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We present a detailed theory of resonance states in HgTe due to charged acceptor impurities. This problem
has previously been studied by Gel'mont and Dyakonov, butonthe rather unrealistic assumptions of an
unscreened Coulomb potential and zero electron mass. In a zero-gap (ZG) semiconductor, the screening is
important and sensitive to the band parameters. Wit/in the effective-mass formahsm, we have obtained a
variational solution for the lowest-order radial components in the partial-wave expansion of the wave

function. Two variational methods for the phase shift pre used and improved upon —the Kohn method and the
Harris method, which is an interesting modification of the former and is more appropriate for the study of
resonances. A simple Thomas-Fermi (TF) potential and the full random-phase approximation screened
Coulomb potential have been used. We find that the resonance energy E„ is very sensitive to screening,
while the relative width I /Ez is only weakly dependent upon it. The interband polarization, .which is known

to be substantial in a ZG semiconductor, dramatically reduces the resonance energy. Interestingly, within

the reported range of band parameters, either the 0.7-meV or the 2.2-meV resonance can be reproduced,
corresponding respectively to hole. masses of 0.35mo or O.S8mo. We also find that the resonance energy
varies by at most 10% with the Fermi level Ez in the range of interest, Ez & Ez.

I. INTRODUCTION

Due to the absence of a gap between the conduc-
tion and the valence bands the impurity levels
in zero-gap (ZG) semiconductors are degenerate
with the continuum. If the interaction between a
level and the continuum is strong, the impurity
state will not be well defined. But if it is weak a
quasilocalized or resonance state can exist, i.e.,
a bound state with a finite lifetime 7, or equi-
valently by the uncertainty principle, a finite
energy width I'=S/r. Such a state will drama-
ticaj.ly perturb the electrical and optical pro-
perties of the system. For example, in optical-
absorption measurements an extra peak will be
observed. And whenever the Fermi level will be
close to the impurity state the resonant scat-
tering of the carriers off the impurities will
produce a sharp decrease in the conductivity.
In HgTe, a well-known ZG semiconductor, three
acceptor resonance states are experimentally
known —A, at 0.7 meV, A, at 2.2 meV, and A,
at 9 meV. ' Ap BIld Ag have been observed in both
the transport and the optical measurements but 4,
has so far been observed only in transport mea-
surements. The first one has been attributed to
charged impurities such as Cu while the other two
are believed to be due to stoichiometric defects.
No donor resonance states are known nor are, in
fact, expected to be seen. In ZG semiconductors
of the type HgTe, the mass difference between the
valence and the conduction bands is large (m~J
m*, ~ 10). The correspondingly low density of states
in the conduction band will be less effective in
the broadening of the acceptor level whereas the

donor levels due to the large density of states in
the valence band will be highly damped.

Of the different acceptor resonances perhaps
the most interesting one is the charged impurity
resonance because it is this state which depends
most markedly on the special features of the
ZG semiconductor. It may be remarked here
that the absence of a gap in semiconductors such
as Hg Te is not due to the accidental overlap of
the conduction and the valence bands as in semi-
metals but is symmetry induced. The strong
relativistic effects which exist in the heavy com-
pounds such as Hg Te produce an unusual ordering
of the bands. ' Contrary to ordinary semicon-
ductors of the same crystal structure, the I',
levels (P,&,) lie above the I', level (S,&,)—the
so-called inverted band structure (see Fig. 1).
Both the electron and hole states are therefore
of the same symmetry, i.e. , of p states with
effective spin J= —, but different helicities. The
strong coupling between the conduction and valence
bands which follows, will affect all phenomena
extending over several primitive cells. It will,
for instance, introduce an interesting contribution
to the screening of a charged impurity usually
not present in ordinary semiconductors. The
effects of this screening on the charged-impurity
resonance states will be important and should
be considered in any realistic theoretical model.

We present here the first detailed study of these
resonances. Our model consists of the one-par-
ticle effective-mass Hamiltonian incorporating
the many-body effects in the dielectric function.
The radial equations for the ground-state re-
sonance were solved using a method not com-
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a realistic approximation, it enables a simple study
of vacancy-type defects and yields some insight
into the nature and the properties of the resonances
they produce.

For a potential extending over several lattice
sites a more general formalism is necessary.
The most satisfactory model is the effective-mass
Hamiltonian4 where the kinematics of the electrons
and holes are r epr esented by the k .

p perturba-
tion expansion about the I' point. In the spherical
approximation, i.e. , if the warping of the bands
is neglected, this Hamiltonian can be written

H = (y,/2mo) [(1+~5 p, )p' —p, (p 7)']+ V(r),

FIG. 1. Band structure at the center of the Brillouin
zone of (a) zero-gap semiconductors of the type HgTe
and of (b) ordinary semiconductors of the diamond and
zinc-blende structure (e.g. , CdTe).

monly used in this type of problems —the vari-
ational principle for the phase shift. The main
result of our study is that either 4, or A, may
be the charged-impurity resonance depending
upon whether the actual hole mass is closer to
0.35mo or 0.58mo.

