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The variations of scaled resistivities of a representative set of simple liquid metals are evaluated as a
function of pressure. The resistivities are determined within the framework of the nearly-free-electron model
while the pressures are obtained from variational calculations of the free energy, Structural information is
provided by the hard-sphere approximation to the actual liquid structure. In general, the scaled resistivities
show a dependence on pressure that is quite sensitive to the detailed form of the electron-ion interaction, or
pseudopotential. For the case of potassium, where experimental results are available, the agreement between
the calculated and experimental results is quite satisfactory.

I. LWTRODUCTION

Since the early work of Bridgman, ' much informa-
tion has been accumulated on the variation of the
transport properties of metals with pressure. To
date, the theoretical description of these vari-
ations is somewhat limited. Calculations that have
been made are quite approximate, and the models
employed have been generally crude. Although it
is believed that the pressure variation of physical
properties of matter can be accounted for within
our present level of understanding of the condensed
state, it is recognized that various effects (e.g. ,
the variation of the Fermi surface with volume or
the change in phonon spectra) must enter in an ex-
ceedingly complex way.

In the course of a series of calculations on the
resistivity of crystalline metals at high pressure, 2

we have found that corresponding studies on liquid
metals provide considerable physical insight into
the orders of magnitudes expected for the pres-
sure-induced changes. As with many calculations
on liquid metals the numerical work, when com-
pared with that for the crystalline counterpart, is
relatively straightforward. Although the physics
of liquid and solid states is very different, the ef-
fects we see in the liquid can often provide a use-
ful guide to the behavior of corresponding effects
in the solid state. This is particularly true of dis-
order scattering of electrons, i.e., liquid-structure
versus phonon disorder. We shall be concerned
here with the former, i.e. , resistivity of liquid
metals as functions of pressure. Apart from their
bearing on the resistivity of crystalline metals un-
der similar conditions, such calculations are very
much of interest in their own right.

In Secs. II and III we briefly describe the proced-
ure by which both resistivity (p) and pressure (p)
are calculated as a function of x„ the dimension-
less electron-spacing parameter given for a sys-
tem with mean electron density n by

r,a, = (3/4vn)'~',

where a, is the Bohr radius. The purpose of these
two sections is to obtain both the equation of state
of the liquid metal and the logarithmic derivative
of resistivity with respect to pressure, (r,/p)(ep/
sr, ) The .subsequent intent is the elimination of
x, between the two functions, thus gaining a re-
lation of the type p =p(P), or more precisely y
=y(P), where y=p/p(0).

To this end Sec. IV describes how the numerical
calculations are carried out. The ionic structure
factor S(q) which enters the standard low-order ex-
pression for the resistivity, is eva, luated with the
Percus-Yevick hard-sphere solution which is
known to fit the low-pressure structural data quite
welL It is a function of a single parameter q (the
packing fraction), which, for a given density, is
evaluated variationally. In Sec. V we present the
results for a representative set of simple metals.
Little experimental (or indeed theoretical) work
has appeared in the area of solidification Pressures
at temperatures much higher than the melting tem-
peratures. This information is needed in order to
determine the region of the p-T plane in which our
results really do apply to liquid metallic phases.
Since we expect higher temperatures generally to
correspond to higher pressures, we have used,
where possible, starting (P =0) resistivities cor-
responding to the highest temperature values as
quoted in the literature. It should be noted that
some of the results we obtain may be inapplicable
(in the sense of an assumed liquid phase) at the
high-pressure end of our curves.

II. EVALUATION OF RESISTIVITY

The point of view taken here is that the reduced
resistivity of a simple liquid metal )y= p/p(0)] will
scale, as a function of volume, in the same way
as the function y calculated from the standard weak
coupling expression for p, namely, '~
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aors 4g~Z
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dx x'v'(x)

()))~ S(x~ (()),
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Here a,k/e is the atomic unit of resistivity (its
value is 21.77 p. Q cm), Z is the valence of the met-

al, and k~ is the Fermi wave vector: The quantity
v(x) is related to the matrix element for scattering
between plane-wave levels k and k' at the Fermi
surface (q= k' —k) and is defined by the Fourier
transform of the electron-ion pseudopotential, as-
sumed local, and normalized to its long wave-
length limit. The structural information on the
ions. in the liquid metal is contained in the dynamic
structure factor S(q, up). At high temperatures we
may rewrite (1) as

p=, dxx'v'(x) d(o 1+ ——
I( 2 ) + — + S(x, (u)

a h 4m'Z ' , , [ Hk(o 1 tile(u )' I Hkco 4

e aok~ o

aoh 4''Z
dxxv'(x)s(x)+ ~

)
dxx'U'(x)+o(T')),2m r

e aok~ o o

where M is the mass of an ion, and T~ the Fermi
temperature. In arriving at (3) we have used the
definition of the static structure factor in terms of

S(q, v) and the first-moment sum rule. ' The sec-
ond term in (2) is of order 1% of the first term and

canusuallybe neglected. Higher moments of S(q, e)
involve details of the effective interionic potentials,
but these moments are extremely small.

