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Expressions for resonance scattering of phonons by the bound donor electrons have been obtained for the
first time for n-Ge in the presence of strains for the most general situation when, besides the usual valley-
orbit splitting of the four-fold degenerate ground state into a singlet state and a triplet state, the triplet state
splits into a doublet state and a singlet state due to internal static and dynamic strains present in the crystal.
Similarly for n-Si, the most general situation is considered when the degeneracy of the donor-electron
ground state is completely removed due to internal strains besides the usual valley-orbit splitting of the six-
fold ground state into a singlet state and five-fold degenerate state. The expressions obtained for the
resonance scattering relaxation rates of phonons by bound electrons for strained n-Ge are used to explain
the phonon conductivity results of Sb-, P-, and As-doped Ge.

I. INTRODUCTION

It is well known that the electron (hole)-phonon
interaction has a considerable influence upon the -
propagation of phonons in semiconductors doped
with chemical impurities, particularly those pro-
ducing shallow impurity states at low tempera-
tures. This has been observed as a strong in-
crease in the thermal resistivity of Ge,"1° §i,!1-18
InSb,'"'® GaAs,? GasSb,*'"%? etc.?* by light doping
with n- and p-type impurities. Similar effects
were also seen by means of ultrasonic?®2® and
heat-pulse techniques.?®3° Theoretical investiga-
tions of electron (hole)-phonon scattering have
been carried out by several authors.!®3"3¢ Keyes,3*
Griffin and Carruthers,3? Kwok,*® and Suzuki and
Mikoshiba3®* have considered the case of an iso-
lated impurity state in n-type germanium and
silicon (Ref. 15) and calculated the scattering of
phonons arising from virtual transitions of bound
electrons between donor levels, namely, the
singlet and the next excited state which is triplet
in the case of germanium. In the case of silicon
(Ref. 37) the lowest state is the fivefold degene-
rate state and the next excited state is the singlet
state. These theories are based on Hasegawa’s
theory?®® of the donor-electron-lattice interaction.
Hasegawa’s theory is based on the effective-mass
approximation for a donor state® and the Herring-
Vogt theory*® for electron-lattice interaction in
many-valley semiconductors, and it takes account
of intervalley processes only.

It is well known that group-V donors in german-
ium give rise to a large thermal resistivity. Some
years ago Bird and Pearlman'' measured the pho-
non conductivity of Sb- and As-doped germanium
in the temperature range 0.3 to 4.2°K. With im-
purity concentrations varying from 3 x 10** to 3

X 10'¢ ¢m™ they observed resonance dips in the
phonon conductivity-vs-temperature curves at
about 0.7 °K in Sb-doped Ge samples. The plot of
K,/K,vs T, where K, is the phonon conductivity
of the doped material and K , is the same for the
pure material, shows also dips at about 2°K in P-
and As-doped Ge samples. They tried to explain
their experimental results on the basis of the
theories proposed by Keyes3 and Griffin and
Carruthers® for the resonant scattering of pho-
nons by donor electrons. However, their analysis
of the experimental results does not take into ac-
count the inelastic scattering of phonons by bound
electrons and the elastic scattering of phonons

off the triplet state. Keyeshas actually considered
the static part of the interaction Hamiltonian which
leads to w* dependence for the scattering of pho-
nons due to the bound donor electrons between
singlet and triplet states. Besides the above fac-
tor there is an additional frequency-dependent part
which is known as the cutoff factor. This factor
represents the fact that when the phonon wave vec-
tor is ¢ >1/a*, where a* is the Bohr radius, the
interaction of the phonon with the donor electron

is negligible. Keyes’s theory is, however, valid
as long as the phonon frequency is small compared
to the characteristic frequency with which the
electronic wave functions adjust to the phonon per-
turbation, which is 4A/% in the present case. In
view of the fact that the resonance temperature
T,=4A/k, for Sb corresponds to 3.71°K, which
lies in the temperature range in which the heat-
conduction measurements are carried out, one has
to consider phonon frequencies not only less than
4A/7 but also greater than 4A/%. It is thus obvious
that static interaction does not give the correct
picture of the scattering of phonons by the donor
electrons. As a matter of fact one has to consider
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the dynamic response of the electrons to the
strains caused by phonons. Griffin and Carruthers
considered this problem in analogy with the reso-
nance fluorescence scattering of phonons in atoms.
In the low-frequency limit, this theory gives re-
sults analogous to those obtained by Keyes. For
low frequencies, the resonance factor (4A)%/[(Zw)?
— (4A)%]? present in the theory of Griffin and Car-
ruthers simply reduces to unity and one obtains
the same w* dependence for the scattering of pho-
nons by the bound donor electrons.

