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Elastic properties of amorphous selenium at high pressure
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The elastic constants C' and C' for amorphous Se have been measured as a function of hydrostatic
pressure up to 16 kbar. The isothermal bulk modulus KT is evaluated and found to exhibit a softening effect
with increased pressure. The pressure dependence of KT is interpreted in terms of an interatomic potential
composed of two terms; a Lennard-Jones term, and a phenomenologically introduced attractive term due to
intrachain-interchain interaction. It is shown that this new potential predicts the well-known transition at 130
kbar and that Kr derived from it agrees very well with the data. In the limit of zero pressure it appears that
the Lennard-Jones term alone is sufficient to describe the elastic properties of a-Se.

I. INTRODUCTION

The most important electronic bands responsible
.for the structure of selenium are those which cor-
respond to the electronic configuration 4s'p . How-
ever, the detailed nature of the bands and structure
of amorphous selenium (a-Se) is not as well under-
stood as is crystalline selenium (c-Se). Recently,
some gains into the subject have been advanced by
Shevchik, Cardona, and Tejeda, ' through their
ultraviolet and x-ray photoemission measuremerrts
and by Kramer, Maschke, and X,aube, ' through
their band-structure calculations. The main re-
sults show that the electronic band structure of
a-Se is very similar to that of c-Se, compelling
Kramer, Maschke, and Laube to conclude that
a-Se exhibits the same short-range order as does
c-Se. They view the disordered nature of a-Se as
small statistical variations of bond lengths and an-

, gles about their mean values. If these conclusions
are correct, the nature of the bond forces in a-Se
should be basically the same as in c-Se. In order
to test these observations we measured the bulk
modulus K (inverse compressibility) of a-Se as a
function of hydrostatic pressure. The reason for
choosing to measure g is that g is derivable from
an interatomic potential, thus making it possib1e to
test, from its pressure dependence, any potential
form proposed by theory.

Extensive information about bond forces was ob-
tained from studies of elastic and optical proper-
ties of trigonal Se and Te as a function of pres-
sure. ' ' The main results show the elastic prop-
erties C33 Cyy and that C» increases more rapid-
ly with pressure than does C». This is expected
from what is known about the structure and nature
of interbond forces in c-Se, as discussed below.

The crystal structure' of trigonal Se consists of
helical chains which spiral around axes parallel to
the c axis. The helices are arranged in a hexag-
onal array. The fact that C33»C]g indicates that

atoms in the chains are strongly bound to each
other, whereas the interaction between chains is
much weaker, and is believed to be of Van der
%aals character. " The application of hydrostatic
pressure results in denser packing of the chains
and relatively little deformation in the stiff chains.
It is well known that with increased pressure Se
eventually is transformed to the polonium structure
at a pressure of 130 kbar xi, x2 This is jn accord
with the nature of the bonding of the VI group of the
Perkodic Table, as described by Martin, Lucovsky,
and Helliwell, ' Yon Hippel, e Grosse, "and Gspan,
Drope, and Qrosse. " They show that progression
in that group from sulfur toward polonium as well
as the application of hydrostatic pressure promotes
transfer of electrons from the intrachain bonding
orbitals to bonding states between chains, result-
ing in eventual equalization of charges between
these two types of bonds in the polonium structure.
This effect was recently demonstrated theoretically
by Joannopoulos, SchMter, and Cohen, "who cal-
culated the band structure of Se and Te and have
shown how the interchain distance can affect the
relative charge distribution between interchain
and intrachain bonds. The effect of pressure to
transfer charge from intrachain to interchain or-
bitals causes the interchain force constant to stif-
fen rapidly at the expense of the intrachain force
constant. As mentioned above, this is manifested
by a faster rate of increase with pressure of the
elastic constant Cyy ln comparison with C33.

