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Factor-group analysis of high-symmetry layer dynamics
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The method of factor-group analysis used for molecular crystals has been extended to the case of layer
crystals which usually have very high symmetry. In case of such high-symmetry layer crystals, the optically
active modes are divided into compressional and shear types. It is found that there is a. one-to-one
correspondence between a compressional and a doubly degenerate shear mode in case of the layer crystals in
which each atomic sheet contains only one atom of the unit cell. Further it is shown that for such simple
layer crystals the matrix for the transformation to symmetry coordinates is the same for both compression
and shear motions. This leads to considerable simp1ification in the numerical solution of the dynamics of
these structures. The numerical calculations for the intralayer modes of MoS„PbI„GaS, and GaSe are
presented in both the nearest- and the second-nearest-neighbor approximations.

I. INTRODUCTION

A large number of inorganic molecular solids
crystallize in layer structures. 'This group of
crystals contains transition-metal cbalcogenides,
chalcogenides of gallium, ' and a number of halide
and hydroxide crystals. " The chalcogenide cry-
stals exhibit a wide range of electrical properties:
HfS, is an insulator, MoS» GaS, and Gase are
semiconductors, and NbS, and VSe, are metals,
while NbSe, becomes a superconductor at a mod-
erately high temperature. Recently, high-temper-
ature superconductivity has been found by inter-
calating transition-metal dichalcogenides like
MoS, with alkali and alkaline-earth metals. '
Among the nonchalcogenide layer materials, the
large family of layered halide' crystals forms
structures of wide physical and chemical interest.
It is interesting to note that these layer compounds,
having a wide spectrum of physical and chemical
properties, have very similar dynamical proper-
ties because of their similarity in crystal struc-
ture. Recently, a large number of Raman and in-
frared studies have been carried out on these layer
compounds. ' " 'These studies can supplement
further data on the results of x-ray and electron
microscopic investigations" on such compounds.
In fact, a knowledge of the dynamics of the unper-
turbed crystals is of great importance for an un-
derstanding of superconductivity of the intercalated
compounds' as well as for the Jabn-Teller effect'
and other optical experiments which are often car-
ried out in layered host lattice structure. Our aim
in this work is to perform a layer dynamics cal-
culation for these crystals based on factor-group
analysis with intralayer nearest- and second-near-
est-neigbbor force constants.

Layer crystals do not strictly conform to the
usual definition of molecular crystals. Yet they

are made up by stacking two-dimensional macro-
scopically extended gigantic molecular units" (the
individual layers). As in the case of ordinary
molecular solids the interlacer (or intermolecular)
bonding is much weaker than the intralayer (or
intramolecular) bonding. The layers have a diper-
iodic symmetry. ' '4 In the two directions parallel
to the layers these crystals form network solids,
while in the third direction perpendicular to the
layer they form molecular solids. Each layer
contains parallel sheets of atoms which are per-
iodic in two dimensions and one can define a layer
unit cell as containing one or more formula units.
The crystal unit cell is composed of one or more
layers depending on tbe space group. The differ-
ence in stacking sequence of the individual. layers
gives rise to different polytypes. Hence the layer
symmetry should be distinguished from the crystal
symmetry. The.presence of more than one layer
per crystal unit cell will give rise to Davydov

splitting, similar to that in molecular crystals
if the interlayer interaction is sufficiently strong.
But in the case of a large number of crystals like
MoS»' GaSe, " and PbI»' it has been found that
the splitting is very small. This confirms the
weakness of interlayer bonding. Thus, for all
practical purposes, the vibrations of a layer cry-
stal reduce to vibrations of each individual layer.

In each layer crystal in which each atomic sheet
contributes only one atom to the crystal (or layer)
unit cell one has an added advantage of dividing
the intralayer modes into two types —compression-
al and shear. In case of compressional modes the
atomic planes move rigidly against each other,
while shear modes correspond to the rigid sliding
of the planes over each other. But if the crystal
unit cell contains more than one atom of each
atomic sheet, then in addition to the rigid motion
of the atomic planes there will be intraplane
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stretching and librational modes. " We shall be in-.

terested only with the former class of crystals
and thus capitalize on the division into eompres-
sional and shear modes. It is interesting to note
that this class of layer crystals has high sym-
metry (hexagonal and trigonal) and intralayer mode
vibrational eigenvectors are directly determined
by symmetry. ' In fact, most familiar layer cry-
stals usually have high symmetry.

We shall consider only the modes at the Bril-
louin-zone center (q= 0), so atoms in different
layers move in phase. In Sec. II we introduce the
method of obtaining the frequencies of symmetry
modes starting from a potential function defined
in terms of internal coordinates. In Sec, III we
present the calculation for a few crystals with dif-
ferent factor-group symmetries and in Sec. IV
discuss the results.

II. THEORY

mass-weighted Cartesian coordinates as

2V= Q Z)L)~Z~,

where

Hence the displacement for compressions will be
given by y S' in terms of compressional sym-
metry coordinates

S =RZ.
Now the potential function (3) becomes

(6)

A similar relation may also be written for shear
modes. Using projection operator technique we
can project out a symmetry adapted basis z from
the old basis vector K, such that

y=KR.