The theory of Griffin and Carruthers, which
considered only the resonance scattering of pho-
nons off the singlet state was extended by Kwok3?
for the situation Zw <4A in Ge by taking into ac-
count not only elastic scattering from the triplet
state but also inelastic scattering as well as pho-
non-assisted absorption processes. The complete
expressions for the scattering relaxation rate,
which also included the situation 7zZw >4A, were
given by Suzuki and Mikoshiba.3*

It has, however, been observed?* that the theo-
ries fail to explain the details of the resonance
dips in the K, vs T curves. The discrepancies
between theoretical and experimental values are
more pronounced at lower temperatures. The rea-
son for the failure of these theories to explain the
experimental results lies in the fact that no con-
sideration has been given to the presence of in-
ternal static and dynamic strains due to the donor
impurities themselves, dislocations, vacancies
and lattice defects, and lattice vibrations including
the dynamic Jahn-Teller effect. Further removal
of the degeneracy of the degenerate states due to
the crystal’s internal strains leading to new states
and additional virtual transitions provides the
mechanism for explaining the details of the reso-
nance dips of the phonon conductivity curve and
the discrepancies at lower temperatures. How-
ever, for such experimental situations, theoreti-
cal expressions for the phonon-scattering relaxa-
tion rates are not available in the literature. In
the present paper we have derived for the first
time the expressions for the resonance scattering
of phonons by the bound donor electrons in strained
n-Ge for the most general situation when besides
the usual valley-orbit splitting of the fourfold de-
generate ground state into a singlet state and a
triplet state, the triplet state splits into a doublet
and a singlet state owing to internal static and
dynamic strains present in the crystal. Similarly
for »n-Si the most general situation is considered
when the degeneracy of the donor-electron ground
state is completely removed owing to interval
strains besides the usual valley-orbit splitting
of the sixfold ground state into a singlet state and
a fivefold degenerate state. The expressions ob-

tained for the resonance scattering relaxation
rates of phonons by bound donor electrons for
strained n-Ge are used to explain the phonon con-
ductivity results of Sb-, P-, and As-doped Ge.

II. THEORY

A. n-type Ge

The ground state of the donor electron in Ge is
fourfold degenerate in the effective-mass approxi-
mation®® and it is 9.2 X 10™® eV below the conduction
band. However, due to the valley-orbit interac-
tion** %% and the central-cell correction, the de-
generacy is removed and the ground state is split.
The ground state splits into two levels, the lower-
energy state being the 1S (4,) singlet state and the
higher-energy one being the 1S (7,) triply degen-
erate state. Here A, and T, are irreducible repre-
sentations of the T, point group associated with
the site symmetry of the impurity atom. We as-
sume that the triplet state splits into a doublet
(E) and singlet (4,) state due to randomly distri-
buted internal strain. The latter state is the low-
er state. We further assume that four levels of
the ground state are identified by [n). The enve-
lopes of the wave functions are represented by an
isotropic (S-like) variational radial function. In
order to calculate the strain splitting among the
states and the matrix elements for the electron
transitions, the following donor-electron-lattice
Hamiltonian is used.

Hep=ZB(E45aa+Euéa'és)uaB ’ (1)
o, -

where u,, is the o, 3 component of the strain ten-
sor, & is unit vector, and E, and E, are deforma-
tion-potential constants. The matrix elements of
donor-electron-phonon interaction between two
donor states |#) and |n’) are given by

18) 1/2 ,
nlHopl =2 (—2p;%) f@)C (ag+ a), ()
o«

where the donor ground states corresponding to
singlet (4,) and triplet are labeled by »=0 and
n=1,2,3, respectively. w is the angular fre-
quency and a,, and a!, are the destruction and
creation operators, respectively, for phonons of
wave vector g and in branch £, V, is the phonon
velocity in branch ¢ and p is the crystal density.
The factor f(g), is called the cutoff function and
is written as

flg)=(1+5a*2q?)2. (3)

The C';'," are referred to as the coupling parame-
ters and are related in the following way:
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TABLE 1. Quasi-isotropic model for the polarization
vector.