In Sec. II, we review the different theoretical
works on resonances in ZG semiconductors, and
briefly introduce our model. Section III describes
the variational method we have used and improved
upon. Section IV presents our results for a
phenomenological potential and the HPA screened
potential. We end with a discussion of our work
and a comparison with reported experimental re-
sults.

II. THEORETICAL MODELS

Several theoretical studies have been made on
the impurity states in ZG semiconductors. Liu
and Brust' proposed a two-band model that
treats the degeneracy as accidental. In this case
a smooth" potential will not. couple the bands be-
cause of the distinct symmetries of their wave
functions and only the central part of the potential
will be responsible for the interaction of the
localized levels with the continuum. States ex-
tending over several lattice sites will remain
sharp. Mauger and FriedeP have followed up this
model in the case of a potential entirely localized
on the site of the impurity or defect. In our view,
the model does not take into account the proper
symmetry of the problem. In HgTe the degeneracy
is, as discussed in the Introduction, not accidental
but symmetry induced. The Liu-Brust model is
a limiting case where one assumes that the inter-
action does not affect the structure of the wave-
function away from the central cell. Though not

where m, is the electron mass, p the momentum
operator, and S is the 4 x 4 angular-momentum
matrix for a state J=2. y, and p. are band param-
eters. In all subsequent expressions we shall use
for simplicity effective Hydberg units which make
k y,/2m, =,1. The units of energy and length have
been chosen to be, respectively,

R"'= (e4m/28')(I/Py )

at& = (I /e'mo)goy, ,

(2.1a)

(2.1b)

vrhere q, is the lattice dielectric constant. The
Hamiltonian then reduces to

H=(1+~p, )k'-p. (k J)'+ V(r). (2.2)

m*, = I/y~(1+ p. ), m*„= -1/y~(1 —p, ),
8 = m+/m+

=(~ -I)/(~+ I)-

(2.4)

Bastard and Nozieres' have solved this Hamil-
tonian for a restricted sort of potential, namely,
a separable potential in momentum space. (Though
elegant, their calculation is limited by the fact
that it is not clear to what type of defect their
model is applicable. ) Gel'mont and Dyakonov' have
considered the same Hamiltonian for a Coulomb
potential. When V(r) is spherically symmetric
Eq. (2.2) can be considerably simplified. The !

"effective total angular momentum" F= L+J,
where L= (1/k)(r x p) now comm'utes with Eq. (2.2).

(Note that in these units the Hamiltonian contains
only one physical parameter, namely p. ) In the
absence of a perturbing potential V, the eigen-
values of H are given by the relation

E,(k) = (1 +p)k' [(+), electrons; (-), holes].

(2.3)

p. should be greater than one so as to represent
both the conduction and the valence bands. The
electron mass ns,* and the hole mass m~ are given
by
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Any solution g of (2.2) can therefore be written
as a linear combination of eigenstates of F where
each energy level will be degenerate with respect
to the projection M of F along a fixed direction

FN~FN&
F,N

/~~ =JR~,(x) ~l, J'= 2, F,M),
I

E--, &E &E+-2,.3 30

the l, J= ,',F,M-), simultaneous eigenstates of
F, L, and J, are determined by the rules of
angular-momentum addition;

(2.5)

~
I,J = -,', F,M) = (2F+ I)'~g (-1)'"-'"

I

-M f
(2 6)

~l, m) are the familiar spherical harmonics I',„
(e, g) and

(q m -M)
M'e the Wigner 3j symbols. Inserting the above
expression for gz„ into Eq. (2.2) and using the or-
thogonality properties of the angular part of the
wave function, radial equations have been de-
rived for these eigenstates. ' ' The lowest quasi-
localized state is expected to be the solution having
a dominant zero-angular-momentum radial com-
ponent. This state will be an F = —,

' state (S,&,) of
the form

$,(2 ~=[Ma(r)/r]~l =O, Z= 2, F = '„M)—
+ [u,(~)/~]

~

I = 2, Z=-'„F =-,', M), (2.V)

where N, and u» coupled by symmetry, are solu-
tions of the system of Eqs. (2.8).

+ E- V(r)

d' 3 d 3 cP 6———+ —' ——+z —v(r) )GH t' Nfl' g 4f t'

x ' =0. 2 8
Q2

Qel'mont and Dyakonov' have argued that in the
limit m*, -0 with m*„ finite, the study of the ac-
ceptor resonances of Eq. (2.8) reduces to a bound-
state problem and that for a Coulomb potential
the resonance energy is proportional to the valence-
band mass nz~. It is to be noted that the above

r/z„a»'. (2.10)

The —, factor is not surprising for it indicates
that in the leading order I'/Es is proportional to
the relative density of continuum states in the con-
duction band. Since P «1 in ZG semiconductors,
I"/E„will most likely be very small and sharp
acceptor resonances are expected. Similarly,
for donor levels the relative width would be I'/E„
~1/6'@» 1 and the levels are entirely delocalized.

