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The transport problem for warm and hot electrons in silicon is formulated using a simple, nonparabolic
band model. The electronic distribution function is written in terms of an extended diffusion approximation
which allows for a certain amount of "streaming" of the distribution in momentum space. The solution of the
Boltzmann equation is reduced to the solution of a coupled set of ordinary second-order differential equations
which are well suited for iterative numerical techniques. By comparing experimental and numerical data we

can assign realistic values to electron-phonon coupling constants and a good overall fit is obtained for several

types of experiment.

I. INTRODUCTION

Although silicon crystals have been extensively
studied for many years, our detailed understanding
of certain basic processes such as electron-phonon
scattering is not completely satisfying. In parti-
cular, one may recall the controversy about the
relative importance of f- and g-type intervalley
scattering and the uncertainty about which phonon
modes are actually responsible for such processes.

The theoretical results available are mainly con-
cexned with the selection rules for phonon-induced
intervalley transitions. The relative importance
of the different "allowed" phonons must be deter-
mined from experimental data.

The possible experiments which could provide
such information may be classified according to the
following scheme: (a) optical experiments, (b)
simple transport experiments (without tluantizing
magnetic fields) and (c) magnetophonon resonance
(MPR) experiments. In the cases (a) and (c), the
relevant phonon energies are connected with the
experimental data in a reasonably straightforward
way, although the interpretation is not entirely un-
ambiguous.

The largest amount of experimental evidence
originates, however, from simple transport ex-
periments where the electronic drift velocity (or
the current) is measured for different values of
applied field, pressure, temperature, doping level,
ete. Here, the problem is how to make the best
overall fit between a representative set of experi-
mental data and the numerical results obtained
from a detailed theoretical model which includes
all the possible types of phonon scattering. A nec-
essary prerequisite for this type of analysis is a
general method of solving the nonlinear Boltzmann
equation arising in the warm- and hot-electron
cases. We should like to stress the point that
warm-electron effects (i.e. , small nonlinearities
observed at lower electric fields) may provide

valuable information about the detailed nature of
the scattering mechanisms. Therefore, when
testing phonon. scattering models by comparing the
saturated I- V curves from high-field experiments
with numerical calculations, one should include a
check on the warm-electron parameters. (A simul-
taneous fit to both types of experiment is by no
means trivial. ) It follows that numerical methods
which allow calculation of warm- as well as hot-
electron parameters are to be pr.eferred.

Because of the interest in studying f-type scatter-
ing (between perpendicular valleys) in silicon it is
natural to emphasize experiments where valley re-
population can be observed. This type of experi-
ment, however, must be analysed using a theory
which takes into account a possible scattering an-
isotropy since this may influence the valley repop-
ulation in much the same way as the effective-mass
anisotropy in a single valley (although the latter is
generally larger than the scattering anisotropy).

In the present work, the main emphasis is placed
upon obtaining a reasonable fit to a set of experi-
mental warm- and hot-electron results obtained in
this laboratory over nearly a decade. The primary
tool is a computer program which solves the Boltz-
mann equation for the many-valley conduction band
of n-Si, taking into account f and g transitions be-
tween the valleys as well as the anisotropic scat-
tering by long-wavelength acoustic phonons and
ionized impurities. Energy relaxation due to
acoustic-phonon scattering is included for the sake
of completeness (although generally not very im-
portant). The calculations are based on a theoreti-
cal model which seems to be compatible with the
results from MPR experiments (but not with the
theoretical selection rules).

II. THEORETICAL MODEL

The model assumes a conduction band with six
etluivalent minima located on the (100) axes in re-
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k=h(2m ) 'i' '(k-k„) . (2)

This transformation simplifies Eq. (1) which may
now be written

(~ —6'„)[1 + (6 —6'„)/~ e ] =K ' . (la)
The quantity of basic interest is the electronic dis-
tribution f„(K). We shall employ what may be called
an extended diffusion approximation, writing f„(K)
in the form

f,(K) =F„(K)+K 'G„(K)+K 'H„(K) 'K.

In the simple diffusion approximation only the
terms with F„(K) and G„(K) are considered. The
additional term with H„(K) describes the possible
"streaming" of the distribution in K-space. %'ith-
out loss of generality, H „may be taken as a sym-
metric tensor with tr(H„) =0.