The effect of pressure on the elastic properties
of a-Se was measured by several authors, ""but
their studies were limited to the 1-atm range.
Bridgman" and Singh and Kennedy'0 have measured
the compression of a-Se up to 50 kbar, but under
nonhydrostatic pressure conditions. Also, their
resolution was not fine enough to allow a detailed
study of the most compressible range between 0
and 10 kbar. %eir's" measurements of compres-
sion up to 10 kbar were under hydrostatic condi-
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tions, but his results appear to be in error.
Through the use of a liquid cell and ultrasonic
techniques, we were able to study directly and with
high resolution the elastic properties of a-Se as a
function of hydrostatic pressure up to 16 kbar. The
experimental procedures are discussed in Sec. II.
Results, discussion, and conclusion follow in Sec.
III, IV, and V, respectively.

II. EXPERIMENT

Selenium-glass samples were prepared by melt-
ing selenium (99.99% purity from Ventron, Alfa
Products) under vacuum in Pyrex tubes. The tube
was heated to 400-600'C for 2-5 h, while contin-
uously rotated to ensure homogeneity. The glass
was formed by quenching the tube in air. For the
ultrasonic experiments, samples of 6.3 mm diam-
eter and 5.0 mm length were cut and their two bas-
al surfaces were polished and made parallel within
0.0001 in. The density of the samples was deter-
mined by the Archimedes method with a micro-
balance. Toluene was used as a liquid, in order to
prevent air bubbles from adhering to the sample.
The density was 4.2'78 g/cm'.

The sound velocity was measured using the Mc-
Skimin pulse superposition technique, recently
automated by I itov." All measurements were car-
ried out with 10-MHz X-cut or Y-cut 6.3-mm-d1am
quartz transducers from Valpey. The transducers
were bonded to the samples with a glycerine-phtha-
licanhydride mixture glue. The glue was prepared
by mixing 1M glycerine and 1M phlthalicanhydride
which was then heated to 130 C until it appeared
to be completely transparent.

The pressure dependence of the sound velocities
was measured with an end-loaded piston cylinder
apparatus described by Hargarth, Getting, and
Kennedy. " The measurements were carried out in
a liquid cell configuration using Bridgman unsup-
ported area seals, as shown in Fig. 1. A liqui. d
mixture of 1 pentane-1 isopentane was chosen as
a pressure transmitting medium, since it did not
dissolve the glycerine-phthalicanhydride glue. The
liquid mixture is known to freeze at pressures of
32 kbar, which is above the pressure range used in
the present work. The peal for the lead wires was
a combination of tooth cement (Kerr "Smile" ),
epoxy (Epon 815) and an elastometer coating
(Scotch-Clad 776). With this technique several re-
liable runs could be carried out without any leaks.

Pressure changes were measured with a 50-0
manganin wire gauge wrapped around the sample
holder. The gauge resistance was measured to
high precision (1:10 ) with a four-wire-leads tech-
nique using MN K-3 potentiometer. The applied
pressure was determined from the hydraulic ram
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FIG. 1. High-pressure fluid cell.

pressure and the ratio of areas of the ram and the
high-pressure piston. The hydraulic pressure was
read on the Heise gauge, which has a resolution of
better than 0.1%. This corresponds to a resolution
of the sample pressure of 0.037 kbar. The man-
ganin gauge was calibrated against the Heise gauge.
However, due to piston friction the manganin val-
ues had to be averaged between compression and
decompression cycles. The total uncertainty in
the sample pressure was estimated to be +0.1 kbar.
The pulse repetition frequency was automatically
monitored as the pressure was changed.

III, RESULTS

The elastic constants from which the bulk modu-
lus is calculated for a-Se are C' and C', where l
is longitudinal waves and I, is transverse waves.
For isotropic materials the bulk modulus K is

The pressure dependence of the adiabatic elastic
constants C, is governed by the expression

pv' p ff
Cs =Cps 2

= Cps c
pp p pp Jp p

(2)

p =pps )

v = 2f1 = 2fl,/s,
(3)

(4)

where p is the density, I, is the acoustical path
length, and f is the pulse repetition rate. The zero
subscripts in Eq. (2) refer to 1-bar values of the
various quantities; the nonsubscripted quantities
represent the values at finite pressure. The varia-
tions in p/p, and l/l, with pressure were taken in-
to account following Cook's method. ' Define s
=1,/f, then
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and, from (2),