Our model consists of the effective-mass Hamil-
tonian (2.2) but a highlight of our calculation is the
use of the full HPA screened-Coulomb potential.
As already stated the screening effects in a ZG
semiconductor are important. A strong interband
polarization between the two I', bands is present
due to the symmetry-induced degeneracy, and
unlike iri ordinary semiconductors, the absence of
an ionization energy for the impurity states makes
the intraband polarization due to the conduction
band significant (see Sec. IVB). In a spherical
approximation of the electron and hole kinematics
these terms in the screening function are also
spherical. The partial-wave expansion of the
Hamiltonian (2.2) is therefore still possible and
the ground-state resonance will be -a solution of
Eq. (2.8). The set of equations (2.8) with a fully
scr eened V(x) is analytically intractable. Solutions
with even the simplest Coulomb potential are not
known. The problem, however, lends itself well
to a scattering approach. We have looked for
the resonance scattering of electron states, gen-
eralizing the variational principle for the phase
shift. In our approach no assumption needs to be
made on the size of 8 and a realistic potential can
be considered. The method is briefly explained
in Sec. III.

HI. VARIATIGNAI. METHOD

Since resonance is a special case of scattering
phenomenon, we have applied a.phase-shift
analysis to solve Eqs. (2.8). As is well known in

limit cannot be taken in (2.8) since it would cor-
respond to y, —ce or 8',~ -0. Gel'mont and Dyakonov
have derived a system of equations for this case.
Solving numerically their complex differential
equations they find that for a Coulomb potential

Es = + (m~/m, c,') Hy or 15.11(m~/m, ) meV

(2.9)

(if e, =20 as in HgTe). They have also obtained
an expression for the relative width I'/E„which
has the same dependence on g as that derived by
Bastard and Nozieres for a seemingly different
potential. In both cases
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the case of a resonance, the phase shift rapidly
passes and increases through ,'v—(modulo e), when
plotted as a function of energy or momeritum.
With the complicated pair of Eqs. (2.8) an analyt-
ical calculation of the phase shift looks extremely
difficult. One can of course integrate Eqs. (2.8)
completely numerically and then obtain the phase
shift. But we feel that such an involved numerical
analysis is costly and will not properly display the
physical subtleties thai are characteristic of a
resonance. Instead we have applied variational
methods to calculate the phase shift. We refer
the reader to some standard sources" for a de-
tailed account of variational methods in scattering
theory. In the process of our calculation we have
felt that we have sufficiently' explored the algorithm
of the two variational methods we have used and

improved upon and that our findings may be of some
general interest. We have therefore decided to
publish these specific results separately. "

In this section we shall briefly outline the
essential features of these methods —the Kohn
method" and the Harris method" —which is an
interesting modification of the former. The
variational principle in scattering can be for-
mulated in analogy with the bound-state problem.
There is however an important difference, namely,
that the wave functions now do not decay asymp-
totically but behave as

(3.1a)

H —E being the radial Hamiltonian in (2.8). The
trial functions for the u's are a linear combination
of a localized Q and a part that goes asymptotically
to (3.1b):

0 + $+pC

[(+) for electrons, (-) for holes], (3.5)

(a,.
) g(a,.)(r)'

8 = sinkr,

C.= (1 —e "i')coskx

to make

C(0) =0 and C-coskx,

(Our I" is actually half of the width taken in usual
scattering analysis. ) For a well-defined resonance
I' should be «F.„. The variational method is based
on the property that Eg. (2.8) with the boundary
conditions (3.1) can be obtained from 58=0, where

J= &u„u2 I
H -E luo, u, &

—2(1+p. )kx (3.4)

with

(
Qo 1

—(sinks+ acosk~)
Q2 +1

(3.1b)

The n,.'s, P, 's, and the X are the linear variational
parameters. We have however treated a effectively
as a variational parameter.

A. Kohn method

[(+) for electrons, (-) for holes], where the
free-particle kinematics are given by (2.2) or (2.'8).
The wave functions u's are now characterized by
the phase shift or more conveniently X=tan5. 5
in our problem is the 1=0 phase shift and part of the
l = 2 phase shift in the partial-wave expansion of
g in Eq. (2.5). A resonance state obtains with
energy E= E~ when 6 increases rapidly through

and consequently the scattering cross section

In this method J is made stationary with re-
spect to all the o, 's, 9,.'s, and X.

gJ BJ
8-,- 88,-

'
leads to a 2N 8 2N matrix equation.
2g

g (&X, I~-EIX,& &,I~-EIX,&),

o.= —,g (2l+1) sin'5,
k

(3.2)
(3.6)

obtains a maximum giving rise to enhanced ob-
servable quantities such as resistivity. The state
has a quasilocalized character and has of course
a finite lifetime and hence a width I". I" is given
by the slope of the 5 vs k curve at the resonance
point

