-phonon coupling.

+-filled band. In Fig. 5 the phonon dispersion
for m =3 is shown. In addition to the strongly
lowered amplitude mode there is another optical
mode of still smaller frequency. The displace-
ment pattern of this mode represents a shift of
the phase of the superstructure and therefore
this branch is the phase mode. The very low
frequency of the phase mode is due to the inde-
pendence of the elastic energy on the phase of
the superstructure. This is reflected in Eq. (4.7)
by the fact that 7., (g, 0) has a peak at ¢=0
similar to 7;,(g, 0), while T,,(qg, 0) vanishes for
g=0and |u|#1 or |v|#1. The peaks of 7;,(g, 0)
and T_, ,(q, 0) are the sharper the smaller the
energy gap A. Correspondingly the phonon ano-
malies are strongest for small A.

+-filled band. For a ;-filled band we obtain a
phonon dispersion similar to the case m =3 (Fig.
6). However, the phase-mode frequency is lower
as the phase dependence of the ground-state
energy is weaker than for m =3. Corresponding to
the smaller Brillouin zone there is an additional
optical mode at high frequency.

The results for m =2, 3, 4 show the existence of
strong anomalies for optical-phonon branches
representing oscillations of the phase and amp-
litude of the superstructure. These anomalies
are due to the nearly singular behavior of
Tyy(g=0,0)for |y |=1and|v|=1whichis caused by
the small energy gap in the electron spectrum,
Therefore the anomalies are strongest if the elec-
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FIG. 6. Phonon dispersion and the displacement pat-
terns of the optical modes at g=0 for m=4, As for
m =3 the two lowest optical modes are the phase and
amplitude modes, respectively.

tron-phonon coupling is small. As the appearance
of the anomalies is due to the small energy gap
they should be essentially independent of the
special form of the band structure and of the elec-
tron-phonon coupling used here.

If the period of the superstructure is not com-
mensurate with the lattice, the phase of the
superstructure is not fixed with respect to the
lattice. Therefore this case is generally treated
by a jellium mode.” In that model the frequency
of the phase mode vanishes due to the transla-
tional invariance so that besides the usual acous-
tical mode there is another mode with w(g =0) =0.
This mode represents long-wavelength variations
of the phase of the superstructure. Similar to the
commensurate case treated here the frequency of
this mode should grow with increasing ¢ much
more steeply than the acoustical mode.

V. ELECTRICAL PROPERTIES
A. Linear-response theory

The electrical properties are calculated by
means of the retarded current-current correla-
tion function

J@)= [5O3 at. (5.1)

From the equation of motion of this function we
obtain with an approximation analogous to Eq.
(4.5)

= » ZJLZL
I(@) ,.Z,,'P'"( ) w+E,, —E,; +i0
k

+Z I, (w)Dyy (g =0, W), (w) , (5.2)
Ly

with
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3 0 Nrp = Npp
By () Via )-w +Ey, ~Ey +10 °

(5.3)

P,,,(k) is the matrix element of the current opera-
tor between states of wave number % in the Ith

and nth band and describes the coupling of the
electrons to an homogeneous external field. Using
the equation for the expectation value of the cur-
rent in a Bloch state ‘

I (w) =,Z:
.k"

3Ey

(kf]|k>=—<k|plk> e s (5.4)
we obtain from Eq. (2.9)
By (k) = D2f fy(6)fu, (k) 2482 (5.5)

The first term in Eq. (5.2) gives the contribution
of the one-electron excitations of a one-dimen-
sional insulator. The second term stems from
the collective excitations of the coupled electron-
phonon system.

The frequency-dependent electrical conductivity
and dielectric constant are given in terms of
J(w) by

olw)=— (J(w)-—2>, €(w)=1+%%i-0'(w),
(5.6)

where n and m are the electron density and mass.

B. Results

In the following we consider first the case of
coupling of the electrons to the acoustical phonons
only. In this case the unit cell of the distorted
state is inversion symmetric (see Sec. III).

