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Free-carrier absorption in n-type semiconductors: The inelastic scattering
of electrons from ionized impuritiest
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We examine the theory of free-carrier absorption in the Drude tail of n-type semiconductors, from the
process where absorption of a photon by a conduction electron occurs in concert with scattering from an
ionized impurity imbedded in a rigid lattice. The electron may suffer energy loss when scattering from the
impurity because a fraction of its kinetic energy may be transferred to the screening cloud which surrounds
the impurity. We derive an expression for the frequency-dependent optical relaxation time from this process,
and explore its behavior for parameters typical of reasonably heavily doped semiconductors. The physcial
origin of structure in the frequency variation of the optical relaxation rate is discussed; we find clear
evidence of structure for photon frequencies near the conduction-electron plasma frequency.

I. INTRODUCTORY REMARKS

For frequencies well below the interband ab-
sorption edge, optical absorption in doped semi-
conductors arises primarily from the free car-
riers through intraband, inverse bremsstrahlung
processes. One describes this free-carrier ab-
sorption phenomenologically through use of the
Drude model, in simple cases where the carriers
reside in a nearly parabolic band. If the carriers
have effective mass m*, and number density n,
one introduces a phenomenological relaxation time
7(Q) for the carriers, where A is the frequency
of the radiation that excites them. The absorption
rate is controlled by the real part of the frequency-
dependent conductivity t7(A). When Ar(Q)»1, one
has

Re[tv(Q) ]= (ne'/m*A') [1/&(A) ] .
The theoretical study of absorption in this "Drude
tail" regime reduces to the examination of the
various contributions to the optical relaxation rate
1/v(A).

This area has been the focus of a rather con-
siderabl. e number of theoretical studies. ' Our at-
tention has been attracted to it because it seems
that a number of features of the data remain diffi-
cult to explain. An example is the apparent ab-
sence of temperature dependence in the absorption
coefficient of heavily doped n-type CdTe, ' under
conditions where it has been argued' that LO-pho-
non-mediated processes should provide the domi-
nant contribution to the relaxation rate 1/7(Q)
This has led us to extend the earlier theories' of
the LO-photon-mediated process, which are really
applicable when the electron-plasma frequency +~
is lower than that of the LO phonon coLO, into the
range of carrier concentrations where +& is com-
parable to or larger than +L~.

In this paper, we reexamine a second process
believed to play an important role in the Drude
tail. This is the process where a photon is ab-
sorbed by a free carrier, which then scatters off
an ionized impurity in the lattice.

In the earlier treatments, ' the impurity is pre-
sumed rigidly imbedded in the lattice, and the in-
coming electron sees the potential of the charged
impurity screened statically by the free carriers.
If z is the effective charge of the impurity, and
t(q) the wave-vector-dependent static dielectric
constant of the system, the screened potential is
given by

4ttZe' 4ttZe'
q'&(q) a„(q'+ q,') ' (1.2)

where in the second step the Fermi-Thomas model
with c(q) = e„(1+q,'/q') has been introduced.

The potential with matrix element V,(q) in Etl.
(1.2) is a static potential, and as a consetluence
the electron scatters elastically from the impurity.
But even if the impurity is rigidly imbedded in the
lattice, there can still be inelastic character to the
electron-impurity scattering event. This is be-
cause the screening cloud which surrounds the im-
purity can be excited by the incoming electron, to
absorb part of its kinetic energy. In essence, in
response to the electron impact, the impurity may
radiate plasmons, or single particle-hole excita-
tions. A complete description of the impurity con-
tribution to the Drude tail should incorporate these
features of the scattering process. The purpose
of this paper is to describe such a treatment of the
problem, for the simple case of electrons in a
parabolic conduction band of a semiconductor. It
turns out that the formalism we developed in our
first paper can be readily adapted to the present
problem. Indeed, we need not carry out a sepa-
rate derivation of the formula for 1/7(A); it fol-
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lows directly from the expressions in our earlier
paper, after use of a simple physical argument.
We understand that Mycielski and Mycielski' have
recently completed a study of the question of the
inelastic scattering of electrons from charged im-
purities, with energy transfer to the screening
cloud. We shall comment on the relation of our
work to theirs in Sec. II.