The stationary distribution in the vth valley can
be determined from the Boltzmann equation

K„v,y.g)+(-;,) =0.
scat t

(4)

Here the normalized field for the vth valley is de-
fined by

K =-e(2m )
'~' 'E

where K is the external electric field. By inserting
(3) into (4) and separating terms with different
symmetry properties we obtain the following set of
equations:

(
BE g 9

[K'K„'G„(K)],
scat t

(6)

ciprocal space. We assume that the total energy E

of an electron with wave vector k close to the mini-
mum ko of the vth valley) will satisfy the equation

(g z') 1+ " = ~S'(k —k'„) .m„' (k —k'„) . (1)
0

Here, &0 denotes the minimum energy of the valley.
(A uniaxial pressure may cause different valleys to
have different minimum energies. ) The effective-
mass tensor m„describes the valley around the
vth minimum. The m„ tensor (which is assumed to
be independent of e) has transverse and longitudinal
eigenvalues m, and m„. A possible nonparabolicity
of the conduction band is taken into account in a
phenomenological way by assuming a band struc-
ture which is generally hyperbolic rather than
parabolic. The parameter &~ indicates the energy
threshold above which significant deviations from
the parabolic shape will occur. (Obviously, the
limit &e- ~ corresponds to the parabolic case. )

In the following, we shall use (instead of k) the
transformed wave vector'

~ ~

scat t

B(K') 2(e —e'„) 4K'
BE

(10)

The quantity f appears here as a nonparabolocity
correction factor in the velocity equation. Later,
the same factor will appear in all the scat tering
terms where it is introduced, in general, via the
energy-conserving ~ function in the "golden rule"
scattering probabilities.

Given the electronic distribution (the F„(K) and

V„(K) functions) we can evaluate the average drift
velocity:

1 P (—,'m )
'~' f, K4g(K)/g(K)) dK

P„J,"F„(K)K2dK

In the limit of zero electric field the electronic
drift mobility can be calculated in a straightfor-
ward way from Eqs. (7) and (ll) because F„(K) may
be approximated by the thermal equilibrium distri-
bution and H„(K) by zero.

At higher fields the coupled system of Eqs. (6)-
(8) must be solved numerically. An iterative meth-
od of solution is reviewed in Appendix A.

To specify the model completely we must now
deal with the evaluation of the scattering terms on
the left hand side of Eqs. (6)-(8).

To simplify the numerical calculations we shall
use relaxation-time approximations as far as pos-
sible. Since all the relevant scattering mecha-
nisms are either isotropic or (almost) energy con-
serving we may introduce a momentum relaxation-
time tensor as pointed out by Herring and Vogt. '
Then the 5„term takes the form

(12)

where .r (K) has the symmetry of the valley with
transverse and longitudinal eigenvalues r„,(K) and

r„„(K). (Unless the valleys are displaced by a uni-
axial pressure, the 7, and 7) functions are the

[2(K„G,(K)+G„(K)K„)—g 1G„'K,],
scat t

(8)

(The unit tensor is denoted by 1.)
It may be noted that the disturbance from the

applied field will couple E„and G, together as well
as G„and H„. However, there is no field-coupling
between E„and H„.

A conduction electron will travel with the group
velocity v = (1/5) V~e. Using (1) and (2) we obtain

v(K) = (-,'m„) '~' Rjr'(K), (9)

where
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9H„
sf 8~~(( ( )

H (K) (13)

same for all valleys. )
In the case of n-Si the streaming correction as

described by H„ is relatively small. Therefore,
we shall avoid a more elaborate relaxation time
formalism and simply put:

Thus the "streaming relaxation time" (in principle
a fourth-order tensor) is assumed to be scalar and
is furthermore approximated by the transverse
momentum relaxation time r„,(K). (This becomes
a very good approximation in the hot-electron
case where isotropic scattering mechanisms are
dominating. ) The reciprocal relaxation times may
be written (with A. = L or ii)

1
(K)

= t'(K) W„„K+, a in[1+ (5 QK')']—

+ gg W'"' [n„'„'K,t (K,) + (n' '+ 1)K l'(K ) ] .
~~V m

(14)

(15)

Here, 8'„~ is an acoustic-phonon coupling con-
stant which depends on the lattice temperature T
and the elastic coefficients c,&..