In the special case of a 1 -filled-band (m =2)
phase and amplitude motions of the superstruc-
ture are equivalent, as may be seen from Eq.
(3.6). Correspondingly a change of the phase of
the superstructure is only connected to a change
in the amplitude of the CDW and no dipole mo-
ment is generated in the unit cell [Fig. 7(a)]. Con-
sequently none of the collective modes of the
m =2 system couples to an homogeneous external
field and we have in this case a regular one-di-
mensional insulator. It should be emphasized
that this is not an artifact of the special model
used here but is due to the symmetry of the amp-~
litude mode. Due to this symmetry ¥,,(%, 0) is an
even function of ¥ while P, (k) is an odd function of
k. Therefore the functions I,(w) which describe
the coupling of the external field to the amplitude
mode, vanish for arbitrary w.

The remaining sums in Eq. (5.2) can be evaluated
analytically in terms of elliptic integrals and we
obtain (Fig. 8)

@ €9
& D & 9
&=
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(b)

FIG. 7. Deformation of the charge cloud around the
ions which is connected to (a) the amplitude mode for
m=2 and (b) the phase mode for m =3,

(w) = WiWA? 1 ((4W2 _ wz)3)1/2
O = or(@WE = A%)F o? \ w®-AZ ’

(5.7a)
)1 ¥E 8w
€lw w? (AW? - %)
4> w? <4W2-A2 )
[ ( 4W2>n 4W? - * ok
- K@),
k2=1—A2/4W?, (5.o)

where w, is the electronic plasma frequency and

—— e - - o

o 0lw),elw) (arb. units)

0 A " T 2W

FIG. 8. Frequency-dependent conductivity (full line)
and the dielectric constant (dashed line) for m=2.
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K,E, and II are the elliptic integrals of the first,
second, and third kind, respectively.?® These
results are typical of a one-dimensional insula-
tor. The singular behavior for w =A is due to the
divergence of the electronic density of states at
the band edge. The zero of e(w) for A< w< 2W
does not mean a collective excitation of the sys-
tem since the conductivity and therefore the
imaginary part of the dielectric constant have
nonzero values.

In a commensurate system with m # 2 the dis-
placement pattern of the phase mode is connected
to a dipole moment in the unit cell of the dis-
torted system [ Fig. 7(b) for m =3]. Therefore the
phase mode couples to an homogeneous external
field for m+2. This coupling leads to a §-func-
tion peak in the conductivity at the frequency of
the phase mode.?® The amplitude mode does not
generate a dipole moment and therefore does not
couple to the external field.

The electrical properties have been calculated
numerically from Eq. (5.2) for m =3 and m =4
(Fig. 9 for m =3). The coupling of the phase mode
to the external field leads to considerable differ-
ences with the case m =2.

(i) The conductivity shows a §-function maxi-
mum at the frequency of the phase mode. Cor-
respondingly there is a pole in the dielectric
constant. These singularities are due to collec-
tive oscillations of the phase of the CDW and the
superstructure about their ground-state values.

(ii) The singularities for w =A have disappeared,
however conductivity and dielectric constant show
still sharp maxima near the band edge. For w
=A the conductivity vanishes. The disappearance
of the singularities is due to the phase mode:
the excitation of an electron into a state near the

olw),elw) (arb. units)
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FIG. 9. Frequency-dependent conductivity (full line).
and the dielectric constant (dashed line) for m=3. The
arrow at w,, indicates the position of the 6 peak of the
conductivity.

band edge leads to-a rigid recoil of the CDW so
that the phase of the CDW moves in the direction
opposite to that of the excited electron and the
resulting current is strongly reduced. This
mechanism is most effective if the frequency of
the phase mode is very low as in that case the
recoil motion is only very weakly inhibited by
the restoring force acting against displacements
of the phase. Correspondingly the region where
the conductivity is considerably lowered com-
pared to the case m =2 is largest for low W e

The cancellation of the singularities at w =A
can be shown to be exact using the asymptotic
form of the sums in Eqgs. (5.2) and (5.3) for w— A.

Because of the large effective mass of the CDW
(M is the electron number times the electron
mass and goes to infinity in the thermodynamic
limit) the probability for tunneling of the CDW
from one of the degenerate phase positions to the
next is vanishingly small and therefore there is
no dc conductivity in a commensurate CDW sys-
tem.

The amplitude mode is symmetric with respect
to the center of the unit cell in all the above
considered cases. Therefore this mode is Raman
active.