Symbol x y z
q sinf cos¢ sing sin¢ cosé
ey sinfcos¢ sind sin¢g cosé
ey —cosfcos¢ —cos@ sin¢ sing
es sin¢ —cos¢- 0

D (t=1),
Coo = C“ sz Cas =
0 (¢t=2,3) ,
C"1 = Ci‘; s C"2 = Cq, , (4)
= n'n_
cy=cy, cm=cy,

where D=(E,+3E,)/3E,

In order to obtain analytic expressions for the
matrix elements, a quasi-isotropic model for the
elastic properties of the crystal has been adopted
here. This model results in very simple expres-
sions for the polarization vector &, for the three
acoustical modes. These are given in Table I, in
terms of conventional polar angles (6, ¢), where
(0,0) corresponds to'the [001] direction, and
(37,0) to the [100] direction. The coupling para-
meters can be written in the quasi-isotropic mod-
el as shown in Table II. The indices 1, 2, and 3

Tean= m“ fz(”)z N (T)Z Z:2 7 fz(q')|E<E E'tlciiw v S >

TABLE II. Expressions for Cy.

t 1 2 3
021 sin26sin¢ costsimb cosfcoso
ng sin26cos¢ cos2fcos¢ —cosf sing
Cc®  sin20sin2¢  3sin26sin2¢ sin cos2¢

refer to the longitudinal and the two transverse
branches, respectively.

B. Phonon relaxation rates

The thermal phonons in internally strained n-Ge
are scattered by various elastic and inelastic pro-
cesses. The present discussion is limited to the
possible second-order processes of which there
are two elastic ones in addition to inelastic scat-
tering. The second-order processes all involve
transitions of electrons via intermediate states by
elastic or inelastic scattering or by thermally
assisted phonon absorption.

1. Second-order elastic scattering

Let us calculate the single-mode phonon relaxa-
tion rate, 7;!(gf) due to elastic scattering by donor
electrons. The first term in the perturbation ser-
ies for elastic scattering is of second order. Us-
ing Eq. (2) and the second-order Born approxima-
tion, the elastic scattering rate becomes3?

2

W= Wgy)

E,-E, +hw,, En=Ey

(5)

where p is the density, #, m, and »’ are the initial, intermediate, and final states, respectively. N,(T)
is the number of donors per unit volume in the nth level. The average relaxation rate is defined by
= 1/41rf sin(6) d6 d¢ 7*(gt) and after simplification by means of Eq. (4) can be written as

= Sl ()5 Flelled () v (T3

,:C""' Cnmc
+N1(T)<<nzl:2 n;z ;( t"'ﬁw A +ﬁ

Here {{++++)) is called angular average. In the quasi-isotropic Eq. (6) can be written as follows:

()= 2L (‘"/V ) (320, + 16a, + 324, + 164,]

2
T(g2)= M%;—’—/—V—) [28a,+ 40, +28a,+4a,],
2

2
2(g3) = E@l%g“’l’?—) [20, +20a, + 200+ 10a,]

n=0 n'=0

(ST

E Itlcmn “ . Cn mcq t‘>> >>
= W B, + AW

n'm mn n'mmn
e Cat s Ch Cq.t,)
- - hw mn T W

il

(6)

(M
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where

B(w) =[(3 EW)*N,,w*/2257p*) F(x), F(x)=[ fA(w/V)/Vi+3 f{w/V,)/V],

a, ={Ny(T)+ N (T)HA,o/ [ A2, - (Bw)?] 2,  a, ={Ny(T)+ No(T)HA,/[42,

- (B0)] ¥,

3= {Nl(T) +N3(T)}{ Am/ [A12.3 - (ﬁw)z] }2’

and
N,=N,exp(-2,,/k5T),
Ny=Nyexp(-2,,/ksT),
No+2N,+N,=1,
Byy=Ey~E,. )

Here N,, is the number of donor electrons per unit
volume, while the subscripts 1, 2, and 3 stand for
the longitudinal and the two transverse modes,
respectively.

Ny(THA+ A V[ (Fw) + A2 A% + B 2w?(A2,+ AZ) — 44 A, (Tw)?]
’

[A13‘(7i jl A -(hw)z

2. Second-order inelastic scattering

The inelastic scattering in the second order of
perturbation falls into two categories. The first
is associated with electron transitions from the
upper to lower level, and the other involves elec-
tron transitions from the lower to the upper level
by “thermally assisted” phonon absorption
[w<(a/ 7)] or by inelastic scattering [w>(a/H)].
The corresponding relaxation rates are, respec-
tively,33

TMgt) = TT‘*’ TWes fz(q)[l — exp(-Fw/kyT)] Z N(T) E E ((":)",t; ) FAq N ngep+ 1) ("-’a'ﬂ— A};'n _ wﬂ)

X

’

Z S0 R 1 4 )
E,-E,-fiw E,-E,+hw

TMat)= oA pvz fz(q)[l exp <— —)] 2N (T)Z

and
g =T+ T,

where ¢ is the step function
e=1for w,<A,,/n,
e=0for w,>A,,/h.