The result obtained by keeping only the first
term in (3), namely,

ak 4'Z
p = ', dxx'v'(x)S(x), (4)

8 aok~

has been the center of some controversy" since
its appearance. It is the lowest-order result pos-
sible, and much of the argument has had to do with
the likely importance of corrections going beyond
wha, t is essentially an application of the Born ap-
proximation. Equation (4) can also be derived' by
starting with the Kubo-Peierls-Greenwood ex-
pression for the conductivity, and performing an
expansion (and subsequent inversion) in the imag-
inary part of the electron self energy, assuming
this to be small when scaled to the Fermi energy.
(Such an assumption is equivalent, of course, to
the assertion that there is a. long mean free path. )
This procedure reproduces (4) as the leading term
in p and also permits, in principle, a systematic
attack on the higher order terms. These, however,
require structural information on liquid metals
beyond pair distribution functions, and these in
turn lead to further approximations. One such ap-
proximation to the n-body correlation function, the
geometric approximation, ' permits the resummation
of a large class of higher-order terms, and results
in an expression for the resistivity identical in form
to (4) but with v replaced by an effective structure-
dependent potential. As shown by Ashcroft and
Schaich, ' this effective potential differs little from
typical pseudopotentials, so that within the geometric

r

approximation (or for mode/ fluids whose physical
structure is given precisely by the stipulated form
of the higher correlation functions) there is some
indication that such higher-order corrections tend
to cancel among themselves. The geometric ap-
proximation permits us correctly to describe scat-
tering from pairs of ions, while treating the effects
of larger clusters only in an average sense. It
therefore still neglects certain sets of terms whose
importance is hard to assess. On the other hand,
given that the structure of (4) can be preserved
within approximations that do include many of the
higher order terms, and given that (4) itself has
had remarkable qualitative success in accounting
for the resistivities of pure metals and alloys over
a wide range of electron densities, it is a reason-
able first step to assume that the resistivities of
liquid metals will scale (against density) according
to the predictions of Eq. (4).

III. EVALUATION OF PRESSURE

We begin with

where F is the Helmholtz free energy of a metal
with volume V. To calculate F we consider the
Hamiltonian H for a system of N ions of charge Ze
and mass M, to which electrons (mass m) are
coupled by the weak unscreened pseudopotential
v, . Then if r, , R,. and p„P,. are electron a.nd ion
coordinates and momenta, H may be written

p2 ] I e2 Q2

t
Z2e2

+ -- + v~ r; R
lB]- R~!

provided the conditions on density a,re such that the
ions see each other as point charges (no core-core
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overlap or screened fluctuating dipole interac-
tions). Introducing Fourier transforms and group-
ing all k=0 terms together, we have H=H„+H«
+H„-, where

(6)

is the Hamiltonian of NZ interacting electrons in
a uniform compensating background,

4pe2Z2

2m 2V ~ k'
&0

is the Hamiltonian of N-point ions in a uniform
background, and"

H„.=+ —~ v, (k)p-„'p'„-+ E, .
kl0

Here

(8)

pg pe(ic r(

p I Q e(k'0(

and v~(k) is the Fourier transform of the pseudo-
potential. For an empty core potential, this takes
the form

v, (k) = (-4((Ze'/k') coskr, , (9)

with r, the core radius. In (8), E, is the limit of
the k=0 terms and, for states of fixed N, becomes

E„=NZ —1im v, (k) +
N '. 4mZe'

k~o

,/. '
(10)

2Q0 )

for a potential v, (k) of the form given by (9). More
generally it has the structure E, =NZ(e(/r', )e'/2ao.