N being the size of the basis set. We have here
defined, for reasons of symmetry,

0
X2g-y

=
1g X2g

= 1;
0

~2&-i = &c

and S+ A.C is now the spinor
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[X]„,„,= X„,„,—[1/2(l + p, )k]l(X„,~) . (3.7)

The Kohn method suffers from the appearance of
certain spurious singularities. We refer to
Truhlar et a/. ' for an extensive discussion of these
singularities and the ways to deal with them.
These have been discussed also in our paper on the
variational methods. " The essential step is to
scan for a fixed k, a few values of a in order to
keep away from these singularities and to have
a plot of 5 vs a. The plot consists of an array
of plateaus, the one with 5= 0 is chosen as the
optimum plateau. The process is repeated for
several values of k and a curve of ae(k) is chosen
for the stationary a. This process is expected
to make J reasonably stationary with respect to
a, i.e. , 8J/sa = 0. With this ae (k) then fed back
in Q, 5(k) is calculated, and the resonance energy
and the width are obtained from the plot 5 vs k.

B. Harris method

There is a, subtle divergence difficulty (in addition
to the spurious singularities mentioned above)
in the Kohn method. This is related to the fact
that E can come close to one of the eigenvalues
E„ofH in the space of g, , i.e., the localized state.
The matrix inversion in Eq. (3.6) is then not
possible. The existence of these E„'s always
limit the Kohn method and conscious efforts have
to be taken to avoid them. However as noted by
Harris, if one works directly at E=E„, which
amounts to each side of Eq. (3.6) being separately
equal to zero, the Harris phase shift XH „can
be obtained immediately

with

(3.8)

It can be shown that the spurious singularities are
avoided in this procedure and also that X„„,is
the limiting value of. Xx,~ (without the second-order
correction) at E=E„.

In the Harris method, first the E„'s are cal-
culated from

(II —E~X)c~ = 0, (3 9)

(S+ XC)

(+1)

Next X„,~ is obtained from the condition SJ'/SX
= 0. The "inner integral" I= (u„u, ~II -E~u„u, &

is not put equal to zero (I=0 for an exact solution).
As a result XK,~ can be corrected to the second-
order [X]„,~:

where

X gg=(X& IX)& g

and then for each a, 2N values of the phase shift,
i.e. , of A. are obtained —corresponding to dif-
ferent E~'s. Next, values of X are calculated for
a reasonable range of a thereby getting 2X curves
for X vs k. The range of a in our calculation has
been taken as akc(0. 1 to 0.7) for N up to 12. As
N is increased a number of curves for A, vs k
converge into one and becomes stable for N= S.
This curve then gives the resonance energy E„" „,
and the width 1„„,. We have argued elsewhere"
how in this process J is made stationary with
respect to a in the Harris method. We have also
shown that this method is simpler and more re-
liable than the Kohn method for calculating re-
sonance energies and widths: the algorithm is
simple; the difficulties with the singularities are
avoided and no free-free integrals need to be
calculated, i.e. , those involving only the asymp-
totic parts of the wave functions (these integrals
are often the most difficult to evaluate).

With a Thomas-Fermi potential we have cal-
culated the resonances in both the methods. The
results are nearly the same for K=10. With the
HPA screening, however, the Kohn method be-
comes computationally very involved. Guided by
the accuracy of the Harris method in the previous
case, we have calculated the resonances now only
in the Harris method. All these results are pre-
sented in Sec. IV.

IV. RESULTS

This section is divided in two parts. Section IVA
deals with the resonances of a Thomas-Fermi
(TF) potential, V»(r) = (2/r) e "~'. Though this
potential does not correspond to any reasonable
model of screening for a ZG semiconductor since
it would imply that e(q) = s,(1+b '/q'), it is a very
instructive phenomenological potential. By
varying 5 from 0 to ~ some feeling can be developed
for the dependence of the resonance with respect
to the screening length of the Coulombic potential.
This enables a better understanding of the re-
sults obtained with a more realistic model for the
screening, e.g. , the random-phase approximation
(RPA) described in Sec. IV B. Also presented in
Sec. IVA are the resonance energies and their
widths for a wide range of values of the band
parameters and of the Fermi momentum k~.

It should be mentioned that a reliable theoretical
estimate of the resonance energy is hampered by
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the uncertainty which exists in the values of the
band parameters. The electron effective mass
has been accurately estimated at about 0.029m,
but the hole mass, which can be measured directly
only with difficulty, is not well known. Values
varying from 0.25m, to 0.7m, have been given.
One can divide these estimates for I*„ in two
classes —those between 0.25 and 0.45m, (group I)
and those between 0.5 and 0.7m, (group II). The
former are obtained indirectly from the values
of the band parameters evaluated by fitting optical-
absorption measurements to a k p band struc-
ture, "while the latter are obtained directly from
experiments on a free gas of holes" The latt'
dielectric constant &, has been taken to be 20.