C, =C„(f/fo)'s .
Substituting Eq. (5) into Eq. (1) gives

Cog g +Cog t

(5)
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O

200-
(3

In Eq. (6), f', f', C,'„and C,', are measurable
quantities. However, s, which is the measure of
the sample's compression, cannot be measured
directly, but can be evaluated in terms of K~,
where K~ is isothermal compressibility. This is
done by using the relationship between K, and K~,
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FIG. 3. Elastic constant C' of a-Se vs p.

where n is the coefficient of expansion, y is the
GrQneisen constant, T is temperature, and 4
= uyT. At room temperature and 1-bar pressure
the value of 4 for a-Se is 4 =0.033. Within our
experimental range and uncertainty, 4 was as-
sumed to be independent of pressure. Substituting
Eq. ('I) into (6) yields the desired relationship

(8b)

For isotropic solids it is easily shown that

dp
T 3 ds

Combining Eqs. (8) and (9) we get, after integration,

' dps =1+—
3 o K

(10)

l32

I.28-

1.24-

Kr 1 nCo ft vCtggs=Ks(8a)
where

Since K is measureable quantity, s can now be
evaluated and substituted in Eq. (8) to give Kr.

Figure 2 shows the reduced pressure dependence
of f' and f' uncorrected for variations in path
length I and density p. Using Eqs. (5) and (10) the
longitudinal and shear-wave elastic constants C'
and C' were calculated, and the results are shown
in Figs. 3 and 4. The bulk modulus K~ was calcu-
lated using Eqs. (8) and (10), and the results are
shown in Fig. 5 and numercal. values in Table I.
Since the pressure dependence of K~ essentially
embodies all the elastic properties, we will con-
centrate our discussion on it. It is noted in Fig. 5
that the initial slope K, =sK sp), =8.0 is relatively
high compared to many solids, and decreases rap-
idly to a value below 4.0 around 10 kbar. The 1-
bar value of K~, = 91 is also relatively low, indi-
cating that a-Se is a very compressible substance.
Our 1-bar K~ and K~ values are in excellent agree-
ment with several previous works, as shown in
Table II. Since compressional data by other au-
thors is mostly available in term of compression
v= 7/V„we can conveniently compare our results
by plotting v =1/s' vs pressure The re.sults are
shown in Fig. 6, and numerical values in Table I.
For comparison with other works, we have super-
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FIG. 2. Reduced-pulse repetition rate f/f 0 vs p for
longitudinal waves (open circles) and transverse waves
(filled circles).
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FIG. 4. Elastic constant C' of a-Se vs p.
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TABLE I. Bulk modulus and volume compression of
amorphous selenium as a function of pressure; v(p)
=1ls'.

TABLE II. Kzo and &'zo for amorphous selenium.

p (kbar) Z(p)

91.07
98.11

104.02
109.1
114.0

v(p)

1.0000
0.9895
0.9797
0.9706
0.9619

91.1
91.4
91.6
92.9
67.8
87.3
91.07

8.5
3.2
7.4
V.OV

8.01

Technique

ultrasonic
ultrasonic
ultrasonic
static
static
static
ultrasonic

Ref.

17
18
16
19
21
20

This work

118.7
123.7
128.3
132.9
137.4

0.9537
0.9459
0.9384
0.9312
P.9243

1p
11
12
13
14

141.6
145.9
149.8
153.5
157.1

0.9177
0.9114
0.9053
0.8993
0.8935

15
16

160.9
164.5

0.8879
0.8825

imposed the results of Bridgman, "Singh and Ken-
nedy, "and Weir." It is noted that our results
basically follow Bridgman and Singh and Kennedy up
to 12 kbar but remain slightly lower above that
pressure. Weir's V/V, values are much smaller
than those reported in the present work and those
of Bridgman and Singh, and appear to be in error.
Regression analyses for both v vs p and K~ vs p
were carried out up to the fifth power in the poly-
nomial, and the various coefficients are presented
in Table III.