In Sec. II, we present a derivation of the expres-
sion for 1/&(Q), and explore its behavior in a num-
ber of limits. This allows us to assess where the
earlier theories apply, and where they breakdown.
In Sec, III, we present detailed studies of the fre-
quency variation of 1/v(Q), with emphasis on the
new features present here. We make brief re-
marks on the trends in the frequency dependence
of 1/r(Q) in Sec. IV, and a comparison of the pres-
ent results with our earlier ones for the I 0-pho-
non-mediated process.

4mZe' 1
H —2C C»~

yg
kaq

(2.1)

where V is the crystal volume, and c- (cl) is the
annihilation (creation) operator for electrons.

In our previous paper, ' as remarked in Sec. I,
we derived an expression for 1/r(Q), for the case
where an LO phonon (coupled to the electron plas-
ma) was absorbed or emitted by an electron, as
the photon is absorbed. We take the limit of this
expression as the frequency ~Lo of the I 0 phonon
approaches zero. This expression, interpreted
properly, describes absorption in the presence of
frozen-in (i.e. , static) lattice disorder. Upon re-

II. DERIVATION OF AN EXPRESSION
FOR THE OPTICAL RELAXATION RATE,

AND EXPLORATION OF ITS GENERAL PROPERTIES

Before we begin, as in our earlier paper' (re-
ferred to as I in the remainder of the present arti-
cle), we presume the conduction band is parabolic,
with effective mass nz*. In Jensen's extensive
study of free-carrier absorption, band-structure
effects are included, and we refer the reader there
for a discussion of their role.

We start by writing down the second quantized
Hamiltonian that describes interaction of an elec-
tron with a single impurity of effective charge Z
imbedded in a lattice with background dielectric
constant e„. We shall deduce a form for 1/v'(Q)
for scattering of an electron from one impurity,
then multiply the result by the number of impuri-
ties/unit volume to obtain a final result appro-
priate to a material with finite impurity concen-
tration. If the impurity is placed at the origin,
the contribution HI to the crystal Hamiltonian from
the electron-impurity interaction is

lating the Frohlich coupling constant to the elec-
tron-impurity matrix element in Eq. (2.1) through
a physical argument, we are able to extract from
the result a formula for 1/v(Q) for the problem of
present interest.

As we noted in I, when &L~ is small compared
to the electron plasma frequency v~, our general
expression for 1/v(Q) reduces to a form equivalent
to a result of Mahan's, ' obtained in tile discussion
of a rather different problem. We have, from Eq.
(4.7) of I,

1 +oo

d(() [n(&o) -n(ra+ Q) ]

&& Q q'y,'(q) Im[D((o+iq)]

1x Im
&(q, ur + Q+ i@)

(2.2)

In this expression, n is the number of electrons/
cm', n(a&) = [exp(P+) —1] ' is the Bose-Einstein
function, y, (q) the Frohlieh coupling constant (we
shall not need its precise form), D(u&+i@) the
Green's function for the LO phonon and e(q, &o+Q

+iq) the dielectric function of the electron gas.
An expression for Im[D((d+i'))) ] is readily found
from Eq. (3.18) of I:

Im[D(u&+iq)]= v[&((d —(d») —&(v+ &o»)] . (2.3)

As we let (d»-0, the factor of ur in e(q, u&+Q

+iq) may be set to zero After eva. luating the in-
tegral over w that is left, we have, noting n(-&o»)
= —1 —n((d, o),

1 1
e(ie) 12eee'ee () e ' i(e, () eie)))

~~q'y', (q) Im

x [I+2n((d») -n(Q+(d»)

+n(Q —&u„o)] . (2.4)

As (dLo-0, the factor 2n((dLo) is replaced by
2ka&/(dLo (we use units with 5= 1), and the other
quantities in the square brackets are ignored,
since they remain of order unity. Thus, as (d»
-0, we have

1, &'„k~T
~(Q) Gwine'm*&()»Q

(2.5)

We now require an argument which eliminates
y,(q) in favor of the electron-impurity matrix ele-
ment. In I, the electron-phonon Hamiltonian was
written [combine Eq. (3.3c) with Eq. (3.3a)]
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(2.6)

where p(q) = b- —bt~, with b-, bt the phonon annilii-
lation and creation operators.