In the isotropic approximation Eq. (9) is written as

ii(g)= < W2, [ we/ V)3 E,)* [1 _ exp( fiw >] Nl(T)<< h2p3 p(+n )

647p°V 2 kpT

+N3(T)<<Z > P+n'n)

n=3 n'=0,1,2 Amn -hw
where
(A, + Bw)F(A . + fiw)
+n'n)= n'n n'n .
ol n'n) [1-exp(-A,, +7w/kyT)]

Z CotCor . C"'”"'C’”Z't,)
— A+ W

9)
Wgrer\ 2 s crmem crmer, >
- <2pvi.> a" ; (E ~F, e B._F,+ho
X [enq't' é(wq't' - Ann’/ﬁ+ wat)
+ (1= €)(gept 1) H(wep = A /T = W] (10)

Z ,t,C"'" & C"""C .,.) >>
n—RW A+ THw

).

(12)

Using Eq. (4) and Table II, the Eq. (11) in the quasi-isotropic model becomes
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17(q1) = B}(w){[p(+ 10)(88, + 88,)+ pl+ 13)(88, + 88,)] N,(T) + [o(+ 30)(88,)] Ny(T)} , ‘
T}(q2)= B;(w){[p(+ 10)(28,+17B,) + p(+13)(4.5 85+ 4.58,) | Ny (T) + p(+ 30)(754)N3(T)} ’
7:1(g3) = Bj(w){[p(+10)(108, + 58,) + p(+ 13)(7.5 85+ 1.58,)] N, (T) + p(+ 30)(5 8 N, (T)} ,

B1=[(Agp+ Fw)™ — (Fw)™T?,
Bs=[(855 = W)™ + (Fw) P,
where

Bi=w[1 - exp(=Fw/kT)](4

E)*N,, f*(q)/22570°R°V 5.

Bo=[(A g+ W)™ = (A g+ Hw) P,
Bs=[(A1; = Fw)™t + (A, + Hw)™)?,

13)

Similarly, one can also write the expressions of 7;}(g¢)
754(q1) = B{(w){[o(~ 10)(85, + 85,) + P(~30)(85,)IN,(T) +[p(~13)(85, + 85,)IN,(T)},
731(¢2) = BY(w){[p(~10)(25, + 5,) + p(=30)(75,)]No(T) + [p(~13)(76,+ 26,)IN,(T)}, (14)
734(g3) = B{(w){[0(~10)(106, + 55,) + p(-30)(55,) INo(T) + [ p(~13)(25, + 106,)IN5(T) },

where

8, =[(Ag = Zw)  + (Aw)™]?,

8,=[(A1 ~Fw)™ = (A, - W) ]?,

8, =[(Bg+ W)™ = (Fw)™]?, (15)
6,=[(8,0 = W) + (A +HW) P,

p(=n'n) = (A, - Ew)*F(A ., - Fw)[exp(A ., - Fw) = 1]

C. n-silicon

In silicon the donor ground state in effective-
mass approximation®*4% is sixfold degenerate,
reflecting the six equivalent conduction-band min-
ima lying along [100] directions. Valley-orbit in-
teraction splits the sixfold degenerate ground state
into a 1S (4,) singlet state and 1S (E+ T,) fivefold
degenerate state. Here A,, E, and T, are irre-
ducible representation of the T, point group asso-
ciated with the site symmetry of the impurity
atom. In the present paper we have derived ex-
pressions for the resonance scattering relaxation
rates for phonons in #-Si for the situation when
the degeneracy of the donor-electron ground state
is completely removed due to randomly distributed
internal strains. The bound states of donor elec-

r

trons can be represented by wave packets made
up largely of the six Bloch waves chosen from the
minima of the conduction band, with appropriate
envelope functions to account for their localized
hydrogenlike nature. The coupling of phonons to
donor electrons and the splitting of the fivefold
degenerate ground state by internal stress are
dealt with in terms of a strain Hamiltonian. Using
the appropriate wave functions for the case of
n-Si, the matrix elements of the electron-phonon
interaction between two donor states |n) and |n")
can be obtained from the general expression (2).
The coupling parameters C’},?' are related in the
following way:

cg:{”“=1%
0(£=2,3),
Clt=3(CH+C%),

cz=1(3C%-C%), (16)
°'"C”“C2’=C“(z¢]) 0 (4,7=3,4,5),
Coi=(Cy -3CHN2,
ch-cOZ /,/"‘ Cnn’___(cn‘n)* .

