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Singular behavior of tight-hjn&ing chains with off-diagona& thsortier

T. P. Eggarter* and R. Riedinger~

{Received 25 January 1917)

We prove that the density of states of the one-dimensional tight-binding Hamiltonian with off-diagonal
disorder is singular at the center of the band, F. = 0, for every probability distribution of the hopping matrix
elements V. The asymptotic form is p(E) 2a'/~E(l nE')~', with o'=((lnV')') —(lnV')'. The
localization length goes to infinity as L(E) 2~1nE'~/cr'. We also give a procedure to handle the problem
numerically near the singularity, and we present some sample calculations.

I. INTRODUCTION

In a recent paper, Theodorou and Cohen' studied
the density of states and localization length of the
following one-dimensional tight-binding Hamilton-
ian with off-diagonal disorder:

II= g V, ([t&(t+I[+ [t+ 1)(t i),

with the V, -independent random variables having
the same probability density P(V).

For a generalized Poisson distribution

V 2' l.

(V) 2 e &(vl vP)
(n —1)! V, V,

'

the problem can be reduced to a case solved ex-
actly by Dyson' in his study of the normal modes
of a disordered chain of oscillators. One obtains
in this way an exact density of states for the Ham-
iltonian (1), which has the remarkable property of
being singular at E=O, the center of the band. The
asymptotic form is

p(E) = 2(-.'"—t. ,)/IE(»E')'i,

(4)

Theodorou and Cohen suggested that this singularity
might be a general feature of Hamiltonian (1), not
a consequence of the particular form (2) of P(V).
This idea is supported by the numerical work of
Weissmann and Cohan' using a square distribution
for V: although the immediate neighborhood of
E = 0 was not explored because of convergence
problems, their results indicate a peak at the ori-
gin.

The purpose of this paper is to investigate the
exact density of states of Hamiltonian (1) near
E = 0 for an arbitrary distribution of the V's. We
show that the density of states behaves asymptotic-
ally as

p(E) = 2a'/~ E(ln E')' ~,

with 0' the variance of lnV'. Thus, our result con-
firms the kind of singularity of p(E) near E =0
found by Theodorou and Cohen, and furthermore,
gives the physical significance of the coefficient.

It should be noted that the existence of a singu-
larity in p(E) is far from being intuitively obvious.
Consider, for example, aperiodic chain in which all
V's are equal to V, [this of course gives a finite
p(E = 0)]. Suppose next that a fraction c of the V's
is changed to V, & V, to form the binary chain with

P(V) = c5(V —V,) + (1 —c)5(V —V,) .

On this basis of simple arguments like perturbation
theory one would expect that all states be pushed
away from the origin as the difference Vy Vp
is switched on. This can only decrease p(E) at
E = 0, never lead to a singularity. Our result (5)
shows that such simple arguments break down
near E=O.

We also study the localization length, ' and show
that it diverges as

(6)

A similar result is established in Ref. 1 [for the
particular p (V) used there] through the Thouless
equation'which relates L(E) directlyto p(E). &epre
sent here an alternativ'e derivation of (6) ba, sed on
the consideration of the self-energy as a stochas-
tic process.

In Sec. II, we show that the problem of the spec-
trum of Hamiltonian (1) near E = 0 can be reduced
to the study of a certain diffusion process. Section
III deals with this process in more detail, and we
establish there the asymptotic form (5) of p(E).
Section IV contains our discussion of the localiza-
tion length L(E). In Sec. V, we show how to han-
dle numerically the integral equation arising in
the exact solution of the problem in the vicinity of
the singularity. We also present sample calcula-
tions to verify and illustrate our analytic results.
Our concluding remarks are presented in Sec. VI.
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II. DIFFUSION EQUATION FOR THE SELF-ENERGY

We look for solutions of the Schrodinger equation
Hl g) =E

I (), with

(7)

Using the explicit form (1) of the Hamiltonian one
immediately obtains for the amplitades c, the equa-
tions

[In our case it should be kept in mind that the solu-
tion of (17) is relevant only for n = 2i, the even
integers. ]

All this is strictly valid for E = 0. Equation (17)has
no well behaved steady-state solution; u„even-
tually drifts to +~.

Next let us consider how the above changes when
we take a small but nonzero E. Since the density
of states is an even function of E, we assume
without loss of generality that E & 0. Again using
(10) we write

cc-j.Vs -i+ c]+,V] =Ec (8)

It is convenient to introduce the "self-energies"'

6» =c»,V», /c

so that (8) takes the form

~„,= V,'/(E —~,.) .