6Ow'Wm, mfa)tr
h'(3c» + 2c»+ 4c«)

In terms of the deformation potential D(™'we have

2m-~m m ~
~(m) — " i 0 (D(m))2

V Q $2p@(g0+)
Vg

(p is the specific weight of the crystal). The quan-
tities K, are defined by

The effective deformation potentials J and
are defined in Appendix 8 as simple functions of
:"„and:-„and the "electrostatic" coefficients' C,
and C, .

Scattering by ionized impurities is characterized
by the constant'

K, ={K +&& [g(K)+ &e /Eg ]]' '

with,
= +S(0 i+ &Vg V

(19)

(19a)

3~e'm
2~(4~& (()2~ (/~

and a screening parameter

(4m&0(() 2wm PT

where ¹ and N, are the concentrations of ionized
impurities and conduction electrons. The dimen-
sionless coefficients a„b„.. . , d„are given in
Appendix B.

W„' ' denotes an intervalley phonon coupling con-
stant for transitions between valleys No. v and p,

by phonons of type m. Iv„'„' and n„'„' are the cor-
responding phonon energy and occupation number.

It is understood that K, = 0 when a negative argu-
ment appears under the square-root sign in Eq.
(19). When &~- ~ (parabolic bands), Eq. (19)
yields K, =[ K' +a~,]'i'.

The spherically symmetric part of the distribu-
tion is influenced by scattering processes in a
more complicated way which makes simple relax-
ation- time approximations impossible. The domin-
ating contribution to (SE„/St)„,«comes from inter-
valley scattering. Also, acoustic energy relaxa-
tion has been included in the general expression.
The energy conserving impurity scattering does
not influence E„(K) directly since we neglect im-
purity induced intervalley transitions. The total
expression then becomes4:

[K't.(K)]' „"+ " + P W„„&[[E„(K,)(n(:„&+1)-E„(K)~(„"„&]K,g(K.)
acat t

+ [E„(K)n(„„'-E„(K)(n(„„&+1)]Kg(K )] (20)

32 Masm', m, ,
i

CC& I p
(21)

[with symbols K, as defined by (19)]. The constants
S'„„'have already been defined. The acoustic en-
ergy relaxation parameter 8'„, is defined by4

The effective deformation potential ", for acoustic
energy relaxation may be calculated by methods
very similar to those employed in Ref. 2 for the
calculation of:",and =„. The numerical coeffi-
cients relating "0 to "„, "g Cy and C, are given
in Appendix B.
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It is seen that Eq. (20) describes the energy-ex-
change between the electron gas and the phonons
as well as the energy- and electron-exchange be-
tween different valleys.

III. ACOUSTIC PHONON PARAMETERS

The choice of acoustic scattering parameters
(:"„,:"~, C„and C,) must be consistent with the
results from a number of different experiments
and theoretical calculations.

Balslev's piezo-optical experiments' indicate
that "„must be close to 8.6 eV. Several measure-
ments of the electronic mobility in pure crystals"
at lower temperatures (where contributions from
ionized impurities and intervalley phonons may be
neglected) show that the acoustic-phonon limited
mobility at 77 K lies between 25 000 and 2V 000
cm'/V sec. Also the acoustic scattering anisotropy
is important. Recent piezoresistance data indi-
cate that (r„/7', ) = 0.81. Finally, we may employ'
a theoretical result by Pindor' who found C,„,
= 2C, + 2C2) = 2.7 eV.

From these data we have obtained a solution for
:-„, C, and C,. All the parameters relevant for
acoustic scatterio, g are summarized in Table I.

IV. INTERVALLEY SCATTERING AND NONPARABOLICITY

A group-theoretical analysis of the matrix ele-
ments for electron-phonon scattering has been
carried out by Streitwolf"'" who corrected some
errors in earlier treatments. " Streitwolf's re-
sult is that the matrix elements of most intervalley
phonons vanish due to symmetry. Only LO-type
g phonons and LA- and TO-type f phonons are al-
lowed when only zero-order processes are consid-
ered. Also, transitions by LO and TO intravalley
phonons (with zero wave vector) are prohibited.

From the well-known phonon spectrum of sili-
con" we obtain the following energies for the al-
lowed intervalley phonons:

Se (LO) =62 meV,

Ruz(TO) = 59 meV,

h~&(LA) =47 meV.

The values are determined by assuming that the
distance from k =0 to the valley-minima is 85/0 of
the distance to the Brillouin-zone boundary (in con-
sistency with Streitwolf's assumption that the in-
tervalley phonon transitions are Umklapp process-
es).