As ~«0, the occupation number of each pho-
non mode diverges, n, = k~T!(d«. In this limit,
we need not worry about the quantum-mechanical
nature of q)(q). We may treat q)(q) as a classical
random variable, which is time independent as

0. In fact, as ~La 0, one recovers the re-
sults of conventional electron-phonon scattering
theory if in Eq. (2.6), the factor of iq)(q) is re-

. placed by its classical root-mean-square value
(2ksT/(d„o)'i'. Thus, in the static limit e»-0,
Eq. (2.6} may be replaced by an equivalent effec-
tive Hamiltonian H,„, given by

8,= Q y,(q)c- .c-.
LO

(2.'I)

The expression in Eq. (2.7) is identical in form
to Eq. (2.1). As a consequence, we obtain the ex-
pression for 1/r(n) for our electron-impurity
scattering problem from Eq. (2.5) by making the
replacement yo(q) - (+«/2ksT)'i'(4vZe'/Ve„q').
Upon multiplying the expression that results by
the number Nl of impurities in the crystal, and
denoting their density by nz, we have the very
simple form

1 4nniZ'e' 1 1
'r(Q) Sm nG ) + e(q., ()+ig))' (2.8)

It will be useful to recall that in the random-phase
approximation (RPA) employed here, one has

4me'
e(q, n+fq)=e„—, x,(q, n), (2.9)

where

(2.10)

The factor of 2 in Eq. (2.10) is for spin, fg is the
Fermi-Dirac function, and e~= k'/2m*.

The results displayed in Eqs. (2.8)-(2.10) form
the basis for the discussion in the remainder of
the paper. In Eq. (2.8), we have the expression
which describes the transfer of energy SQ from
the incoming photon to the excitations in the elec-
tron gas, with the impurity playing the role of a
momentum sink. This is just as in the classical
theory of the bremsstrahlung process. Physically,
in our case, we can think of the process as one
where the incoming photon virtually excites an
electron, which collides with the impurity center,
to transfer part of its kinetic energy to oscilla-
tions in the screening cloud around the impurity.

x 6(&-„,- g-„n),
(2.11)

or in the equivalent form (with P= 1/AT)

1 32''riiZ e 1 —e-en

v(n) 3m*nn V'

1~ q'[~'„(q, Q)+e',(q, Q)]

(2.12)

. First, consider the behavior in the limit as the
photon frequency becomes very large. One can
see this by noting that the values of k are re-
stricted by the factor of f- in Eq. (2.12}, so
that we must have q as 0-~. As 0 , to
conserve energy and wave vector q must become
very large also. Since k is limited by the factor
f. to values equal to kz or smaller, where kz is
the Fermi wave vector, (we assume the electrons
are degenerate, although the conclusion we draw
is quite general), in the energy conserving delta
function, e-„,&

—E- may be replaced by simply &-.
Also, since the final state is surely empty, 1 -f- .
may be replaced by unity.

The above argument shows that when Q becomes
large, q necessarily does also. But at large wave
vectors (much larger than kv, for example) and
high frequencies (higher than either the Fermi en-
ergy Er or the plasma frequency v~), the dielec-
tric function e(q, Q) reduces simply to e„. The
electron gas is ineffective in screening the im-
purity. Thus, Eq. (2.12) can be replaced by, to
very good accuracy, recalling the factor of 2 for
spin,

1 16m'nlZ'e~ 1 —e ~" 1
r(n) 3m~n&'„V . q

-v «- -Q). (2.13)

This expression is easily evaluated to give

1 SmniZ'e~ 1 —e ~"

T(n) 3e'„(2m ~)' ' n'" (2.14)