(9)
It is clear that as long as

E «&2» -2 «V2» -2/E

(18)

(19)

It can be shown' that the integrated density of
states per site

E
f1'(E) = p(E') dE'

the "correction terms" in (18) (exponentially small
with respect to u) are irrelevant and we recapture
(12). Thus, assuming again that a, & 0, u„. —= Ink„.
executes a random walk as before, as long as it
remains in the interval

+2» (V2» -1/V2» -2) ~2» 2 (12)

or

u, »
= InA„= ln(V„, /V, »,)'+ u„ (13)

Equation (13) shows that u„executes a random
coals'. The average displacement at each step is

(u„-u„. ,) = (In(V„,/V„. ,)') = 0,
and the average square displacement is

((u„—u„. ,)2) = ([ln(V„,/V„. ,)']') = 2o . (15)

We have introduced here the variance of lnV',

o' =. ((ln V') ') —(ln V')'. (16)

It is well known that such random walks can be
studied as diffusion processes. ' Let Q(n, u) be the
probability density for u„, then making the usual
approximation of treating n as a continuous vari-
able»I1 satisfies the diffusion equation

sy(n, u), a'y(u, n)
Bs Bu

(17)

equals the fraction of positive terms in the se-
quence(b, »] defined by (10). The recurrence rela-
tions (10) take a particularly simple form for E = 0;
in this case the signs of $L»} follow the pattern
+ —+ —+ —~ ~ ~ and therefore N(E = 0) = 0.5. We
shall concentrate our attention for the time being
on the subsequence of positive 6, 's, and we assume
that these correspond to even i' s:

0,

Iterating (10) we find that

lnE «u « ln(v'/E) . (20)

Here we have indicated by V some typical V, its
exact value will turn out to be irrelevant for the
dicussion that follows.

Our next goal is to see what happens to the ran-
dom walk picture when u approaches the endpoints
of the interval (20). -For L2» 2= V'/E, the effect
of the denominator in (18) is to reduce L2», thus
preventing it from growing too large. This situa-
tion can be approximately described by consider-
ing a random walk with a reflecting barrier at u
= ln(V'/E).

At the low-6 end, L=E, the situation is some-
what more complicated. The term I -E/62»
which becomes relevant for L„,=E, favors a
steady decrease in the sequence 6„.. Moreover,
as soon as A„has reached a value slightly
below E, the following things happen: (a.) ~„
= V2» /(E —&2») ~ 0. There is a break in the natural
sign sequence since there appear two successive
plus signs: + —+ —++ —+ —;(b) from the point ++
onwards the role of the even and odd sublattices
is interchanged, it is now the A„„which are posi-
tive; (c) the whole diffusion process starts again
with the positive 6's, now on odd sites, of order
V'/E.

We conclude that the evolution of the L's de-
rived from (10) can be regarded as repetitions of
the following cycle: the positive 6's start from a
value of order V'/E, diffuse down to the neighbor-
hood of E (diffusion upwards is impossible because
of the reflecting barrier of V'/E), and are ab-
sorbed at E. After this, the next cycle starts.
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Each time a cycle is completed, a++ pair destroys
the "natural" sign sequence + -+ —+ ~ ~ ~ .

It is easily verified that it takes two of the above
cycles to change a (-) of the natural sequence into
a (+). Therefore calling n the average number of
sites required to complete one cycle, we have the
following relation for the total number of states
below E, N(E):

N(E) -N(0) =N(E) - -,' = 1/2n . (21)

, u=u max

=0 (22a)

(22
r

corresponding to a reflecting barrier of u
= ln(V'/E) and an absorbing barrier of u . = lnE.
We take the initial condition

y(u, 0) = 5(u —u —0+),

corresponding to a cycle started at n = 0. Let

(23)

umax

P(n) = y(u, n) du
~min

be the probability that u remains between u and

u,„(i.e. , has not been absorbed) after n steps.
Clearly

(24)

n= n ——dn= Pn dn, (25)

so that the calculation of n reduces to solving (17)
with the appropriate boundary conditions. This
ean be done by standard methods; the result is

2 ~ 1 17

P(u, n) = Q (-1)"sin (m+-,')(u -u,„)
m=0 « '" Zu

0 I 2 77x exp ——nz+~ ' n
2 Eu' (28)

where «stands for u„—u;„= (InV/ 'E). Carrying
out the integrations (24) and (25) we get

4(-1) («)' («)'
o'(in + -')'w' o'

To compute the above result we have used the
equality'

( 1)m+1 +3

~, (2m-1)' 32
'

Finally, using (21), we find for the integrated den-
sity of states

The determination of n is the subject of Sec. III.