The phonon energies obtained by this procedure
are in very good agreement with those obtained by
MPH experiments. '4 These experiments, however,
also seem to prove that there is a quite signifi-

TABI K I. Acoustic scattering parameters for n-Si.

Cg

C2

m, /mo
m„/m,

Ci2

C44

P

8.60
—0.30

3.35
-3.78

0.1905
0.9163
1.657 x 10~~

0.639 x 10"
0.796 x 10
2420

eV
eV
eV
eV

N/m2

N/m
N/m
kg/m3

cant coupling between electrons in n-Si and a 12-
meV TA-type g phonon which should not be al-
lowed, according to group theory. This evidence
is supported by the experience during the progress
of the present work: It seems quite difficult to ob-
tain a good fit between numerical calculations and
experimental data from simple transport experi-
ments unless a significant contribution from a g
phonon of rather low energy is allowed.

By Fourier-analyzing different MPR spectra for
n-Si Eaves et a/. ' have shown that in addition to
the three "allowed" phonons and the rather domin-
ant "forbidden" 12-meV phonon also an LA-type
g phonon (with energy 19 meV) may be active. The
12-meV phonon was, however, the only "forbidden"
phonon which showed up at ali sample orientations.

In the numerical calculations to be presented here
it has turned out that by using two f-phonons (59
snd 47 meV) and two g phonons (62 and 12 meV) we
may obtain a reasonable fit to simple transport
data (hot- and warm-electron data and mobility
versus temperature).

The intervalley phonon deformation potentials
[the D~& con'stants in Eg. (18)] have been used as
fitting parameters while fixed acoustic phonon pa-
rar:.eters have been used (corresponding to the data
given in Table I).

The electronic mobility in pure n-Si is assumed
to be 1450 cm'/Vsec at 300 K.' Since the acoustic-
phonon limited mobility (calculated from a parabol-
ic model) is 3500 cm'/V sec at 300 K we can esti-
mate the combined effect of nonparabolicity and
scattering by high-energy phonons.

A distinction between f- and g-phonon contribu-
tions can be made from piezoresistance data.
Consider two experiments with uniaxial pressure
applied in [001] and [011]directions, respectively.
In both cases the electric field is applied along
[100]. In the saturation limit all electrons are con-
centrated in the [001] valley (with [001] pressure)
or in the [010]and [001) valleys (with [011]pres-
sure) and in either case the transverse mobility is
measured since the electric field is perpendicular
to populated valleys. In the first case it is obvi-
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ous that f scattering has been entirely eliminated
since only one set of valleys (along [001])ispopu-
lated. In the second case, however, only 50% of
the original f scattering is eliminated since tran-
sitions between [010]and [001]valleys may still
take place. The saturation mobility should be the
same in the two cases if f scattering were negli-
gible. By comparing experimental mobility versus
pressure curves" with numerical calculations we
may ensure that the relative magnitude off scatter-
ing as compared to other scattering mechanisms
is essentially correct.

Any set of D„'„' values to be used as fitting pa-
rameters in hot- or warm-electron calculations
has been tested as indicated above: (i) the room
temperature mobility must be close to 1450 cm2/
V sec and (ii) the relative contribution from f scat-
tering must be consistent with piezoresistance
data at 300 K. The effect of nonparabolicity is
easy to explain in qualitative terms: (a) As shown

by Eqs. (14) and (20) the efficiency of all scatter-
ing mechanisms is increased by the factor f(K)
which becomes significant unless IC' «e~. (b) As
shown by Eqs. (9)-(11) g(K) will also appear as a
limiting factor in the calculation of the electronic
drift velocity. Therefore a nonparabolicity will
cause a stronger current saturation at very high
electric fields and electron temperatures.

It turns out that calculations based on a parabolic
model. for n-Si will never predict current satura-
tion at high lattice temperatures. Experimental
I- V curves, however, clearly exhibit current satu-
ration, also at lattice temperatures of 300-480
K ie, xv This has already been discussed by Jaco-
boni et al."who showed (by Monte Carlo calcula-
tions) that a much improved fit was obtained by
using a hyperbolic band model with c~ =2 eV.