Up to now only the coupling of the electrons to
the acoustical phonons has been considered. In
addition to this coupling we now take into account
the coupling to an intramolecular vibration mode
[Eq. (2.4)]. In the state without a superstructure
this mode is not infrared active, i.e , it does not
lead to any structure in o(w). Let us now assume
that the band is 3 -filled in the metallic state, so
that in the ground state the chain is dimerized.
In this state the dispersionless intramolecular
mode is split into two branches, similar to the
splitting of the acoustical modes (Fig. 3). In the
limit g— 0 one of these new modes corresponds
to an in-phase oscillation of the intramolecular
coordinates of the two molecules of the unit cell
of the dimerized chain. This mode is symmetric
and therefore not infrared active. The g— 0 li-
mit of the second mode represents an antiphase
motion of the intramolecular coordinates of the
two molecules of the unit cell, i.e., one of the
molecules is contracted while the other is ex-
panded. The coupling of the electrons to this
mode leads to a concentration of the electrons
on the contracted molecule, while the electron
density on the expanded molecule is reduced (or
inversely, depending on the sign of the electron—
intramolecular-vibration coupling). Thus this
mode is connected with an oscillating dipole
moment in the unit cell and is therefore infrared
active, i.e., it will lead to a peak in o(w). The
superstructure may be said to “activate” the
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usually infrared-inactive intramolecular modes.
This mechanism has been used by Rice et al.'®
for the determination of the coupling of electrons
to intramolecular vibrations of TCNQ.

In the above considerations it has been neglected
that the electron-intramolecular vibration coupling
will also lead to a static periodic deformation of
the molecules. If this is taken into account the
superstructure is composed of two components:
(i) the relative displacements of the ions (due to
the coupling of the electrons to the acoustic pho-
nons), and (ii) the static displacements of the
intramolecular coordinates (due to the coupling
to the intramolecular vibrations). The resulting
unit cell is no longer inversion symmetric as the
two ions' of the cell have different static internal
deformations. Therefore also the amplitude mode
of the interionic displacements is infrared active,
in contrast to the inversion symmetric cases
treated at the beginning of this section. For
commensurate cases with m #2 the additional
coupling to intramolecular modes has similar
effects.

In the incommensurate case as described by
the jellium model the frequency of the phase mode
vanishes because of the translational invariance.
Therefore the coupling of an external field to the
phase mode leads to metallic electrical properties
at low frequencies (Fréhlich conduetivity)®+7? in
contrast to the commensurate case considered
here.

V1. SUMMARY AND DISCUSSION

We have calculated the energy bands and ground-
state lattice configuration for a one-dimensional
coupled electron-phonon system with a -, §-,
and %-filled band. In these cases the period of
the superstructure is commensurate with the
period of the underlying lattice. Using the band
structures we obtain the phonon dispersion rela-
tions. They show a strong lowering of some op-

. tical branches at g =0 compared to the usual dis-
persions of a linear chain with an m-atomic unit
cell (m =2,3,4). These anomalous phonon bran-
ches represent oscillations of the phase and amp-
litude of the superstructure. The anomalies are
strongest if the electron-phonon coupling is weak
and the electronic energy gap is small. Especially
the frequency of the phase mode is strongly
lowered. This is due to the independence of the
elastic energy of the lattice on the phase of the
superstructure, and the finite frequency of the
phase mode stems thus only from the weak phase
dependence of the electronic part of the ground-
state energy. The frequency W, of the phase
mode decreases with increasing commensurability

index m. The incommensurate case may be re-
garded as the limit m -~ « and therefore in that
case w,, vanishes.