III. DENSITY OF STAT-ES

To determine the quantity n appearing in (21) we
can use the diffusion equation (17) supplemented by
the boundary conditions

(28)

Differentiating, we get

dN 2o' 1 2o'
dE

=
E [I (V/E)']' =E~I E'~' (29)

The typical value V simply adds a finite constant
to the diverging denominator, and is therefore
irrej.evant as anticipated earlier.

For the generalized Poisson distribution (2) one
finds by straightforward computation that 0' = &

m'

—t„„s. othat our equation (29) reproduces the
solution of Ref. 1.

IV. LOCALIZATION LENGTH

It was shown by Borland" that the eigenstates
of a one-dimensional Hamiltonian like (1) are
always localized: each eigenfuncion g„ is appreci-
able over some finite region (centered, say, at
x„) and decays exponentially

~ („~-exp[- ~x - x„~/
QE)] at great distances. Borland also showed that
if one picks an arbitrary energy E and an arbitrary
boundary condition at one end of a linear chain,
the i.ntegration of the Schrodinger equation yields
a function gs(x) which, with probability 1, grows .

exponentially ~g(x) t- exp[x/QE)] as one moves
along the chain. Thus, to find the localization
length L(E), it is sufficient in our case to study
the rate of growth of the fc,.] generated by (8).

One technical detail must, however, be cleared
up in order to compute L(E) for E = 0. Suppose
we start at site 0 with the boundary condition
c, = 0. It is then easy to see from (8) that for
small even i, c, = 0. Therefore, near the starting
point, the envelope of the wave function is deter-
mined by the amplitudes onodd sites. As we move
along the chain, however, the situation is reversed.
Near the end of the first cycle (in the sense de-
fined in Sec. II) the amplitude has shifted from odd
to even sites; it is now the c„,, which determine
the envelope of the wave function. In order not to
bother with this distinction and periodic inter-
change of the odd and even sublattices, and since
all homogeneous forms of degree 1 in c grow at
the same rate, we shall study the geometric mean

g, =- ~c,c„,~"' of the amplitudes on two successive
sites. This quantity increases more steadily,
with the same average rate of growth of the ~c, ).

In our case, the behavior of Q,] is best studied
by' considering one of the cycles of Sec. II. Sup-
pose a cycle starts at i = 0 and ends at i = 2n;
this means a, = V'/E; L, = -E, b,,= V'/E, . . . ,

or less straightforward, using (9) and (10), to
obtain
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= ~ ln ~ + ln V,&, —lnV2&+ln 1 — + ~ ln2 g 2f-1 2f
&2m

(3o)

The first and last terms in the right-hand side of
(30) a.re both of order —,

' inV/E, and together make
a contribution -In($'/E). The sum

g (lnV„. , —Inv, &)

f(~, E) dn, is, for a given energy E, the probabil-
ity that b. belongs to the interval (~, ~+db, ); f
is positive, normed to 1. I" is nondecreasing,
bounded by zero and one.

These functions satisfy the following integral
equations' (we omit the parameter E for brevity):

is zero on the average since any particular bond
has equal probability of being the "even" or "odd"
sublattice within the cycle to which it belongs.
The term

ln 1—E

2
V2

f(~) = . v—'p(v)f E ——dv

or, for E:

(36)

gives at most a contribution of order 1 arising,
from the last 6's within the cycle. Thus, keeping
only the leading contribution, the increase in In(g)
Pe~ cycle is

in(g, „„/g,) = »(V/E) . (31)

The inverse of the localization length is, by de-
finition, the average increase of the wave function
per site, thus

1 ln(V/E) o' ln(1/E) a'
1.(E) n (»E')' 2~1nE

~

I.(E) = 2I»E'I/".

(32)

Again our result reproduces that of Theodorou
and Cohen, ' and gives physical insight for the pa-
rameter.

V. NUMERICAL TREATMENT NEAR THE SINGULARITY

We first explored the singularity in the density
of states of Hamiltonian (1) near E equal zero by
Monte Carlo techniques, i.e. , the method of nega-
tive counts' "for the integrated density of states,

~ or by direct method for the density of states, "
computed by

I./2

o(&) =(-„~ ~, P(l(@ —&)(& -&') l"')) .

(34)

However, a sufficient accuracy by these methods
would require a prohibitive amount of computation;
therefore, we solve numerically the integral equa-,

tion for the probability density function f(A; E)
[where a is defined in (12)] and for the associated
distribution function

y(u) =A (u —in E) .