This result was confirmed in our calculations
and we have adopted the value a~ ='2 eV in the cal-
culations to be discussed in the following. With
e~ = 2 eV one obtains from Eg. (1) that the trans-
verse cyclotron mass should increase by 0.3% per
meV of electronic energy. This seems to be in
fair agreement with recent experimental data. "

V. COMPARISON VfITH EXPERIMENTAL DATA

The detexmination of the "best" D„'„' values was
mainly carried out by fitting the numerical calcu-
lations to two experimental curves: (a) P vs. P
(at T = 77 K) with E )) [100]and uniaxial pressure
applied along [100]. (b) P vs. T (for T =77-250 K)
with Z )) [111]. (Tbe warm-electron coefficient P
is defined by v„(E)= p(0)(l+E'p)E at low electric
fields' ). Tbe phonon parameters obtained in this
way are then tested by comparison between theore-
tical results and typical experimental, hot- electron
data.

TABLE II. Intervalley scattering parameters for n-Si.

D (m)
V.Jl

{eV/m)
A(dp~ Type of
(meV) Phonon mode scattering

g)y59=2 && 1010

Dy'47 =4,3 X 1010

D~62-7.5 x 10"
Dg2 = 0.65 X 10

59
47

62
12

TO
LA

LO
TA

100 )

I I

n - S i (p300- f 900 cm )

periment

TA I

TA Il

TA III

C4

u 4
E

C):
Q

0
0

I

2000
I

4000
l

6000 8000

pl+a(kg / cm2)

FIG. 1. Vfarm-electron coefficient P vs. uniaxial
pressure p at 77 K. Electric field and pressure are
applied along [1001. (The curve is experimental and
the points are calculated. )

The intervalley phonon parameters which give the
best overall fit to the experimental curves are
shown in Table II. In the following these data are
always referred to as DATA I.

It turns out that the distribution of scattering
power between the "allowed" 62 meV and the "for-
bidden" 12 meV g phonon has a strong influence on
the value of P when the electric field is parallel to
[100]. When E () [111],however, this influence on
P is minimal. This point is illustrated by Fig. 1
where p&„» is shown as a function of applied uni-
axial pressure at 77 K,"and Fig. 2 which shows

p&»» versus temperature' {no stress). '

Three sets of theoretical points are shown, la-
beled DATA I, II, and III. The DATA II curves
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20

5

P4
E

0,5

0.2

0.1
100 150 200 250

TL (K)

FIG. 2. ~arm-electron coefficient P vs tempera-
ture. Electric field is applied along fill]. (The curve
is experimental and the points are calculated. )

were calculated with a slightly higher value of
D» and a correspondingly lower value of D „:
D»=0.7x10" eV/m and D „=7&&10»eV/m
(otherwise as DATA 1).

The distribution of scattering power between the
two f-type phonons is not iluite as critical. This
is hardly surprising since the phonon energies
(59 and 4V meV) are not very different. The effect
of redistributing the scattering power between the

47 and 59 meV phonons is illustrated by the DATA
III points which were calculated with a higher D&»
value and a lower D&47 value: Dz» = 6 && 10"eV/m
and D&~7=2 eV/m (otherwise as DATA I).

There is a very clear tendency for P,»» as well
as Pn, » to become too large when the D», /Dz~,
ratio is increased as strongly as here. It is, how-
ever, not likely that simple transport measure-
ments can produce a very accurate determination
of this ratio.

Now we turn to hot-electron experiments at 77 K.
Figure 3 shows the normalized drift velocity v~/
iJ.(E =0) as a function of applied field along [100]
and [111].

Experimental curves are averages over results
obtained by Hansen" and Jdrgensen" whose data
are in very good agreement. It should be noted
that the experiments were carried out with voltage
pulses about 1 p,sec long. This means that the
pulse length is greater than characteristic relaxa-
tion times at this temperature. (This applies not
only to momentum relaxation times but to energy
relaxation times and valley repopulation time con-
stants as well. ) Therefore, a stationary electronic
distribution can be assumed during the drift pulse
as long as the pulse length, on the other hand, is
sufficiently short to avoid heating of the crystal
lattice.