200

100-

b=10a,'

k&-1.36 {ao")

uo
r

I

R(m eV)
—m~= 0.6m 0

I

m =0029 mo ER(me V)
m =0~m; 6

3/2

3i2

b(A

80 500 1000 1 500

FIG. 2. ResoResonance energy Ez as a function of the
screening length b of the TF potential.

2 000

A. Thomas-Fermi potential

The TF potential is found to have several re-
sonances. Their number and energy increase
with b as expected on physical grounds. In

S ar
Fig. 2 only the first two resonances of symmetr

3 /2 ar e shown for two typic al values of the band
me ry

parameters (m*„=0.6m, and m*„=0.4m„ in both
cases m*, =0.029). As 5 exceeds 2000 A, E~ keeps

to
increasing smoothly. The limit b -~ correspo dpon s
o a pure Coulomb potential. Ez 9 meV for m*„

-0.6m, and Ez-6 meV for m*„=0.4m, . In this
limit the simple proportionality relation E~
~ m*, predicted by Qel'mont and Dyakonov' seems
to hold. It is actually difficult to obtain an ac-
curate value for E~ for a pure Coulomb potent' l
because our variational calculation has been set
up in a way that is well suited for finite-ran e

p entxals. Convergence is difficult to achieveot
for a potential with an infinite range. As it is
clear from Fig. 2, for the values of P =m*, /m*„we
are considering, namely, 0.0725 and 0.048, the
relation E~ Ocnz*„does not hold for a finite 5. For
this relation to hold the two curves on the graph
should have coincided. The resonance energy is

f$
0

I

cos ksr
r

20-

0
I

cos kRr
r

FIG 3 Typical pair of resonance wave functions.

seen to be reduced more than expected by a de-
crease in the hole mass. An interesting result.
of our calculation is that the Coulomb potentia, l is
very sensitive to screening. It is sufficient to
reduce its range below 500 A to substantially affect
its strength. For screening lengths less that 50 A
for m*„=0.6m, and 80 A for rn*„=0.4m, the charged
impurity becomes a weak scatterer with no
resonances.

The width I'= (dE/d5)z~z of these resonances
has been calculated. We find that the relative
width I'/Ez is only weakly dependent on the
screening length b. For the 1S resonancesonances

/E~= 7% (7% to 7.4%) for m*„=0.4m, and 4/0

(4.2% to 4.4%) for m*„=0.6m, . It increases slightly
as b is reduced. These values suggest that the
formula (2.10) overestimates the increase of
I' E with
br

T e 2S,&, resonances are significantl

t
oader. We also show in Fig. 2 the plots f0 a

ypical pair of resonance wave functions. A

striking similarity exists between these functions
and the bound-state functions obtained by Baldereschi
and Lipari' in their study of acceptor states in
ordinary semiconductor s.
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B. Random-phase-approximation potential

As stated in Sec. III, the screening in a ZG semi-
conductor is more complex than in an ordinary gap
semiconductor. For our calculation of charged-
impurity resonances we have used the BPA
screening. In this approximation, the static
dielectric function is given by

+
&0 & ~ n~

(4.1)
f(k+ j,n') -f(k, n)

g~ E~

where lk, n) are Bloch states of energy Ef „and
occupation number f(k, n) with n specifying the
conduction or valence band

&l.f( +4, )-f(, ) (4.2)

c and v stand, respectively, for the conduction and
the valence bands. The first sum is the I', —I",
interband polarization and the second is the intra-
band polarization of the conduction band. We
are considering n-type substances only because
in the actual experimental situation of interest the
Fermi level lies above the point of degeneracy.
The matrix elements have been evaluated using
the spherical approximation of the k p band-
structure model and within the effective-mass
approximation. "

1&k, cle '«'lk+a ~&l'=X(k e (4.2)

kz being the Fermi momentum where fz(x) and

g(x) are the interband function and the intraband
function, respectively. The former is dependent on
P but the latter is not. kz enters in both functions
only as a scaling parameter. Broerman et al."
have derived an expression for g(x) and Liu and
Tosatti" have calculated fz~(x). In the Appendix
we .give our own derivation of these two functions
because of the relative simplicity of the expressions
we have obtained and also because Liu and Tosatti
have not considered the P sensitivity of fz(x).
The plots of f and g are given in Figs. 4 and 5.
When kz =0, i.e. , for the intrinsic substance

l(k, cle '«' lkyq, c)l = I -X(k, g),
where

x(k, j)= —,'(k xq)'/lkl'lk+ jl'

(4.4)
[e(~))..