Returning back to the variable 6, one obtains
from (38),

(38)

f,(~)=a, E&~&v'/E.Inn E
(39a)

The extension to negative 6, obtained from the
integra. l equation (36) is

„»(v'/E I~I) V'/E & b, & E. -(39b)-
We assume

fo(6) =0 if ~b. ~e[Ei V'/E]. (39c)

The constant A, determined from the normaliza-
tion condition, is

p(V) is the probability density of the hopping inte-
gral V. 8(h) is the step function, valued to 1 for
positive ~, and 0 otherwise. These equations
have been solved numerically by iteration in Ref.
3 for almost the whole spectrum; but the conver-
gence of the procedure gets worse as ~E~ ap-
proaches zero, so that the center of the band was
unaccessible to this calculation. Our purpose is
to study this central band region exactly.

Let us discuss the choice of a starting value

f,(S) and E,(S).
We showed in Sec. II that if E & a & V'/E the prob-

ability density function P(u) of the random vari
able u = Ink verifies the diffusion equation (17)
with the following bounda. ry conditions: (i) for the
steady state, Sg/8n= 0; and (ii) (22b), g(lnE) =0.
Therefore, Q is the monomial

(35)
A =[in(V/E)'] '.

By (35) the corresponding function E,(b.) is

(39d)
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FIG. 1. For the energy
E=~j.0x10-6. F g, z~
curves vs

1 n {+E)-lnE
L nE —inn

The pjus sign corresponds
to positive A, the minus
to negative one. The curve
does not differ from Fo on
this scale, and the repre-
sentation F {a) is quite uni-
versal for the @&hole energy
range explored ~10 x 10
«E» 10

In(El~I/v2) '
2 ln(E2 /V2)

~=- -P/E;
p2 p.

Q~(Q(g ~

¹ is the number of 4 points; i denotes the itera-
tion rank. The uniform convergence (over the
whole interval) is achieved in about 100 iterations.

We present in Fig. 1 a set of E(s, E) which coin-
cide quite well with E„and in Fig. 2 a typical

1 ln(n, /E)
2 In(E2/V )

g) )) /E

The singular behavior of f, appears clearly on
formula (39). We solve the integral equation (37)
for the difference )t(b) =E(A) -E0(b) which mea-
sures the precision of our approximate asymptotic
solution to the exact one, by iteration )t (b.) satis-
fies

p2
x(&)=fV(v)x(2- —&v-x(&)+0(4) (4&~

where

is computed once for the mesh ~ used. The initial
value of X is zero. As probability density function
P(V) for the hopping integral V, we chose a Ber-
nouilli law; this is one of the most critical distri-
bution functions from the numerical point of view
[the kernel of integral equation (36) is not bounded].

As mesh for 6, we use an equidistant logarith-
mic scale, i.e. ,

a = (In ln I
—lnE)/(ln E —Inu),

where u=(V2)'~2. Such a choice is adequate,
since a low value of lb, I

«E generates a high value
at next iteration -1/lb, l. The values of E(b) are
linearly interpolated from this mesh.

As convergence criterion we required that

1
[)t0) (g ) g(4 1)(/ )]2(10 10

It can also be shown that the distribution function
E(b„E) for the particular value n=E is the total
number of states below E,N(E) (7).

In Table I we report the values of E(E,E) —0.5,
and the asymptotic value N(E) -N(0). The agree-
ment is good. It can. be noted that the correct
value for E(E) is obtained at the first iteration of
(41) and (42). These results are obtained for the
set of parameters given in Table II.
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I I I I I I I I I I I

2. 2 i.8 i. f I 0.6 -0. 2 a-

FIG. 2. Correction y =F —Fo in the negative 6 range
and energy E = v 10 x10 ~; for definition of a see Fig. 1.

VI. CONCLUDING REMARKS

The tendency of the eigenstates to pile up at the
center of the band seems to be an interference
effect, related to the fact that the lattice constant
is exactly 4 of a wavelength at E=O. This fact has
already led to puzzling consequences in other situ-
ations. "

To get some physical insight into the origin of
the singularity, it is instructive to consider a dis-
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TABLE I. Comparison of the asymptotic and the com-
puted value of the total number of states between E and

0.

TABLE II. Bernouilli distribution for the hopping in-
tegral V'.