The remainder of this section is devoted to a
study of 1/r(n) in various special limits, and the
relation of the form in Eq. (2.8) to earlier static

~ screening approaches to the present problem. For
this purpose, it is useful to rearrange Eq. (2.8) to
read

1 327|'n,s'e4 1 1
- ~(n) 3m*sn V' ~ q'[e'„(q, n)+ e,'(q, n)]
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When carried through to the absorption constant,
the expression in Eq. (2.14) gives the often quoted
0 ' ' law for the contribution to the absorption con-
stant from ionized impurity scattering.

From the present view point, the important fea-
ture of the argument above is that the factors
e~(q, Q) and c,(q, Q) which appear in Eq. (2.12)
drop out, with the whole expression in square
brackets replaced by simply e„'. Thus, the result
in Eq. (2.13) is independent of whether the impur-
ity is regarded as dynamically screened, as in
the present theory, or whether the screening cloud
is treated as rigid and static, as assumed in the
expression displayed in Eq. (1.1), which has been
utilized in earlier theories, as remarked in Sec.
I.

Next consider the limit 0-0, which should give
us the dc mobility relaxation time, i.e. , the re-
laxation time appropriate to the dc electrical
transport.

Before we turn to the limit 0-0, a word about
the significance of the result is in order. The ex-
pression we have obtained. for the electronic re-
laxation time r(Q) utilizes an approach that makes
essential use of the assumption Qr(Q)» 1, as
Holstein's classic paper discusses most elegantly. '
One must question the extrapolation of the ex-
pression for i'(Q) to zero frequency as a conse-
quence. However, as Mahan has argued, ' and we
have also, ' the expression for v(A) obtained by the
method used in I gives at 0 =—0 ari expression for
the electronic relaxation time identical to that pro-
vided by a simple approximate solution of the
Boltzmann equation of dc transport theory. This
solution is the one where one presumes that in the
external dc electric field, the nonequilibrium elec-
tron distribution function is just shifted in velocity
space by a drift velocity VD. While this method of
solving the dc transport equation is clearly an ap-
proximate one, the variational principal of trans-
port theory' insures that this procedure yields an
upper bound to the relaxation sate; the estimate
of the relaxation rate can be quite good, even when
the scattering is quite anisotropic. '

We examine the dc limit 0= 0 with the above
qualifications in mind. At A=0, ei(q, Q) =—0, and
Eq. (2.12) becomes

1 32m'n Z'e4 1 1
i'(0) Sm*nkeT V' ~ q'e2~(q, 0}

xQ fq(l —f1 1} ~(q1 - —q-).

(2.15)

If V~= k/m* is the velocity of an electron with wave
vector k, and x is a unit vector in the direction of

This expression can be recognized as the ex-
pression for 1/&(0) provided by Ziman's variation-
al principal' in combination with the "drifting elec-
tron gas" ansatz for the nonequilibrium form of
the distribution function. The effective potential
seen by the electron is just the statically screened
potential of Eq. (1.1).

Thus, there is no difference in principal between
the earlier theories of ionized impurity scattering
and the present dynamical theory in the dc limit
A-O. When this is combined with the result dis-
played in Eq. (2.14) and the discussion that follows,
we see that the present theory has new things to
say about the frequency variation of the optical re-
laxation rate only for frequencies 0 near the char-
acteristic frequencies of the electron gas, most
notably near the plasma frequency v&.

In the frequency regime allowed to the electron
plasma oscillations, the dynamical nature of the
screening cloud can affect the behavior of I /r( A)

in a most pronounced fashion. Let &o~(q) be the dis-
persion relation of the collective excitations (plas-
mons) in the conduction electron gas. Then

e~(q, or~(q)) vanishes, and if the imaginary part of
«(q, Q+ii}) is small, there will be a strong reson-
ance in the integrand of Eq. (2.11). This will show
up as structure in the relaxation rate 1/7(Q) near
(0).