The expressions for C""' in the polar coordinates
(8, ¢) are given in Table IIl. ‘Here D is E,/E, and
E, is the deformatlon potential.

TABLE III. Expressions for CI7’.

t=1 2 3
c% \/% sin’gcos2¢ —3V3 sin20 cos2¢ 373 sing sin2¢
c3 3sin®g cos?¢ 2sin20 cos?o —3sindsin2¢
cY 3 sin? 6 sine 2sin20 sin’¢ 2sing sin2¢

cy 3 cos?o

—$sin26 0
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The relaxation rate of elastic scattering of pho-
nons by bound electrons can be written as

THg) =Bx*F(x)T*f( )W, , am
where
W, =(320, +320,)N, +(320, +8,)N, +16 0, +80,) N, ,
W,=(48a, +8a,)N, +(48 0, +20a,)N, +(4 0, +20,)N,,
W, =(40a,) N, +(1005)N, +(20a, +10a,) N, ,
and ‘
F(x) =073 (x/v) +3 43 (x/1,),
B=(5E.) Nox k/200mp% v} 1%,
o =x5 /(%2 = x5F, o =x%/(x® =x%),
o, =x%, (%% = x3,)2. (18)
N, =N,exp(Ay,/ksT) =N, exp(x,,/T),
N, =N, exp(A o, /k5T') = Nyexp(x,/T),
N, =N, exp(A o | kT ) = N, exp(05 /T),
N, =Ny exp(A | ksT), Ny=N,exp(AglksT),
Ny =N, 1 +exp(xy,) +exp(xg) +exp(%,)

+exp(%y,) +exp(%,)] 7,

(Epe =E,)/kgT = A p1n/kpT = %ty
Ny+ Ny + N, + Ny + Ny + N; =N, .

The unphysical divergencies in Eq. (17) can be
removed by taking into account the finite linewidths
of the donor states. This corresponds to replacing
(Azn’n - szZ)—z by [(Azn'n"hzwz)z + 4r2A2n' n]‘l- It

is interesting to note that the contribution due to
triplet state into Eq. (17) is zero.

The inelastic scattering in the second order of
perturbation falls into two categories. The first
(7)) is associated with electron transitions from
the upper to the lower level and the other (77}) in-
volves electron transition from the lower to the
upper level by “thermally assisted” phonon ab-
sorption (w < A/%) or by inelastic scattering (w > A/7%).
The relaxation rates are, respectively,

7 1(a?) = B%[1 = exp(=2)]T%f *(x/vt) W, , (19)
where
W, =[{p +01)(4B, +4R,) +p(+02)(4B, +4B,)} N,(T)
+{p(+12)(gB, +¢BN N,(T)],

W, ={{ p(+01)(B, +68,) +p(+02)(45, +48,)IN(T)
+[p(+12)(128, +28,)] N(T)},

W, =[{p(01)(58,) +p (02)(58,)} Ny(T)
x{p(+12)(108)}N(T),

and
B’ =(3Eu)*N,k2/200mp2 vn®,
By =[(%g +%)™t = (%, +0) 'R,
B =[(x%y +2)7t = (0},
By =[(xyy +2) ™ = (x5 + )13,
By =[(2 = 07 +(0)7*]?,
P (+71'0) = (% + %,1)°F (% + % e ){1 — exp[— (x +2,0,)]} 2.
(20)
A similar expression is also obtained for 7;!(g?)
and is given by
75(2 1) =B'x[1—exp(=x)]| T2 f*(x/v)W;,  (21)
where
W, ={[p(~01)(45, +45,)]N,(T)
+[p(=02)(48, +48,) +p(=12)(85, +85,)|N,(T)},

W, ={[p(~01)(6, +60,) |N,(T)
+[p(=02)(8, +66,) +p(=12)(20, +125,)IN,(T)},
W, ={[p(~01)(55,)| N,(T)
+{p(=02)(55,) + P(~12)(106,)}N,(T)} .
Here
8y = [(Xge = %)+ (X + )12,
0, = (%0 — )™ + ()™]2,
05 =[(¥pz — %)™ = (x,;, - %)™]?,
0,=[(Xgy + %)™ = (x)]2,

P(=n'n)= (¥ = X1y )® [€XD( 0 = %) =1] P (=X +%,.,) .
(22)

As mentioned before, the contribution due to the
transitions from the triplet state denoted by 3, 4,
and 5 vanish.