2(1 -p) -v
=1+ ——(1 —P)sin '

pi /S

2p 2 1+p q

(4.6)
for free electrons the second matrix element is
just unity. X(k, g) shows the contribution of the

P3 /2 character from the band carrier s. Evaluating
(4.2), the dielectric function can be written'' "

(4 5)

and a 1jq singularity is present. " This singularity
is characteristic of the pure ZQ semiconductor.
The RPA therefore predicts that charged im-
purities are strongly screened in these sub-
stances.

As k~ is increased, the dielectric singularity is

g (x)

0.5—

0.5

4 X

FIG. 4. Functions fo(x)=f& 0(x) andf&(x) for P
= 0.0725 (corresponding for instance to m~ = 0.029mo
and m„= 0.4mo).

I

0.5
l

1.5 2.0

FIG. 5. Function g(x) for Sjyt electrons (the Lind-
hart function) and for I'Sy2 electrons.
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reduced but the intraband polarization becomes
effective. As the plot of the g function shows,
the I', &, electrons screen less than the 8,&,

electrons. This is expected on physical grounds.
The effect on the resonance of these screening
terms will now be presented.

In this limit

1. kp- =0

[e(q) j» ~/eo= 1+X»/q .

The potential corresponding to a dielectric function
of this form can be easily evaluated. "

V(r) = — — dq = F(X—p), (4.7)
2 2 s lnqr 2
r m, q [e (q)/e, ] r

2.5

I ~ 5

I [ I

O. 3 0.4 0.5 0.6
where

2 2
F(x) =cosx 1- —Si(x) + —sinxCi(x). (4.8)

FIG. 7. Resonance energy E& as a function of the
hole effective mass m„* for an electron effective mass
m,*=0.029mo in the RPA.

In (4.8) the functions Si(x) and Ci(x) are sine
and cosine integrals defined by

Si(x)
"sint

0

Ci(x) = — dt.
" cost

t

A plot of E(x) is given in Fig. 6. It is difficult to
fit it with any simpler function. The inner part
is nearly exponential. In that region the potential
would correspond to a short-range TF potential
of screening length of about b = 80 A for both
m*„=0.4mp RIll 0.6m, . But the tail is of some in-
verse power with a slowly decaying rate (I/r').
It is a much longer tail than that of a TF potential
which corresponds to a dielectric function with
a stronger singularity 1/q'.

With our choice of the trial functions, all the

ma, trix elements entering the Harris method can
be evaluated analytically if an interchange of the
order of integration is made, i.e. , if one per-
forms the r integration before the q integration
which transorms V(q) into V(r).

In Fig. 7 the resonance energy as a function of
the hole mass is plotted for the whole range of
reported hole masses. The energies from group
A are in the neighborhood of the O.V-meV level
(A,) while those from group B are in the neigh-
borhood of the 2.2-meV level (A,,).

It is instructive to note that we could have
roughly reproduced Fig. 7 by simply supposing
that the potential (4.7) is equivalent to a TF
potential of screening length -80 A (see Fig. 7).
The resonance energy is therefore essentially
dependent upon the inner part of the potential where
the I/r singularity is present. This is not too
surprising considering the nature of these reso-
nances which are states quasilocalized around
the impurity. The width on the other hand, not
surprisingly, is slightly smaller: when m*„
=0.4m„ I'/E„= 6.8/0 and when m'» = 0.6m»
I'/Es=4. 1%%uo instead of 7.4%%uo and 4.4%%uo re-
spectively, for a TF potential of screening length
b -80 A. The longer tail of the ZG semiconductor
makes it a more efficient scatterer than the
corresponding TF potential.

0.2

I

6 X

FIG. 6. Screening function I'(x) in the RPA screened-
Coulomb potential.

2. kp 40

When kzo 0, the expression for e(q) is com-
plicated. As explained in the Appendix, we are
able to make a fit which greatly simplifies the
calculations, allowing an exact evaluation of the
matrix elements in the variational calculation.
In Fig. 8, we show the results for a typical value
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FIG. 8. Typical variation of resonance energy with
increasing Fermi level. Both RPA and TF for intra-
band polarization. Only RPA for the interband polariza-
tion.

of m~ =0.4m, . The dotted line has been obtained by
supposing that g(x) = 1 which is equivalent to
taking a simple TF model for the intraband
screening. Qur results indicate that within our
model two competing coritributions cancel each
other. On the one hand we have the strengthening
of the intraband polarization which would increase
the screening and on the other hand the weakening
of the dielectric singularity which would decrease
it. The cancellation effect is complete for E~
= E~. If we had plotted E„vs m*„ for E~ = E~,
the curve obtained would nearly coincide with the
curve in Fig. 7 for E~.=O. A maximum deviatioii
of —,', occurs at the lower mass m~ =0.3m, . In the
interval 0&E~&E~ the variation of E„ i»mall
(of the order of 10%).

The relative width 1'/Es is found to be reduced
from its k~ = 0 value as long as k~ &k~. This may
be attributed to the softening of the dielectric
singularity due to the interband polarization which
further elongates the tail of the I' furiction in
Eq. (4.V). It may be recalled that the low-q values
in e(q) determine the long-range part of the cor-
responding screened potential.