Energy

Q.1x 10 4

vlO x10 '

+(E) —0.5

0.001 14
0.00141

I (E,E) —0.5

0.001 24
0.001 55

p'2 0,2 1.8

0.1x 10 3

~10x10 4

Q 1x 10-2
V1Qx10 3

0.1x10 '
v10x10 2

0.001 78
0.002 32

0.003 16
0.004 55

0,007 11
0.012 64

0.001 99
0.002 67

0.003 63
0.005 $3

0.008 67
0.014 65

only two values, a and 1/a, with probabilities —,
'

and —,'. The resulting density of states has the
average value

P pure crystal

S a+a t/a+1/c a+1/c)

G„(E= 0) = i/5 (ty" + tt ), (43)

(44)

and a similar relation gives & in terms of the V's
to the left of the origin. Since the local density of
states is p, (E) = (1/ty) ImG„(E+ i0), we get

p, (E = 0) = p „,„,„„2/(tt'+ w ) (45)

The r's are random variables which, according
to (44), have the property that ty and 1/tt are iden-
tically distributed. To see the implication of this,
let us make the most drastic approximation which
conserves this symmetry: suppose each m takes

ordered segment imbedded in an otherwise perfect
chain. Suppose 7, random for -2N & i & 2N —1,
and constant outside. In other words, take 2N
random V's to each side of the origin, and perfe'ct
order outside. It is an easy matter to calculate
the local density of states of the central site p, (E)
if E = 0; we simply sketch the procedure. The
pure crystal self-energy has some imaginary value
np„„„y,« = i5 U-sin. g the recurrence relation (10)
to compute the self-energies inside the disordered
region and expressing the Green's function in terms
of 4's one finds

0(2N)8
( Po) P pure crystal 4' (47)

which diverges for N -~, this is the reason for
the singularity ing(E). Random walks have strange
recurrence properties": each'point is visited in-
finitely many times for dimensionality ~2, but the
average number of steps between successive visits
is infinite. For this reason we expect states near
E =0 to exhibit huge fluctuations around the asymp-
totic behavior ~g(x) [-exp[-)x[/L(E)].

11 1 1
P pure crystal 2 2

+ + t
( 1/+)

(46)/ pure crystal '
I

(The inequality follows from $+ 1/$ & 2, (& 0.)
Only in the ordered case a = 1 is (p,) = p„„„„„„„;
any spread in tt causes (p,) to increase. Physical-
ly, what happens is the following: certain configu-
rations will be repulsive for E = 0 states, push
these states out, and depress p, by a certain fac-
tor; others will be attractive, pull states in, and
enhance p, by a similar factor. Since —,'($+ t' ') & 1,
the next result of this is to increase (p,).

Always assuming the a, 1/a behavior, let us now
choose an a that reasonably reproduces the spread
in r. Since ln& is a random walk, the natural
choice is a= exp[ty(2N)t/']. Inserting this in (45)
and assuming' large, we find

+Gn leave of absence from Universidad Nacional de San
Luis San Luis, Argentina.

~Universite du Haut Rhin-I. S.E.A. , 4 rue des Freres
Lumiere, 68093 Mulhouse Cedex, France.

~G. Theodorou and M. H. Cohen, Phys. Rev. B 13, 4597
(1976).

F.J.Dyson, Phys. Rev. 92, 1331 (1953).
M. %eissman and N. V. Cohan, J. Phys. C 8, L145
(1975).

4E. N. Economou and M. H. Cohen, Phys. Rev. B 4, 396

(1971), and references therein.
~D. J. Thouless, J. Phys. C 5, 77 (1972).
E. N. Economou and M. H. Cohen, Phys. Rev. Lett. 25,
1445 (1970); see also Ref. 12.

H. Schmidt, Phys. Rev. 105, 425 {1957).
F. Reif, Fundamentals of Statistical and Thermal Phys-
ics (McGraw-Hill, New York, 1965), Chap. 15.
I. S. Gradshteyn and I. M. Ryzhik, TaMe of Integrals,
Series and Products (Academic, New York, 1965).
R. E. Borland, Proc. R. Soc. Lond. A 274, 529 (1963).



18 SINGU LAR BEHAVIOR OF TIGHT-BIND ING CHAIN S WITH. . .

P. Dean, Proc. H. Soc. Lond. 254, 507 (1970).
J.E. Hirsch and T. P. Kggarter, Phys. Rev. B 14,
2433 (1976).

~~S. Kirkpartrick and T. P. Eggarter, Phys. Bev. B 6,

3598 (1972).
14W. Feller, An Introduction to Probability Theory and

its Applications, Vol. I (Wiley, New York, 1950),
Chap. 3.