To derive the thermodynamics of the. system, we
require Tre ~ . By makingthe st'aridardadiabatic
approximation, and taking the electron system to be
in a ground state appropriate to each ionic config-
uration, the thermodynamics then follows from
Tr,.e ~ ~, where H,. iS an effective Hamiltonian for
the ions and is defined by

H, =E,(.V) + E„+H'((. (11)

In (11),E,(V) is the ground-state energy of the in-
teracting electron gas, and H', , represents, for a
given volume, the Hamiltonian of a system of ions
interacting via n-body forces (n ~ 1) whose origin
is the direct Coulomb interaction augmented by in-
direct interactions arising from the electron re-
sponse" to v, . At the level of linear response (to
which we restrict attention here) H', , can be written

p2 4mZ'e'~ 2M 2V ~ k'
%o

+,s I:l.,(s) l*(s(s',), , —- (), (»&
k 1

Bo,
where &~ is the dielectric constant, and is taken
to have the form

e„=1+ (X'/x')F (x), [X' = (va, k ) '],
with E(x) =f(x)/[1 —X'f(x)(2x +g) ']. The function
f(x) is the Lindhard function"

f(x) = g + [(1—x')/4x] ln
~

(1+x)/(1 —x) ~,

and g is a correction for correlation and exchange
which is determined by the compressibility sum
rule for the interacting electron gas, g= (1
+0 168y2) '

Since we are interested in relatively high tem-
peratures, we may treat the massive ions classic-
ally. In a canonical ensemble with (T,.) = E„,„(the
total ionic kinetic energy), we have

)= o)= (o)+s)+ss„+ p, (s(s) —(]+ p ls (s)l*s(s), . —-() (»&
21/ „-, ~

4m e'

=s.()o+E„+ + (s,( )l* ( +&&, &+ g '
. (+ "( )

l l

'
() I, [s(s&-(I,

(14)

where the third term in (14), a one-body term, is
the self-energy of the (linear response) electron
distribution around the ions. The last term has the
structure (N/2V()gf»(t) (k) IS(k) —I], where p(k)
(k 40) is the Fourier transform of an effective-
pair interaction between ions. It is in this form
that we may now apply the variational principle:
given a system at the same volume and (ionic) den-
sity with pair interactions Q (taken here as a hard-
sphere system), we have"

or

)ss'o

+F +Q (t&(k)[S~(—k) —1]

Z - E,(V)+ E.(V)+ E„„Ts. -

2"V~ "k' "-"
klo

N [v, (k)J' 1' ss F.4.'. ps* '") —- ')
klo
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where 0 denotes the diameter of the hard spheres
in the chosen reference system. For a specified
volume, this is determined by (eF/ev)r ~=0. Fin-
ally, the coefficient a in E,=NZ(n/x', )(e'/2a, ) is
a property of atomic structure of the ions and is
difficult to calculate from first principles. It may
be fixed once and for all, however, by using the
condition (BE/8 V)r = 0 at the observed (1-atm) den-
sity. This requires only a knowledge of s„ the
hard-sphere entropy.

1V. CALCULATIONAL PROCEDURE

The application of the procedure just described
is most easily accomplished by taking for S,(k) the
known solution for hard spheres of the Percus-
Yevick equation. " In this approximation the fifth
term in (15), the Madelung energy, can be given in
closed form"

E„=-NZaZ'~'/r„

where

o. = 6q'~'l. (1 —5 q+ —,', q')/(1+ 2g) J,

with

the packing fraction. The entropy is taken from the
Carnahan-Starling equation of state. " Given a
form for v, (k), the local unscreened pseudopo-
tential, the last term in (15) can be determined by
numerical integration. For the pseudopotential we
choose the empty core form described above;
it is a function of a single parameter r, . Since the
main purpose here is to examine the scaling of p
with z„ it is sufficient to use values of x, adjusted
to give the observed zero-pressure resistivities
according to Eq. (4). For consistency, the S(x)
used in (4) is also the Percus-Yevick hard-sphere
factor [with, as noted, a packing fraction chosen
to minimize (15)]. The values of x, so determined
deviate but a few percent from typical values quoted
in the literature' (some of which are, in the first
place, extracted from resistivity data in liquid
metals).

As pressure P is applied to the liquid metal, its
density and resistivity change. Assuming that the
temperature is always chosen to be such that for
the range of P considered the system remains liq-
uid, our formalism permits us to calculate (i) p as
a function of r, and (ii) y= p/p, as a function of x„
where p, is the zero pressure resistivity. We can
therefore numerically eliminate x, between these
two sets of results and arrive at

(16)

the scaled resistivity as a function of pressure.

The final result is easily checked for its sensitivity
to the choice of pseudopotential (see below).