In the actual experimental situation E„ 0 but
E„&E~. Since only small changes in E„are
predicted from the intrinsic case, Fig. 7 can be
used to discuss our results.

V. DiSCUSSiON

The physical problem we have studied is that of
a singly charged acceptor impurity in an n-type
zero-gap semiconductor. The charged impurity
is known to be highly screened by the lattice polari-
zation (e, = 20) and by the electrons of the I", bands.
The expected resonance state is a shallow one ex-
tending over several hundred angstroms.

Before comparing our theoretical results with
the experimental values given in the literature

let us try to assess the validity of our model.
We have solved variationally for the ground-
state resonance is the effective-mass approximation.
The Hamiltonian is the one-particle Hamiltonian
of Kohn and Luttinger neglecting the warping of the
bands and the potential is the BPA screened-
Coulomb potential. This effective-mass theory
should be good for such extended states. We
maintain that to attempt to go beyond it at this
stage would be premature and that the many-body
effects can be satisfactorily incorporated irito
the dielectric function as we have done. The
neglect of the cubic terms in the Hamiltonian
should not be important for HgTe. No significant
anisotropy in the electronic properties of the
substance has been found, ' and as Baldereschi and
Lipari" have shown for states of symmetry S,&,

(as the ground state), there is no first-order
correction. Therefore, any major discrepancy
would be due to the inadequacy of our dielectric
function. The BPA polarization terms are actually
only the first terms in an expansion in powers of
(Es/Ez)'~' (Es: Bohr energy of the electron) and
in the specimens usually considered E~ -E~
which seems to invalidate the approximation we
have used. Abrikosov' however, has gone beyond
the HPA and has applied renormalization-group
methods to this problem (he has considered only
the most sensitive case Ez-—0). His main con-
clusion is that the BPA gives the correct values
except in a very narrow region near the degeneracy
point where the strong enhancement might be
overestimated. The region is characterized by
q«ks=1/(1+p, ), the electron Bohr momentum.
We have done a calculation where the singularity
haS beeri cut off below q =k~. We find that the
resoriance energy iricreases by at most 15%. For
finite kz the RPA should be much better since the
interband polarization 4mo. ,„„,(0) (see the Appendix)
decreases as 1/kz [4vn„„,(0) =4&Jvpkz]. The
RPA can therefore be expected to give a reliable
estimate of the resonance energy though lovier
than the actual value. On these grounds a fair
comparison with experiment can be made in spite
of the uncertainty in the hole mass m*„. As already
discussed, the reported values of m*„can be
separated in two groups which are consistent
within themselves —group I (0.25 to 0.45) and
group II (0.5 to O.V). In our model if the true
mass is within group I, A, should be the charged-
impurity level and m„& 0.35 but if it is within
group II, A, should be the charged-impurity level
with m ~ 0.58m, .

At this stage it seems difficult to assert beyond
doubt whether Ap or Ay is the charged-impurity
resonance. The evidence which we have now is
not sufficiently conclusive though it favors Ao.



&702 B. JOOS, A. K. DAS, AND P. R. WALLACE

Our model predicts that A, would be a charged-
impurity resonance if the hole mass were about
0.35nzo. This is the k p theoretical estimate of
the hole mass" and falls well within group I which
comprises the values of m*„obtained with allowance
made for the I', symmetry of the bands. An
argument has been put forward to favor A, , as a
vacancy state, namely, the variation of A, with
Cd concentration in the HgCdTe alloys. ' " As
Cd replaces Hg, the A, level rises sharply from
2.2 to 15 meV at the semimetal to semiconductor
(SM-SC) transition, which is what ought to happen
for a vacancy state —the 1", band moving up rapidly
with Cd concentration pushes up the vacancy level.
It is however. to be noted that the charged-impurity
resonance is also expected to have a similar be-
havior. For a charged-impurity state which is
essentailly attached to the heavy hold band, the
decisive factor is the change in the static screening
with Cd fraction. As we have seen the screening
function in pure HgTe has a strong singularity.
This singularity is substantially reduced as the
I', band moves up until is disappears at the SM-SC
transition when HgCdTe becomes an ordinary
semiconductor. The strength of the static di-
electric function is hence substantially reduced
and the energy of the charged-impurity resonance
will increase with Cd concentration. A rough es-
timate of the resonance energy at the SM-SC
transition can be made using Eq. (2.9). According
to this formula A.o wouM rise from 0.7 to about
6.5 meV and A., from 2.2 to 11 meV. This assumes
that go decreases to about 18, as is experimentally
known, "and that m*, remains constant. If Ao is
the charged-impurity resonance, then a resonance
state should be observable around 6.5 meV. In-
terestingly Kozacki et al.23 have reported for the
alloy Hg»~, Cd», b Te (EG = -7.1 meV» -300 meV
of Hg Te) an acceptor level of 5.4 meV which could
well be the Coulombic level. The existence of
such a level will further strengthen the case for
Ao as the charged -impurity resonance and our
model will have explained why a charged-impurity
level ean have so low an energy as 0.7 meV when
the hole mass is 0.35m„ i.e. , within group I. '

e (q) 1
4mn „...(q) 4vn, .„,(q)