We ean isolate the contribution to 1/7(Q) from
these collective modes, if we assume them sharp,
well-defined elementary excitations of the elec-
tron gas. Let e~(q) be the dispersion relation of
these modes, and write Eq. (2.8) in the form

1 4vniZ'e' 1 ~ ci(q, Q)
~(A) sm*nA V ~ ~',(q, A)+~,'(q, Q)

(2.17a}

2nzZ'e' " "
dq q~ei(q, A)

Svm*nQ „, e2s(q, A)+e,'(q, Q)
' (2.17b)

Let q= q~(Q) be the wave vector of the plasmon of
frequency Q [here Q& e~(0), the plasmon frequency
at q= 0], and assume ai(q, Q) small and smoothly
varying, considered as a function of q near q~(Q).
Then in Eq. (2.17b), replace ez(q, Q) by ei(q, Q)
—= egq~(Q), Q) with little error, and near q=q~(Q)
write e„(q, Q) —= e„'[q —q~(Q)]. The integral over q
is then performed readily [after replacing the quan-

the applied electric fieM, then Eq. (2.15) may be
rewritten in the form

1 2fQgÃZ ~ ~ 4' Z8

7(0) nk~TV' ~ ~ q'es(q, 0)

x [~ (V. - -V-}]'
xf.(]. f. )6(e .—e.).

(2.16)
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tity q' in the numerator by q&(Q)], and one finds
from the collective mode the contribution

in 1/r(A), but one must use the full formula to ob-
tain results that can be usefully set alongside data.

1 2n, Z'e' q'(Q}
2.(Q) 3m*nA i~,'i ' (2.18)

III. NUMERICAL STUDY OF THE RELAXATION RULE

If we take the conduction electrons to be degen-
erate, then in the region 0» v„q where mell-de-
fined plasmons exist, we have

0=& 4' e' 12mne' v~
*A' 5 *A' A

(2.19)

so near A= &@2=(4vne'/e„m~)'/', we have

(A) (
5 )1/2(Q2 +2)1/2 (2.20)

(2.21)

Equation (2.18} then becomes, for Q near but just
above v„

n + e1( 5)3/2 E 5 (A2 2)1/2
~(Q)

' ' ~„m'nv,3 (2.22)

In Eq. (2.22}, we see that as A passes through

&~, one expects a shoulder in the relaxation rate
1/2(Q). This should have the square-root form,
familiar from the theory of optical absorption in
direct gap semiconductors.

In deriving Eq. (2.22), we have extracted only the
contribution to 1/v(Q) only from the plasmons.
There. is in addition a smooth background ignored
here Also, Eq. . (2.22) applies only near &o2, and
we cannot trace out the shape of the entire plas-
mon induced structure. In Sec. III, we turn to a
series of quantitative numerical studies of the fre-
quency variation of 1/v(Q), for parameters typical
of the semiconductor CdTe. During the discussion
of these numerical calculations, we shall come in
contact with the analytic results of the present sec-
tion.

At this point, me can offer a comparison between
the present theory, and that of Mycielski and My-
cielski. ' These authors examine the inelastic scat-
tering of electrons from a static charged impurity,
where the scattering is accompanied by plasmon
emission. They are led to an expression for 1/2(Q)
which near the plasma edge becomes equivalent to
our Eq. (2.22). This theory includes only the con-
tribution to 1/r(Q) from plasmon emission, and as
a consequence their expression for 1/2(Q) does not
reduce properly to Eq. (2.16) in the low-frequency
limit, nor does it correctly produce the high-fre-
quency limit of Eq. (2.14). In essence, these auth-
ors include only one part of the processes that con-
tribute to the relaxation rate. The calculations me
present in Sec. III show a clear plasmon structure

cosh(& W+ n)x ln 1
cosh(2 W- n)

(3.2)

Here e= q(h 2/2m*k sT)' /2, W= 2phA, p= 28'Q, and
n=2( ,'K2+W2/K'—-X'), with &2=pp, , where )1 is the
chemical potential of the fermions. In terms of
F,'5'(q, Q) and F,"'(q, A), the real and imaginary
parts of e(q, A) are given by