V. RESULTS

We consider representative mono-, di-, tri-,
and tetravalent metals and the variation of their
scaled resistivities with pressure. In Figs. 1(a)-
1(d) we present the results of p vs x, for K, Mg,
Al, and Sn. As noted above, the higher pressures
indicated in the figures may well be greater than
solidification pressures. The determination of this
solidification pressure (as a function of temper-
ature) has not been carried out. Where not mea-
sured directly it can be estimated in principle by
theoretical means. "

As it turns out, it is possible to choose more
than one value of x, to fit the experimental resis-
tivity data (and at the same time satisfying the
variational condition BF/Bq = 0 with different values
of 7I). Typically, only one of these r, 's is close to
the value used with considerable success to fit
other experimental data (i.e. , x, 's quoted in the
literature" ), and this x, is used in subsequent cal-
culations. For purposes of comparison, we note
that in potassium, the "accepted" value of x, is
1.12 A, while we obtain values of 1.03 and 1.46 A,
corresponding to deviations of 8% and $0%, respec-
tively. Table I lists the values of x, used through-
out.

Questions should certainly be raised as to
whether the results we obtain are mere conse-
quences of the specific x, 's we use. In response,
we have repeated the sequence of calculations with
the exception that the x, 's we use are precisely the
same as those quoted in the literature. In conse-
quence, we only need to determine q from Eq. (15)
and subsequently calculate p with Eq. (4). We note
that the structure factor in the Percus-Yevick ap-
proximation approximates experimental results
very well with these values of q. Figures 1(a)-
1(d) also display the results obtained in this man-
ner.

Another concern is the validity'of the assumption
that the ion core radius x, stays constant as the
electronic density is varied. This is a legitimate
question since pseudopotentials are certainly en-
ergy dependent, and in the one parameter pseudo-
potential used here this dependence resides in x,.
On the other hand, it should also be recognized
that the ion core radius is a parameter under which
an exceedingly complicated electron-ion interaction
is subsumed. One ean investigate how x, varies
in different environments. Experience, however,
shows that the variations are small, at least for
small changes in x,. Indeed we would expect the
results to be altered somewhat if we use the "ex-
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FIG. 1. Variation of resistivity as a function of pressure for (a) K, (b) Mg, (c) Al, and (d) Sn for elevated tempera-
tures. The results obtained for two different values of r~ for each metal are shown. The dashed curves are obtained
with the "literature" values of r~, while the dotted curves are from the adjusted x, 's (see text). In (a) the experimental:
data of Bridgman are also shown (solid curve). A s noted in the text, the actual melting curve may occur at places
which would make the assumption of a liquid state invalid.

Al Sn

1.03
1.12

0.778
0.736

0.636
0.593

0.740
0.688

TABLE I. Empty core radii &~. The first row are
values of r~ determined via Eqs. (4) and (15); the second
row are values of &~ quoted in the literature.

act form" of x„nevertheless our results gjve a
reasonable guide to expected pressure coefficients
since these involve scaled quantities (logarithmic
derivative). Measurements of resistivities of liq-
uid metals at higher pressures would be welcome
to see how good these approximations are and pro- '

vide information as to what adjustments should be
made in the ion core radius.
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FIG. 2. Functions S(x), v (x), and x3$(x)v (x) for Mg
at two different values of r$. It is seen that, for a
decrease in r$, v and S change in such a way that the
integrand x Sv appearing in Eq. (4) increases. Thi. s
explains the increase in resistivity for a decrease in

r, for the liquid metal.

One striking result is that the pressure coeffic-
ients of the resistivity can be both positive and neg-
ative. At first sight one might find this surprising,
though on closer examination it is what would be
expected. As we see in Eq. (4), the resistivity de-
pends on both the screened electron-ion interaction
tt(q) and the structure factor S(q) which describes
the arrangement of the ions. As the resistivity in-
tegrand is weighted by a factor of (q/2k+)a, the con-
tribution near the regionx =q/2k~ = 1 usually domi-
nates. In Fig. 2 we have plotted S(x), v'(x), and eaSx'
for Mg (with r, = 0.'f36 A) for two values of r, (and cor-
responding values of tI). It is readily seen that v'

and S change in such a way that the integrated
v'(x)S(x)x' increases near the region x= 1 upon a
decrease in r,.

V'hile in these calculations we assume that the
electron-ion interaction is described by a fixed
empty core radius, the variational calculations
show that the ion-ion interaction, described by the
hard-sphere diameter o,"varies as a function of
the volume. Calculations by various authors' have
indeed shown that the effective ion-ion interaction
does change shape as a function of volume. The
corresponding variation of 0, the hard-sphere di-
ameter, as a function of the electron density is
listed in Table II.