There is some discrepancy between our experi-
mental curves and those published by Canali et al."
Their curves were obtained by time-of-flight mea-
surements with nanosecond pulses on very short
samples. A comparison shows that the important
"kink" oh the [100] curves seems to be somewhat
suppressed and shifted to higher fields in the time-

1000,

500

FIG. 3. Normalized drift
velocity vz (E)/p(0) ve elec-
tric field g at 77 K. Elec-
tric field is applied along
[100] and [111]. (Full lines
signify experiment and
broken lines signify theory. )

50

20
20

. &00 200 500 )000 2000 5000

E, (V/cm)
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ferred DATA I parameters) are shown in Fig. 4(b).
There is a good qualitative agreement with Fig.
4(a), considering the fact that accurate, absolute
measurements of ~tang~ are rather difficult.

y „(K)=K'Z„(K),

g„(K) =K'G(K),

h„(K) =K'K„'H „(K),

(A1)

VI. CONCLUSION

We have shown that several warm- and hot-elec-
tron experiments can be interpreted successfully
in terms of the available informatiori about the
electron-phonon coupling in silicon. Approximate
values have been assigned to some of the unknown
electron-phonon coupling constants.

The experimental results seem to have an im-
portant feature in common with the results from
MPR experiments: The theoretical explanation
must include coupling to at least one photon of low
energy although such couplings seem forbidderi by
symmetry. Our calculations give full support to
the conclusions reached by Jacoboni and ca-work-
ers" about the nonparabolicity of the conduction
band, which becomes important at higher temper-
atures.

We have described numer'ical methods suitable
for solving the statioriary hot-electron transport
problem in any nonpo)ar semiconductor with a
many-valley conduction band. It should be men-
tioned that although our method was initially aimed
at the stationary problem, it is possib}e to calcu-
late (by repeated iterations) a set of coefficients
which completely specify the (small signal) micro-
wave response of the hot-electron gas at an arbi-
trary frequency. This procedure will be described
in detail elsewhere. "
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APPENDIX A: NUMERICAL SOLUTION

OF THE BOLTZMANN EQUATION

We shall indicate how E(ls. (6)-(8}a,re solved to
obtain G„(which is all we need to calculate the cur-
rent contributions from the different valleys).

Introducing the functions:

and using the relaxation-time approximations (I 2)
and (13), we may write (6)-(8) in the form:

g
-3 g~ ~K g Op

8 2a-'g —K 2y —E y +— h =0
V V V V g~ V 5 8~ V

(A2)

(A3)

h„+~K' —
~ K„].+ —,'K

v 'gv =0. A4

Assuming weak scattering anisotropy, we can
simplify the calculation of the higher-order term
h„by assuming gv and Kv to be parallel. Then Eq.
(A4) gives

I

II„=8„(K) 48„—K 8.),
with

@„(K)= 2K'„r„/3K—.
Inserting (A5) into (A3) we get

(A5)

(A6)

Kv + 2Xv AV

We may interprete (AV} as a set of 3 (mutally inde-
pendent) ordinary second-order differential e(lua-
tions which may be solved for g(K) when y(K) is
known. Because of the axial symmetry of the con-
duction band valleys we only need to solve two of
these equations to find g„, and g„„. The particular
solutions to be used are identified by the boundary
conditions g„(K)-0 for K-0 and K- ~.

If the h„ term in (A3) is neglected (as in the
usual "diffusion approximation") all terms with C„
vanish from (AV) and we get the simple solution:

8.(»)=&. 'K. (8 —K ) y„(K),

which eventually turns out to be a useful trial func-
tion. Finally the expression (20) for (8F„/st)„,«
is used and (A2) may now be written:

I

1

, -g(K) sy„, 1 ~(K)!Iy 8„» I»8(K)& 8» ..8.»' 8»»* y" 8 8»»""'" " 8») "

W& &[K g(K )(n&„"„&+I)+Kg(Kgn&„"„&jy„
PA V fg

[8(»)y „(K )nI„'/K + 8(K)y„(K)(KI„'+(,)/K ]+—
8 (

—K I„I8 ) . (»8)
jl && V f5
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Here K, is defined in Eq. (19), and

6g„(K}=- g.(K) —g:(K}. (A9) A]j A])i Agp

TABLE III. Acoustic-phonon coefficients.

The &g„ term on the right-hand side of (AS) is nec-
essary because the trial function g'„(K} has been in-
serted into the field term on the left-hand side in-
stead of the proper function g(K). This is done in
order to facilitate an iterative solution of (AS}.
For the same reason the intervalley phonon scat-
tering term has been split such that "scattering
into state K" is moved to the right-hand side and
"scattering out of state K" is retained on the left-
hand side of Eq. (A8) (together with the acoustic-
phonon scattering term). If the right-hand side of
Eq. (A8) is a known function of K, the problem is
reduced to the solution of an ordinary second-order
differential equation [with boundary conditions
y„(K)- 0 for K- 0 and K-~].