The highly conducting quasi-one-dimensional
compounds like TTF-TCNQ and its derivatives or
KCP show an incommensurate superstructure in
their low-temperature phases (with the recently
discovered exception of TTF-TCNQ at high pres-
sure'®). It is therefore interesting to investigate
whether a system with a band filling which is not
just 1/m (m =2, 3, 4) but very near to such a com-
mensurate value shows an incommensurate super-
structure (with all the electrons below the gap at
T =0) or is in a commensurate phase with some
electrons above the gap or some holes below it.
For a nearly-3-filled band it has been shown that
near the mean-field transition temperature T, the
system is in a commensurate phase if the differ-
ence of the chemical potential p of the metallic
state and the chemical potential u, of an exactly
half-filled band is smaller than k5T .%° For
| = 1ol > 25 Tp the system is in an incommensurate
state. At T'=0 the system is always in the incom-
mensurate state, even if it is in a commensurate
state for Ts T.3! For a nearly-3-filled band
similar results have been obtained.?* All these
calculations use mean-field theory. Taking ac-
count of fluctuation effects it has been shown for
a nearly-}-filled band that in the ground state
there is a commensurate superstructure,® con-
trary to the mean-field results. The stabilization
of the commensurate phase with respect to the in-
commensurate state can be easily understood in
the light of the results of the present paper, as we
have shown that the phase-mode frequency in a
commensurate system is nonvanishing, while it
vanishes in the incommensurate case due to the
translational invariance.” The important point
is that fluctuations of the phase which tend to in-
hibit phase transitions at finite temperature in
one-dimensional systems®* are suppressed by
the finite frequency of the phase mode in the com-
mensurate state. Consequently the commensurate
state is stabilized with respect to the incommen-
surate state, in accord with the results of Ref.
33. It is known that a weak three-dimensional
coupling suppresses the fluctuation effects.?!
Therefore we expect that the incommensurate
state is favored compared to the commensurate
one if a suitable three-dimensional coupling is
taken into account, in agreement with the experi-
mental results.?** However, to our knowledge no
theoretical investigations of the effect of such a
coupling on the relative stability of the commen-
surate and incommensurate states have been
carried out so far.

The electrical properties have been calculated
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by linear-response theory. For m =3 and m =4
the coupling of an homogeneous external field to
the phase mode leads to a §-function peak in the
conductivity at w =W, This is in contrast to the
incommensurate case where the phase mode has
zero frequency resulting in metallic electrical
properties. The phase mode leads further to the
disappearance of the singularities of the electri-
cal properties near the band edge which are
typical for a one-dimensional insulator. This is
due to the recoil of the CDW when a single elec-
tron is excited across the gap.

" In the special case of a :-filled band in the un-
deformed state phase and amplitude of the super-
structure are equivalent. Therefore there is
only one optical-phonon branch with an anomaly
at g=0. Because of the symmetry of the system
this mode does not couple to an homogeneous ex-
ternal field.

If in addition to the coupling to the acoustical
phonons also the coupling to intramolecular vi-
brations is considered, the lower symmetry of the
dimerized ground state leads to a coupling of
these usually infrared-inactive modes to an homo-
geneous external field and therefore to a peak in
the frequency-dependent conductivity at the fre-
quency of this mode, in agreement with the re-
sults of Rice et al.'¢+18

The most widely studied quasi-one-dimen-
sional substances are the conducting compounds

TTF-TCNQ and KCP. The phase and amplitude
modes with low frequency have been found in
both substances by infrared®:® and Raman®®:3% ex-
periments. The results of the present paper
are however not applicable to these systems as
they show an incommensurate superstructure at

low temperature.?+*

A superstructure which is commensurate in the
chain direction has recently been found in TTF-
TCNQ at high pressure.!® Further experimental
investigations of this state should thus provide
data which can be compared with the results pre-
sented here. Especially it would be interesting
to observe the behavior of the low-frequency in-
frared- and Raman-active modes in the commen-
surate state.

Commensurate superstructures are also gen-
erally found in quasi-one-dimensional semicon-
ductors like the alkali-TCNQ salts or TEA-
(TCNQ),. Data on the lattice dynamics of these
substances are not yet available. Measurements
of the frequency-dependent conductivity show
strong peaks at the frequencies of usually infra-
red-inactive intramolecular vibrations of
TCNQ,**'*® in agreement with the arguments given
at the end of Sec. V. These data have been used
by Rice et al.'™"'® to determine the coupling of the
electrons to the intramolecular modes of TCNQ.
It would be interesting to observe the behavior of
the frequency-dependent conductivity in the high-
temperature nondimerized phase of K-TCNQ.'?

In the light of the discussion in Sec. V the coupling
of the intramolecular modes to the electrons
should vanish in this state and consequently there
should be no structure in ¢(w) related to the intra-
molecular modes of the TCNQ molecule.
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