The expressions for bound-electron-phonon
relaxation rates for the case of D,, symmetry*®
are also derived. In the D,;, symmetry fivefold
state (4,, +E, +E,) is the lower state. We have
considered the splitting of a fivefold degenerate
state into five states denoted by 1, 2, 3, 4, and 5.
The A,, state corresponds to 3, the E, state to 1
and 2, and the state E, to 4 and 5. The following
relations among coupling constants are used in
the evaluation of different relaxation rates

Cli =Cli=cly- AV D)C

at

Cii=C3 =Co+(1/V2)Ce

at )

ci=ck=(1/V2)Cc%2 (23)

qt

Cr"=0(=0,1,2, j=3,4,5).
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The values of C33, C%, C33, and Cj; are given in the Table IIl. The following expressions are ob-

qt?

tained for elastic, inelastic, and phonon-assisted scattering, respectively.

T;" =Bx4T2f2(x /Ug)F(X)Wg s

where

4

W, = (32a, + 32a,)N,(T) + (32, + 160,)N, (T) + (320, + 16,)N,(T) + 16, (N, +N,) ,
W, = (480, + 8a,)N(T) + (48, + 4a,)N (T) + (8at, + 4a)N ,+ 4a,(N,+N;) ,
W, = (40a,)N,(T) + (20a,)N, (T) + (40, + 200,)N,(T) + 200, (N, + N,)

where
@, = (%o, /%2 — %%, o= (%,,/%3, - x7)?,
0, = (Xop /%2, = X7)%, a = (/%% = %%)2.
T14(qt) = BT?[1 - exp(-%)]f3(w/v,) W, ,

where

(25)

W, ={[ p(+ 01) (48, + 48,) + p(+ 02) (48, + 48,) IN(T) [p(+ 12) (88, + 8B,) IN,(T) + [p(+ 45)(8Bs + B) N} ,
W, ={[p(+ 01)(68, + B,) + p(+ 02) (B, + 68,) INo(T) + [o(+ 12)(128, + 28,) IN,(T) + [p(+ 45) (28, + 128) IN(T)} ,  (26)
W, =1 [o@ 01)(58,) + p(+ 02) (58,) | No(T) + [p(+ 12)(108,) | N, (T) + [ p(+ 45) (108,) N (T)} .

Here

2
X153+ X0z )

- Xo1 g _
A= <x(x+x015> e ((x"‘xozj(x"xm;
ﬂ = x02— x12 2 B = xOl 2
3 (x+x125(x+x025 > T x(xm—xs

() e3)

Similarily the relaxation rate 7;'(g¢) is given by

7 gt) = BYT°[1 - exp(-)] <i> e

where

27)

(28)

w, ={ [o(~01)(46, + 46,) |N,(T) + [p(~02)(45,+ 45,) + p(—12)(86,+ 85,) | N, + [o(~45)(85, + 856)]N5} ,
W, ={[p(~01)(66, + 6,)IN,(T) + [p(~02) (8, + 65,) + p(~12)(26,+ 126,) [N, (T) + [p(- 45) (26, + 125,) [N} ,
W, ={[p(~01)(55,) [N, + [p(~02)(55,) + p(~12)(105,) [N,(T) + [0(~45)(106,) IN,(T)} . ‘

Here

5. = Xo1 2 5. = X12+%op 2
T\ %l =% ) * 2 \rx ) =%, )

X, —X, 2 X 2
6 = 12 2 6 - 01
s <(x—x125(x—x025) T (x(xm+x) ) ’

8= (X=2,)7, b,=x72,

It is interesting to note that transitions from
states denoted by 4 and 5 make nonvanishing con-
tributions, whereas transitions involving state 3
do not contribute. It may be further noted that the
scattering strength of phonons for the D,, sym-
metry is stronger than that for the T, symmetry.