Co 6o

where we have separated the band contribution
into two parts:

4vn„...(q) -16w~, ~f(k+q, v) -f(k, c)

(Al)

(Ala)

4vn„„,(q)
&o

with

x jI'l Ik I' I"+ & I'

The domain of integration of each term is defined
by the nonzero values of the occupation functions.
A simpler evaluation of these polarization terms
can be made if they are broken up into two and
a ehmge of variable is made in their first term
so as to have only occupation functions of the
form f(k, c) or f(k, v):

4vn„...(q)
o

16m g f(k, v) f(k, c)
q' a

' Ef&, -Ef „Ep,-Ep& „
(A2a)

where f depends only on P and g is independent
of any band parameter. This form is obtained by
supposing q, k~ «E and for all practical pur-
poses K infinite (all being very reasonable as-
sumptions considering that K&200). Our method
of evaluating e(q) is different from that of Hefs.
16 and 17. In view of the relative simplicity of
our expressions and the fact that they have not
been published previously, we have decided to pres-
ent our results. Following Egs. (4.2)-(4.4) one
can write
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APPENDIX

In Sec. IV, the RPA dielectric function is written

c(q
&

I —P (q )
2k'

(q)

4vn„„,(q) 32' g(1 („~j f(k, c)
&o

The evaluation of the principal parts of these
integrals yields the f and g functions.

4vn„, (q) 3(1 —p) q
eo vk~ ~ k~

(AS)
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where f~(x) =f,(x) -I~(x);

1 1+yf,(x) =— dy-1n
2X 0

1 1 1+x 1 1"—ln —-x +x-—
4x 2 1-x x x (A3a)

V 2+ x x' 1 3
g(x) =- —+ln 1-— -+-x

2 4 2-x 4 x 4

xln, X2

3 1 1+/--x dy-ln

1 ' 1-p.'x, (1+1/p —p')'~'jr, (1+1/p)1/x+ p, ),
(1+1/P ~')' '~

f,(x) is in fact the f function given by Liu and
Tosatti. " The second term I~(x), zero when p=0,
is the correction to f,(x) due to the finite size
of p. The integrand in I~(x) is a well-behaved
function, 0 at both limits -1 and 1, and peaking
near p, —0. Such a function is easily integrable
numerically by a simple Simpson's rule. f~(x)
and f,(x) are plotted in Fig. 4. These functions
have the asymptotic values

The asymptotic limits are g(0) = 1 and

g(x)—1.5V

&~[1/(1+P)]-Iax', x&x,
f ()=

q/x- —,x& x,
(A7)

Broerman et al."do not give an expression for g.
Their plot of g and our Fig. 5 compare well.

To enter the exact formulas of f~ and g into the
variational calculation would be computationally
prohibitive. We have for this reason approximated
them with simpler functions having the proper
leading asymptotic limits. This enabled us to
actually evaluate all the necessary integr als exactly.

The approxiniate f~ and g have the form

fo(o) =3 I,(o) =3 1, or f, (0) =3 1 (A4)
1 @~X + Q2x q X&xo

g ~(xf =

1 —Q &Xo + Q2XO y
X ~ Xo

(AS)

f.(x) --'v'(1/x) -~(1/+),
X/2-

I,(x)--' —' P~&2 (1 P)sm-~~
x 2P (1+P

Thus,

f,(x)-~',/x-Cg~ as x-
where

=——+ (1 —p)sin
v 'vp

3(1 P) 2P &2- 1+p -p

=g r y/2 1

—- (1 —P)sin ' —P'~'
2p 2 1+p

4vn „,„,(q) 2(1 —p) ~k ~~q )

where

(A5)

(A6)

The parameters x„B,C, o.„and e, are chosen
so as to optimize the fit. For instance when m*,
=0.029m, and m~ =0.4mo, i.e. , P =0.0725, the
following values were chosen for the constants:
x, =1.V5, B =0.1118, C=0.6, a, =0.5236, and

e, = 0.09VV.

e, and e, are different from the values given
by Broerman et al. By not attempting to fit
g(x) with the above polynomial up to x= 2, but
only up to 1.V5 we. are able to make a better fit.

In this approximation, the dielectric function.
has the form

e(e) 1
(1 P) ~&G -&e

(A9)

where

G~ (x) = 3x'f~(x) + Pg (x)

2+ 2(2/(1+ P) —o, ,)x + (2e, —38)x,
'X&xo

2(1 —a,x', + a,x4) -3C+ 3A.~x,

~x & xo.

(A10)

This function deviates from the RPA G(x) by less
than 2%.
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