IV. DISCUSSION

The analysis of the pressure dependence of the
bulk modulus K~ in terms of an interatomic poten-
tial will now be discussed. It has long been recog-
nized by Von Hippel' and Vedam, Miller, and

Boy,"that in amorphous as well as trigonal Se,
bonding forces between chains and rings are mostly
of the Van der Waals type. Their conclusions were
based on the fact that interchain distances of 3.5-
3.8 A were close to the Va.n der %'aals diameter
for Se, which is 4.00 A. However, with increased
pressure, the promotion of charge from the intra-
chain orbitals toward interchain orbitals will in-
crease the attractive interchain forces, thus low-
ering the total energy. This effect appears to be a
very important one, particularly at high pressures
where, as we shall later show, it is responsible
for destabilizing the structure, leading to a phase
transformation. Hence it must be included in our
analysis for the correct description of K. Since
the major effect of pressure is to decrease the in-
terchain distance B,"we have assumed in analyz-
ing the data, that the total potential energy P is
simply a function of R, excluding any dependence
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FIG. 5. Bulk modulus Xz of a-Se vs P. FIG. 6. Compression of a-Se vs P.
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TABLE GI. Coefficients of fifth-degree polynomials
for v and E as a function of pressure p. Data used from
Table I. 280—

240-

/
/

/
/

/

520 l I 1 I I I I I I I I

Coefficient K 200

a0
a~

82

a3
a4
a5

0.999 97
-0.01083

0.402 91 x 10 3

0.21201 x 104
0.874 9 x 10-6

-0.169 x 10 7

91.298
7.392 2

-0.718 2
0.9518 x 10 i

0.61177x 10 2

0.143 10 x 10
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on the intrachain distance r. However, since we
are dealing here with an amorphous structure, in
which there is a statistical fluctuation of R around
8 and since hydrostatic pressure basically senses
the average distance R, we will further assume
that P depends only on R.

We first demonstrate that the Van der 'Waalspp-
tential

P(R) =A/R" —B/R",
where A and B are constants, m =12 and n =6, is
applicable only at zero pressure range. It is easily
shown that the bulk modulus Rand its firs't pres
sure derivative K' as derived from Eq. (11), are

m+3 p
3~oRo 3 Po

„+3 p
&~+~/3-

3 Po
(12)

ICo=ma(m -n),
K,X,'= —,'ma[(m +3)' —(n+3)'],

w'here

(14)

(15)

1 A. 1 Q(R )
9VO R, 9V, 1 —(m/n)R", (18)

Using Eqs. (14) and (15) to solve for A,' we get

K,'=[(m+3)'- (n+3)']/3(m -n) .

where p is the density. A plot of Eq. (12) is shown
in Fig. 7, where it is seen to deviate considerably
from the data above zero-pressure range. None-
theless, at zero-pressure range the Van der Waals
potential describes a-Se exactly, as can be seen
from the following analysis of Eqs. (12) and (13).
In the limit of p- p„we get

FIG. 7. Bulk modulus K& of a-Se vs p/p0. Broken
curve is due to Van der Waals potential only, Eq. (13).
Solid curve is due to total potential, Eq. (19). Arrow
iridicates the density at which the phase transformation
occurs.

P(R) =A/R B/R" -Ce "- (17)

where C is a constant. A very important feature
of the potential Q(R) described by Eq. (17) is that
it leads to a phase transformation with decreasing
R (high pressures), see Fig. 8.

Assuming. that Eq. (17) characterizes the major
interatomic forces, we show below that the phase

We see that Ko' depends only on the powers m and
n and therefore can be used to test the validity of
the Van der Waals potential at zero pressure. Let-
ting m =12, n =6, we get Ko'=8.0, which is precise-
ly what was experimentally found. When the value
K, = 91.0 is substituted into Eq. (14), we find a
=1.264. It is seen, from Eq. (18) that a is related
to the depth of the potential Q at the equilibrium
separation Ro.