&(q, A+i Ei) = &„(q,A) + i &E(q, A),

where

e„(q, A) = e„—(4ve'/q') F,"'(q, Q),

&E(q, Q) = (4v e'/q—')F,'"(q, A)

(3.3)

(3.4a)

(3.4b)

Upon carrying out the angular integrations, we are
led to the form

1 2n,Z'e' "" q'5:E(q, Q)
2(Q) 3m~vnQ ., E„'(q, Q) + &E(q, A)

(3.5)

In the calculations reported here, we use m*
=O. limo, and &„=7.1. These parameters are char-
acteristic of CdTe, and formed the basis for our
earlier study of LO-phonon-mediated processes.

In Fig. 1, we present a plot of Im [1/e(q, &d +iE/) ],
as a function of q and ~ for n= 10"cm ' and

In Sec. II, we have derived a general expression
that describes the electron relaxation rate due to
dynamically screened impurities. In this section,
we present the results of numerical studies of
I/v(Q) based on the expression displayed in Eq.
(2.8). It will also prove instructive to compare the
present results with our earlier calculations of
the contribution to 1/r(Q) by LO-phonon mediated
processes. 4

As stated above, the starting point for the nu-
merical calculations is Eq. (2.8). It is convenient
to write X5(q, Q) in the form

X,(q, A) = F,"'(q, Q) +iF,"&(q, A), (3.1)

Since the free carriers are either fully or nearly
degenerate in the regime of concentrations and
temperatures of interest here (concentration
n ~ 10"cm ' and temperatures T ~ 300 K), for F,"'
me use the mell known Lindhard function. " As we
pointed out earlier, ' the imaginary part E2" can
be evaluated analytically in closed form for ar-
bitrary temperatures, and is given by

(,) (m*)3/' 1F, (q, Q)—
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FIG. 3. Frequency variation of 1/7 (Q) at liquid-nitro-
gen temperature, for several carrier concentrations in
CdTe. u& (0) and ~& (p~) are indicated for n = 10 ~ elec-
trons cm 3.

FIG. l. Plot of Im[l/e(q, 9+in)] for parameters char-,
acteristic of CdTe, with n =108 electrons cm and T
=-78 K. The dimensionless wave vector is I( =q(h /
2m*m V)'~'

I

T= V8 K. We see the mell-defined plasma excita-
tion at small wave vectors which merges with the
particle-hole continuum, to become Landau damped.
This plasmon will lead to the appearance of a clear-
ly-defined shoulder in 1/l(Q), as the discussion of
Sec. II suggests. We remark again that the theory
of Mycielski and Mycielski' includes only the con-
tribution from the plasmon excitation, and is un-
able to include the particle-hole continuum, which
makes a substantial contribution to 1/r(Q) at all
frequencies.

In Figs. 2 and 3, we present our calculations of
1/l(Q). To evaluate the prefactor in the express-
ion for the relaxation rate, we have assumed Z= 1,
and also that the impurity density nz and the free-
carrier concentration n are equal. Figure 2 shows
the frequency variation of 1/l(Q) for several car-
rier concentrations at room temperature, while
Fig. 3 is for liquid-nitrogen temperature. In each
case, we see that 1/v(Q) consists of a broad, mon-
otonically decreasing background, upon which a

clear and mell-defined structure has been super-
imposed. This structure originates from inelastic
scattering of electrons from charged impurities
accompanied by plasmon emission. In each case,
the onset of the structure is at the q= 0 plasma fre-
quency (4vne'/e„m~)'~', and it cuts off at the fre-
quency where the plasmon emerges with the par-
ticle-hole continuum. It is intriguing that study of
this mechanism provides information on the width
of the plasmon band, i.e. , one can determine the
frequency where Landau damping sets in. In all
curves, at high frequencies me find the 0 ' ' fre-
quency variation as expected from the arguments
that lead to Eq. (2.14).