(29)

III. THERMAL CONDUCTIVITY

Bird and Pearlman'! have carried out an ex-
tensive study of phonon conductivity of Sb-, As-,
and P-doped Ge in the temperature range 0.3 to
4.2 °K. Besides the usual plot of K, vs T, they
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have also plotted K,,/K, vs T, where K, is the
phonon conductivity of the doped sample and K, is
the same for the pure material. The latter plots
show very conclusively the resonance nature of the
scattering of phonons and the temperatures at
which resonance dips occur. For example, in the

Sbh-doped Ge sample resonance dip occurs at 0.7 °K.

For As- and P-doped Ge samples, resonance dips
are much less pronounced and occur at about 2 °K.
These materials provide suitable illustrations for
the application of the theory developed in the pres-
ent paper for strained n-Ge crystals.

We shall use Callaway’s*” expression for the cal-
culation of the lattice thermal conductivity

(ép/ T
K =gas g [ B a o)

qt)

where @, is the Debye temperature and kg is the
Boltzmann constant. The most important param-
eter in the theory is the combined relaxation time
for phonons 7;'(g#). In the presence of several
phonon-scattering processes, T;' can be expressed
as

-l _ =1 -1 -1 -1
T =T + T+ Thp+ Tops (31)

where T3 is the relaxation time for the boundary
scattering of phonons and expressed as*®

1=V,/L. (31)

L is the characteristic length of the specimen and
is given by L =1.12Vs for the rectangular cross
section S. 7;} is the relaxation time for the scat-
tering of phonons by point defects and is written
as49

= 2,,;;32( [ ._] >w4=Aw4, (32)

where V, is the atomic volume, f; is the fractional
concentration of the ith species, m; is the mass of
the ith species, and 7 is the average mass. -r”

is the phonon-phonon relaxation rate. Callaway*’
assumed that both three-phonon normal and umk-
lapp processes have the same frequency and temp-
erature dependence. Actually he writes

5= [Tosln + [T3plu = (B, + B,) T3, (33)

where U and N denote umklapp and normal pro-
cesses, respectively. Equation (33) corresponds
to Herring’s® expression for the low-frequency
phonon-phonon scattering for longitudinal phonons
and normal processes,

[Tosly = [T;]U o @IT5, (34)

Here j =2 for longitudinal phonons in a cubic
cyrstal. With this phenomenological expression
Callaway was able to account for the phonon con-
ductivity results of normal and isotope-enriched

VERMA 18
Ge very well. The usual procedure of investigating
the role of additional phonon scattering mechan-
isms in doped Ge is to use Callaway’s results for
undoped Ge as the basis. In the temperature range
where phonon-phonon scattering is relevant, the
analysis of phonon conductivity resulting in doped
Ge is to some extent handicapped due to the un-
certainty in the temperature and the frequency de-
pendence of ‘r” However, in the present analysis
we are interested in the region 0.3 to 4.2 °K where
the phonon-phonon scattering make no appreciable
contribution to the phonon conductivity. Thus the
investigation of the role of resonance scattering

of phonons by bound electrons is not handicapped
due to the uncertainties regarding 7;,. Thus the
relaxation rates for the doped and undoped samples
are written, respectively, as

M qt) = T'1+T‘1+TB +Top, (35)

THgt) =T+ To+ T . (36)

10"

K(W/ cm )
S5,

° e Experimental
° Theoretical
.
IO_‘ ! 1 1 1 N
0.2 0.4 1.0 20 40 10.0
T(K)

FIG. 1. Plot of the thermal conductivity vs tempera-
ture for Sb-doped sample Sb-365. Theoretical curves
are calculated with the help of SM theory.



IV. RESULTS AND DISCUSSION

The experimental results of Bird and Pearlman
are very interesting in the sense that they cover
the temperature range both below and above the
temperature at which the resonance dips are ob-
served. They have not only given the results in
the usual form of K vs T curves, but also plotted
K,/Kp vs T. These plots show clearly the reson-
ance nature of phonon scattering by bound donor
electrons in doped germanium. They have tried
to explain their experimental results in doped
germanium with the theories proposed by Keyes®!
and Griffin and Carruthers.®® However, they
failed to explain their experimental results in the
temperature range 0.3 to 4.2 °K. Their analysis
does not take into account the inelastic scattering
of phonons by bound electrons and the elastic
scattering of phonons off the triplet state. Suzuki
and Mikoshiba (SM)** have taken into account the
above scattering processes in their paper. As a
first step we have used expressions of SM to ana-
lyze the above experimental results of n-type Ge
in the temperature range 0.3 to 4.2 °’K. The theo-
retical results along with the experimental values
are shown in the Figs. 1 and 2 only for Sb-306 and
Sb-365. One can see from Figs. 1 and 2, that the
Suzuki and Mikoshiba theory is also unable to ex-
plain the details of the resonance dips in the case
of Sb-306 and Sb-365 samples.*