Let k form an N-dimensional basis set containing
unit vectors all oriented in directions perpendicular
to the layers, where N is the number of atomic
sheets per layer unit cell. The displacement for
the compressional modes will be k z, where z
is an N-dimensional column vector the elements
of which are displacements perpendicular to the
layers. Similarly if i forms a 2N-dimensional basis
set defined by unit vectors oriented in two mutually
perpendicular directions along the plane of the
layer, the shear displacement will be given by
i ' so, ze is a 2N-dimensional column vector, the
elements of which are the displaeements along the
plane of the layer in directions specified by the
components of i. In case of mass-weighted Car-
tesian coordinates Z and W, the displacement pat-
tern will be K Z and I 8'for compressional and
shear modes, respectively; K and I are the cor-
responding mass-weighted basis sets.

We start with a potential function defined in
terms of internal coordinates r„chosen appro-
priately for the compressional and shear motion,

2V= g r~f ~r, ,

where f is the force-constant matrix, appropriate
for compressional and shear modes. The trans-
formation from Cartesian to internal coordinates
is given by

(2)

in the case of compressional modes and a similar
relation for shear coordinates in terms of zo. We
shall choose similar potential function models
for both compression and shear motions. 'The po-
tential function (1) may now be written in terms of

2V=Q S)E)~SJ,

where,

~~~=K &k~Lki&ig (8)

In case of shear vibrations, the transformation to
symmetry adapted basis vectors will combine only
those vectors which are in one particular direction
in the plane of the layer. " Hence the operations
(5)-(7) may also be carried out for the shear
modes and it is found that the force-constant ma-
trix I" is split up into two identical blocks, cor-
responding to the doubly degenerate shear modes.

III. RESULTS

In ease of high-symmetry layer crystals with
one atom contained in each atornie sheet, it is an
interesting fact that to each compressional mode
there corresponds a doubly degenerate shear mode.
This follows from factor group analysis of layer-
unit-cell modes. It is further convenient that the
transformation matrix R defining symmetry adapt-
ed basis sets are identical for both compressional
and shear modes. The immediate outcome of this
fact is that the symmetrized force-constant ma-
trix I', which will determine the eigenfrequencies
for the symmetry modes are identical except for
a difference in the numerical values of f for com-
pression and shear, defining the starting poten-
tial I Eq. (1)]. Hence, diagonalization of one ma-
trix will lead to frequencies for both the compres-
sional and shear modes defined in terms of the
respective force constants.

We shall present the results of calculation for a
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TABLE l. ' Calculations for MoS2 and Pbj& in the nearest-neighbor approximation.

MoS2 PbI2
Frequency (cm ) Force constants Frequency (cm ) Force constants

Mode Theory Experiment ~ (mdyn/A) (Mo-S) Mode Theory Experiment ~ (mdyn/A) (Pb-I)

Compression

Shear

Ag

2
gll
El

409 c

528
287 c

371

409
'470
287
384

3.16

1.55

Agg
A2u

98c
146
79c

117

98
113
79

106

0,72

0.47

~Reference 6. Reference 8, cMatched. .

A. MOS2 and PbI2

In molybdenite (MoS, ) crystal the metal atom is
at the center of a prism and is coordinated with
six sulphur atoms at the corners. Each layer is
formed by alternately occupied prisms placed side
by side. 'The layer symmetry is given by &» fac-
tor group. This gives A', +A," compressional and
E'+E" shear intralayer optical modes. The dif-
ferent stacking sequences give rise to different
polytypes. 2H-MoS, has a two-layer crystal unit
cell (D,„factor group) with A,„+2B„+A, +8,„
compressional and E,„+2E~+E,~+E,„shear opti-
cal modes. 'These include both intra- and inter-
layer modes.

Layers of lead iodide crystal belong to the D,„
factor group. The metal atom is at the center of

TABLE H. Force constants (mdyn/A) for MoS2 and
PbI2 in the second-nearest-neighbor approximation.

MoS2
f(Mo-S) f(S-S)

Compression
Shear

2.50
1.67

0.32
-0.05

0.43
0.37

0.14
0.04

number of layer crystals in which the layer unit
cell belongs to the D,„and D&„ factor groups. In
each case we first choose a potential function in the
nearest-neighbor approximation. The force con-
stants for both the compressional and shear modes
are obtained by matching the respective frequencies.
These constants are then used to determine the re-
maining frequencies for the respective modes. The
deviation of the calculated frequencies from the ex-
perimental values, in some cases, is due to the
weakness of nearest-neighbor approximation.
Hence, we introduce the second-nearest-neighbor
interaction in the same model and the force con-
stants are again calculated by matching the respec-
tive frequencies. %e discuss the particular cases
considered in the following.

a puckered hexagon and is coordinates to six halo-
gen atoms alternately placed at the corners of the
hexagon. The optically active intr alayer modes

Ay@ +A2 for compression and E~ +E„for shear.
2' PbI, has aone-layer unit cell, while 4H-Pblm
has a two-layer unit cell with C,„factor group.