As one would expect from Sec. II, and from the
nature of the process examined here, 1/l'(Q) is in-
sensitive to temperature at high frequencies, quite
in contrast to the LO-phonon-mediated process.

In fact we can contrast the contributions to the
total relaxation rate 1/l r(Q) by adding the contri-
butions from the individual processes so that

T = 300K

'o 4
4)
40

A
0

2-

I-

I I

(o) (, l

A' n = IO'9cm 3
300 K

H)

O (c)
T= 78K

I I

2 3
Q( IO3cm I )

FIG. 2. Frequency variation of 1/z(Q) at room tem-
perature for several carrier concentrations in CdTe.
The q = 0 plasma frequency co& (0) and the cutoff plasma
frequency & (qc) for which the plasmon merges with
the Landau damping region are indicated for n=10 9

electrons cm 3.

I 2 3 4 I

Q(IO cm ')
2 3 4

FIG. 4. Frequency variations of the total relaxation
rate 1/gz(Q) and its components 1/y z(Q) and 1/v. i(Q)
for several carrier concentrations and temperatures in
CdTe. In (a) and (b), T= 300 K, while (c) and (d) are
for T= 78 K. In (a) and (c), the electron and impurity
densities are @=10~~ cm 3, while (b) and (d) are for
~=4xl0'8 cm 3.
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1/r (Q) =1/r (Q)+1/r, (Q),

where 1/rz(Q) is the relaxation rate due to dynam-
ically screened ionized impurity induced processes,
the subject of this paper, and 1/v'~(Q) is the re-
laxation rate due to coupled LO-phonon-electron-
gas-mediated processes, the topic of our previous
paper. In Figs. 4(a)-(d) are plotted the frequency
variation of the various damping rates for several
densities and temperatures. Figures (a) and (b)
are for room temperature, (c) and (d) for liquid-
nitrogen temperature; (a) and (c) are for electron
and impurity densities n= 10" cm ', (b) and (d) for
n=4 ~10"cm '.

It may well be that in the experimental studies of
Spitzer et al. , the insensitivity of the absorption
constant to temperature results simply becauce
ionized impurity scattering. rather than LO-phonon-
mediated processes make the dominant contribu-
tion to 1/v(Q).

IV. CONCLUDING REMARKS

In the literature on free-carrier absorption in
semiconductors, it has proved difficult to unam-
biguously determine in any particular case the
mechanism that makes the dominant contribution
to I/v(Q). We believe this is because, as in Ref.
2, the focus is placed on high frequencies where
one is in the asymptotic regime, as in Eq. (2.14).
The various contributions to the absorption con-
stant do not differ greatly in the frequency de-
pendence expected from the simple parabolic band
model (Q '~' for LO-phonon-mediated processes

and Q ' ' for ionized impurity scattering), and the
issue is clouded further by the importance of band-
structure effects, as Jensen has emphasized. "'

We believe it much more fruitful to study 1/v(Q)
at lower frequencies where, as one can see from
the present work and from our previous paper,
substantial and clear differences in the frequency
variation of I/r(Q) from different contributing
mechanisms are expected. For the LO-phonon-
mediated process, we had a broad feature for pho-
ton frequencies in the vicinity of &Flk, where &F
is the Fermi energy of the free carriers. This
feature is broad at room temperature, and sharp-
ens up in a characteristic manner as the tempera-
ture is lowered. For the ionized impurity scatter-
ing, a dominant feature appears just above the
plasma frequency; its observation serves as a
clear "marker" of the presence of ionized impurity
scattering.

It is more difficult to study the free-carrier re-
laxation time at these lower frequencies, because
one may be in the near vicinity of the restrahl ab-
sorption. In our view, however, there is a great
deal to be gained from such an analysis.

We note that a recent analysis of ref lectivity
data for n-type PbSe by Mycielski et al."suggests .

that near the plasma frequency, structure occurs
similar to that in Figs. 2 and 3 of the present
work. It is difficult to compare this data quantita-
tively with our calculations, because of the multi-
valley character of the conduction band in PbSe.
It would be intriguing to see similar data for n-
type CdTe.
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