10"

T

Kooren| Kpure
wn
T

102k

i A 1 1 1 1 J
0.2 0.4 0.6 1.0 2.0 40 6.0

7 (%)

FIG. 2. Plot of the & p/K p vs temperature for Sb-
doped sample. K is the phonon conductivity of the doped
material and Kp is the same for pure. Theoretical
curves are calculated with the help of SM theory.
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FIG. 3. Plot of the experimental and theoretical
conductivity vs temperature for Sb-doped samples (Sb-
344, Sb-365, Sb-306).

The reason for the failure of the theory to ex-
plain the experimental results lies in the fact that
no consideration is given to the presence of inter-
nal strains. We have taken into account the effect
of the internal strain in our expressions for the
relaxation rates which are given by Egs. (7), (12),
and (14). Therefore, we have used our expressions
in the calculation of K,,. K, is calculated by using
the Eqgs. (30) and (35), K, is calculated by using
the Egs. (30) and (36). The theoretical results are
shown in the Figs. 3—6 along with the experimental
results. The theoretical parameters used in the
calculations are given in Table IV. We have used
no adjustable parameters except A,,,.

One can see from the Figs. 3-6 that our theory
can explain fairly well the experimental data of
Sb-, P-, and As-doped germanium. Some dis-
crepancies are observed between the theoretical
and experimental results. These discrepancies
can be removed'? by taking into account the con-
centration dependence with energy-level splitting,
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K(W/ cm °K)

----Ge-543
o As-276
e P-266

Theor.

0.3 05 10 20 50 100
T (%)
FIG. 4. Experimental and theoretical thermal conduc-
tivity for and As-doped germanium.

of the deformation potential and Bohr radius, re-
spectively.

Recently® Halbo has used SM theory to explain
the magnetothermal conductivity of n-type german-
ium by considering the magnetic dependence of the
donor-ground-state effective Bohr radius a* and
the chemical shift 4A. However, he has failed to
explain his experimental results. Our theory can
be used in place of SM theory to explain the mag-
netothermal conductivity of n-type germanium.

To display the contributions of elastic and in-.
elastic scatterings the theoretical curves of K,/

TABLE IV. Physical parameters used in the calcula-
tions of doped germanium.

Sb P As
p(g/cm?) 5.35 5.35 5.35
Vilem/sec) 3.37 5.37 5.37
Vy(cm/sec) 3.28 5.28 5.28
A (1074sec) 2.4 2.4 2.4
Ey, (eV) 19 16 16
a* ) 65 40 45
Ag/k 5(°K) 5.0 32.8 49.1
A3¢/kp(°K) 3.71 8.0 10.0
Ay3/kg(°K) 1.0 25.0 35.0

1 i
0.2 0.5 I.O 2.0 5.0

T(K)

FIG. 5. Plot of Kp/K p vs temperature for samples
Sb-344, Sb-365, and Sb-306. K is the phonon conduc-
tivity of doped material and K p is the same for pure
material.

K, vs T for elastic scattering and for inelastic
scattering as a function of temperature are shown
in Figs. 4 for the Sb-365 sample. K,/Kj for elas-
tic scattering is calculated only by taking elastic
phonon scattering, i.e., 7;;=7;' in Eq. (36). Sim-
ilarly K /K, for inelastic scattering is calculated
taking only inelastic scattering, i.e., 7;;=77; in
Eq. (36). It is seen from these curves that elastic
scattering is important between 0.3 and 0.6 °K,
but the contributions of elastic and inelastic scat-
tering to the K D/Kp-vs-T curve are approximately
equal for 7>0.6 °K.

The deviation between experimental and theo-
retical results at higher temperatures is due

\'.\ . / Sb- 365

0.2 n ‘J/ —— ELASTIC
A —— INELASTIC+
: . PHONON ASSIST.
oW T ELAST. + INEL +

PHONON ASSIST.

FIG. 6. Plot of K p/K p vs temperature for sample
Sb-365.
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partly to the form of the donor wave function used
in the calculations. The population of the phonons
with frequency w>V,/a* is increasing with temp-
erature. For these phonons the strength of the
coupling to the donor depends strongly on the donor
wave function, and, as a consequence, in the cal-
culation of K(T) we should use the true wave func-
tion which is not known for strained crystals.
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