The initial step in the iterative procedure is the
(rather uncritical) choice of trial functions for
y„(K) and 6g„(K). Then the iterative procedure is
entered: (i) The function on the right-hand side of
Eq. (A8) is calculated from y„(K) and 6g„(K). (ii)
An improved version of y„(K} is now obtained by
solving (A8) as a differential equation with respect
to the y„ function appearing on the left-hand side.
(iii) Using the improved version of y, (K) the differ-
ential equations in (A I) are solved to obtain im-
proved versions of g„(K} [and &g„(K)]. (iv} The
whole sequence [beginning with step (i)] is repeated
until the correction to y„(K) made in each cycle is
approaching zero. From the finally accepted ver-
sion of y„(K} the valley population factors and the
"electron temperatures" are calculated and, more
important, the final version of g„(K) which deter-
mines the average electronic drift velocity.

To summarize, we have shown that in the "ex-
tended diffusion approximation" the Boltzmann
equation for n-Si may be solved by carrying out a
limited number of iterative cycles. In each cycle.
a set of independent, ordinary second-order dif-
ferential equations must be solved with fixed bound-
ary conditions. In principle, this set contains 6
y, (K) equations and 18 g„(K) equations. However,
one may take advantage of the conduction-band
symmetries and solve only 3 y„(K) equations and
6 g„(K) equations in the general case. (A further
reduction is possible if the electric field as well
as the axis of a possible uniaxial pressure are
parallel to one of the (111), (110), or (100) direc-
tions. )

With typical n-Si parameters one calculation with
an overall accuracy of 0.5% (on the y„ functions)
will require 4 to 12 iterative cycles (less than 2
sec central-processor unit time on an IBM 370/
165).

The accuracy of the extended diffusion approxi-

1.04
1.14
1.34
0.85
0.73
1.70

1.58
2.46
1.40
2.48
1.10
2.25

1.57
3.13
2.23
2.58
1.29
3.16

APPENDIX 8: SCATTERING COEFFICIENTS USED
IN NUMERICAL CALCULATIONS

The effective deformation potentials .„"„, and
:",appearing in Eqs. (15) and (21}are defined by

TABLE IV. Impurity scattering coefficients.

3.765
1.059

0.788
1.226

1.384
1.133

5.87
4.97

mation has been tested by comparison with accu-
rate Monte Carlo calculations (with less than 5%
statistical error on the drift velocity). At high
electric fields the results are identical (whereas
the ordinary diffusion approximation without
"streaming" corrections gives drift velocities
which are typically 10% too high). At lower elec-
tric fields the number of free flights required for
an accurate Monte Carlo calculation becomes pro-
hibitively large. Even at high fields, however,
iterative solutions are more than ten times faster
than Monte Carlo simulations.

If at least 15 iterative cycles are allowed the ac-
curacy at lower electric fields (in the warm-elec-
tron region) becomes sufficiently high for a deter-
mination of the warm electron coefficients' P and
y. In this case one must define a function p(E) by
p~(E}= p(0)[E+E'P(E) ]. After calculating P(E) for
a few properly chosen field-values the "true" P-
coefficient P(0) can be found by extrapolation since
P(E) varies linearly with E' at low electric fields.
Similar techniques apply to the coefficient p which
describes the transverse anisotropy in the warm
electron range. '

Finally, it is worth mentioning that the "stream-
ing" of the electronic distribution (as described
by h„or H„) is not a specific high field or "hot-
electron" effect but should, in principle, be in-
cluded as soon as any nonlinear transport effect is
considered. In our calculations typical deviations
of (10-15)%are found when h„ terms are left out
in P calculations.
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=', = ='.fA..+ (A..+»3.)~ 8 =(:„+C,)/:"„and C =C,/:"„. (B2)

+(A, +CA, +», )C j (B1)

with &=&, (~ or 0. The constants 8 and C are de-
fined by

The coefficients A,„are listed in Table III.
A detailed discussion of the A,, and A,.„coeffi-

cients is found in Ref. ~2 ~. The impurity scattering
coefficients a~, . . . , d~ appearing in Eq. (14) are
given in Table IV for n-Si.
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