The optically active modes for the latter polytype
are 3A, + 28, for compression and 3E,+ 2E, for
shear motion.

%e shall consider only intralayer modes given
by the factor groups D» and D,„for MoS, and PbL
respectively. It is found that the transformation
matrix R for both of these is given by

I/W I/vV I/W

O 2/W &/W

I/W I/W I/W

The results of calculation for these two crystals
are given in Tables I and II.

B. GaS and GaSe

In these crystals two formula units form a layer.
Two metal atoms are placed along the central axis
of a prism, each of them being coordinated with
the three chalcogen atoms at the corners of the
prism and with the other metal atom, These
prisms form a layer similar to MoS, . 'The layer
symmetry is given by a D» factor group and the
optically active modes are 2A', +A," for compres-
sion and 2E"+E' for shear. Again the layer stack-
ing gives rise to different polytypes of GaSe; name-
ly, P, c, and) type. P-GaSe has aD,„factor
group with 2A„+A.,„+28,„+M„compressional and

2E„+E,„+2E,„+2E,~ shear modes. In fact, split-
ting between Davydov multiplets which occurs due
to the presence of more than one layer per cry-
stal unit cell is very small, indicating weak inter-
layer coupling. Hence this will have very little
effect on the intralayer vibrations. The transfor-
mation matrix R for intralayer modes of these
crystals is given by
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TABLE HI. Calculations for GaSe and GaS in the nearest-neighbor approximation.

Force constant Force constant
Frequency (cm ') (mdyn/A) Frequency (cm t) (mdyn/A)

Mode Theory Experiment f(Ga-Se) f(Ga-Ga) Theory Experiment f(Ga-S) f(Ga-Ga)

Shear

Ag

Compression
All

2
gll
gll
gl

308 b

122
236'
250"
94

213'

308
135
236
250

60
213

1.21

0.99 0.53

361b

182
318'
340b
174
294"

361
188
318
'340

74
294

1.31

1.12

1.28

1.23

'Reference 10. "Matched.

1 1 1 1

1 1 1 1—2

1 -1 -1 1

-1 -1 1 1

(10)

The results of the calculation for these crystals
are given in Tables III and IV.

IV. DISCUSSION

It is found from 'Table I that the nearest-neighbor
model gives results in good agreement with ex-
perimental findings for the shear modes in MoS, .

The deviation is large for compressional modes
in both MoS, and PbI, and also for shear mode in
PbI, . Accordingly, the second-nearest-neighbor
force constants are large for these modes (Table
II). ' It may be noted that in MoS, the second-near-
est-neighbor force f' arises from S-S interaction,
and the sulphur atoms are placed along the z axis.
Hence sulphur -sulphur interaction is important only
for motion along the z axis (compression). Hence the
shear motion along x or y direction is very little af-
fected by this interaction. In PbI„ the second-near-
est neighbor I-I interaction affects the compressional
mode largely and the shear mode to some extent be-
cause the two iodine atoms are not placed along the
8 RXls.

In GaSe and GaS (Table III), the results calculated

in the nearest-neighbor approximation agree well
with the experimental values for the compression-
al modes, but this is not so for the shear modes.
This may be due to the fact that the second-near-
est-neighbor Se(S)-Ga interaction is not along the
s axis and it will have a large effect on the shear
motion (Table IV).

Thus the results of calculation are consistent
with the crystal structure data. Hence, for high-
symmetry layer structures in which each atomic
sheet contains only one atom of the unit cell, one
can divide the modes into compressional and doub-
ly degenerate shear modes and there is a one-to-
one correspondence between the compressional
and shear modes. We have shown that in such
cases the projection operators for the two types
of modes are the same which leads to considerable
simplification in obtaining the eigenfrequencies.
Hence one can very easily obtain an ide~ of the
compressional and shear forces from the Raman
and infrared data of these layer structures. These
calculations may also be done for the polytypes
having higher symmetries like D,„or C,„. In
these cases one has to consider more than one
layer in a unit cell. So the model needs to include
the interlayer force constants also. But since the
atomic sheets remain monatomic the procedure
followed will remain the same and similar sim-
plifications may be done. It may be noted that
Wieting" used a linear-chain model with both in-

&&BLE IV. Force constants (mdyn/A) for GaSe and GaS in the second-nearest-neighbor ap-
proximation.

f(Se-Ga)
GaSe

f(Ga-Ga) f(Se-Ga)
GaS

f(S-Ga) f(Ga-Ga) f(S-Ga)

Compression
Shear

1.12
1.10

1.18
0.43

0.09
-0.09

1.29
1.32

1.32
0.71

0.02
-0.21

' Second-nearest-neighbor force.
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terlayer and intralayer force constants in the near-
est-neighbor approximation for MoS, and GaSe
crystals. It was found that the interlayer forces
are 100 times smaller than the intralayer ones.
Our calculations indicate that the second-nearest-
neighbor forces are more important than the in-
terlayer forces. 'The method presented in this
paper is not applicable to crystals like arsenic

chalcogenides" in which-atomic sheets are not
monatomic and also to the less familiar low-sym-
metry layer crystals.
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