At higher pressures however, the Van der Waals
potential, as expected, leads to a stiffer structure
than is actually observed (see Fig. 7). Therefore,
an attractive potential term must be included to
take care of the charge redistribution effect from
the intrachain to the interchain orbitals. The rate
by which this process occurs with interchain dis-
tances is an extremely complicated quantum mech-
anical problem, and to our knowledge, has not pre-
viously been calculated. Martin, Fjeldy, and Rich-
ter' have pointed out that the nonbinding orbitals
overlapping with antibonding states at different
chains are the cause for weakening the intrachain
bonds. Hence we have decided to introduce this
term phenomenologically as being proportional to
exp(-xR), under the reasonable assumption that
the wave function spatial dependence along the lone
pair direction is asymptotically exponential. Add-
ing this term to Eq. (11), the total potential takes
the form
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Kr =a[180x' —54x'+(6 —12 B)
'x~'

x (2x l~ +x)e"'t~ I" ~] (18)

where a =A./9V„x is the reduced density, and C
was eliminated by the equilibrium conditions. A
phase-transformation boundary condition is im-
posed on Eq. (18) by requiring that the compres-
sibility p = K„ is infinite at the transition density
x,. Using the McCann and Cartz" x-ray data, we
find x, =1.55. These additional constraints on Eq.
(18) leave it with only a normalizing constant a and
the fitting parameter A, . Constant B is now related
to x, and A, through

transformation which it predicts corresponds to
the well known transformation in a-Se at 130 kbar.
This is done by analyzing the bulk modulus K~ de-
rived from Eq. (17). Again, it is easy to show that
K~ is given by

FIG. 9. Bulk modulus Xz of a-Se vs p/po. Curve
represents Eq. (19).

cently interpreted large pressure effects in the re-
flecting spectrum in Se by Kastner and Farberg"
in the low-pressure range as, being precursors of
the transition of Se to a metallic nonmolecular
structure. The McCann and Cartz" x-ray obser-
vations of the appearance of the first diffraction
line in a-Se at 60 kbar is also an indication of an
early sign of the transition at low pressures. Cur-
rent electrical conductivity (a) measurements by
Gupta and Ruoff" also show that the transition be-
gins at a pressure as low as 80 kbar, as indicated
by the sudden drop of o at that pressure. Further
evidence for the anomalous pressure dependence
of K comes from Bridgman's" compression data,

I.00

B = [9x', —F(x„A,)]/2[15x,' —F(x„h.)],
where

F(x„A)=x' ~'(2x,'~'+ a) exp[a(l —1/x'~')]

(19a)

(19b)

Equation (18) for K was fitted to our data and the
results are shown in Figs. 7 and 9. The parame-
ters which gave the best fit are a =4.019 and A.

=21.90; B derived from Eqs. (19) is 0.6211. It is
seen that the fit is excellent throughout the pres-
sure range. Furthermore, it is noted that g char-
acterizes the major elastic properties of a-Se at
low as well as at high-pressure ranges. At the low
pressure range of 1 kbar and up, & starts to devi-
ate from a purely Lennard-Jones K dependence
toward a softer structure, and shows a strong in-
clination for a phase transformation at about 60
kbar. Wendel, Martin, and Chadi" have also re-

)0
.S5

.80

.M
0

I I I

20 30 40

PRESSURE (kbar)

FIG. 10. Bridgman's plot of e vs P for a-Se. Arrow
indicates inflection point.
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see Fig. 10. He reports that around' 34 kbar a very
distinct inflection point in V/y', versus pressure is
observed. Since K is inversely proportional to s jp/

sp, an inflection point 8'e/8'p =0 is translated in
the g-versus-pressure plot as being the maximum
in K. Equation (l8} predicts such a maximum but
at a much higher pressure, estimated to be around
70-80 kbar. Singh and Kennedy" did not find this
point below M kbar. We believe, however, that
with today's advanced high-pressure techniques,
this maximum could be firmly established. It
should be emphasized, in conclusion, that the po-
tential P(R}, as described by Eq. (17}, is only a
reasonable approximation of the interacting forces,
and in view of the available data seems to work
well in the low-ressure range. A more exact spat-
ial dependence in the high-pressure range will have
to be worked out through quantum mechanics and
verified when additional data above 50 kbar are
available.

V. CONCLUSIONS

We have measured the bulk modulus K~ of amor-
phous selenium as a function of hydrostatic pres-
sure, up to 16 kbar. We have shown that the data
can be interpreted in terms of an interatomic po-
tential, which consists of a I ennard-Jones term
and an attractive term due to intrachain-inter chain
interaction. The new potential was found to char-
acterize all the essential isothermal elastic prop-
erties of a-Se at low- as well as high-pressure
ranges, and predicts the phase transformation at
130 kbar.
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