For completeness we also include in Figs. 3(a)-
3(d) the equation of state for K, Mg, Al, and Sn.
It should be noted that these curves are obtained
by considering the volume dependent energies.
Equatioris of state have been obtained via other

.methods" in the same general framework as used
here (such as integratmg up the compressibility
relation), however, it is doubtful that these can
give very reliable information, although they do
yield the qualitative features.

The variations of the resistivity as a function of
x, are shown in Figs. 4(a)-4(d). The values of
s(lnp)/s(lnr, ) are listed in Table III.

I

TABLE II. Vastation of hard-sphere diameter o (in AI and packing fraction ti as a function of
r, (in A), the electron density, for various liquid metals. The numbers in parentheses are from
the second series of calculations. The highest values of r, correspond to zero pressure.

r$
0

2.682
3.72(3.88)
0.334(0.380)

1.508
2.95(2.87)
0.466(0.433)

1.153
2,61(2.55)
0.481(0.450)

1'.20
2.89(2.82)
0.435(0.404)

$
0

2.60
3.69{3.83)
0.358(0.401)

1.45
2 .89(2.83)
0.496(0.464)

1.10
2.54{2.49)
0.508(0.483)

1.15
2.83(2.77)
0.467(0.435)

2.50
3.64(3.76)
0.387(0.426)

1.40
2.84(2.78)
0,520(0.490)

1.05
2.48(2.42)
0.546(0.515)

1.10
2.77(2.71)
0.501(0.467)
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PIG. 3. Variation of the resistivity p as a function of r, for (a) K, (b) Mg, (c.) Al, and (d) Sn.

VI. DISCUSSION AND CONCLUSION

Comparison of the results from the two series of
calculations shows that although the details differ,
the qualitative aspects are similar. We believe
they are reasonable guides to the kind of behavior
we can expect the liquid metals to have upon the
application of pressur . The calculations for po-
tassium show very encouraging agreement with ex-

perimental data. " To our knowledge, there are no
experimental data on liquid Mg, Al, and Sn under
compression, thus we have not been able to make
a comparison with experiments for these liquid
metals. The reason' for the similarities between
the two different series of calculations is not en-
tirely apparent. As a glance at Table II will show,
the different x, 's tend to lead to somewhat differ-
ent g's. However, we observe that the changes in
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FIG. 4. Equation of state for (a) K, (b) Mg, (c) Al, and (d) Sn at the indicated temperatures. The experimental data
for K shown in (a) are interpolated from those reported by Makarenko et al . (Ref. 22).

I

TABLE III. Computed values of &(1np)/&(lnr ) at zero
pressure. Numbers in parentheses are from the second
series of calculations.

Sn

-11(-12) 9.6(7.5) 5.1(1.4) 2.9(2.7)

q are about the same for corresponding cases; this
probably accounts for the trend we see from metal
to metal.

As noted in Sec. V, the variation of the resistivity
as a, function of pressure is not necessarily of the
"expected" form. For the four metals we consider,
only potassium shows such "expected" behavior,
i.e. , resistivity decreases as pressure increases,
while the others have resistivities that increase

with pressure. With the exception of a few metals
(notably lithium), resistivity in the solid decreases
as pressure is applied. " This indicates that cau-
tion must be exercised in drawing conclusions
about the sign of changes expected in solid metals,
though the magnitude of such changes may be cor-
rect.

As noted earlier, the resistivity in both the solid
and the liquid state can be thought of as arising
from disorder scattering. In the liquid state it is
due to the disorder of the ions as reflected by the
structure factor S(q, u&), while in the solid the dis-
order is in the. form of phonons, again described
by the structure factor $(q, u}, usually the one-
phonon structure factor. In this regard the results
we have'give the size of the variations in the re-
sistivity, due to the application of pressure, that



RESISTIVITY OF LIQUID METALS UNDER ELEVATED. . .

can be expected from disordering scattering.
Quantitative changes in the resistivity in the solid

cannot be explained as straightforwardly as in the
case of the liquid. To gain insight into the prob-
lem, we consider the familiar expression for the
resistivity'4 (believed to be applicable for the al-
kali metals)

ali, e'l m8v'Zg
2 ~ (a,k~)

xl c(x, X) xl'it&(x)l'Z J~ (l e &r&u&&&-%, &)&(P &o&&&&&, &&& l)

where &u(x, X) and e(x, &) are the frequency and
polarization vector at the reduced wave vector
x=q/2k~. The quantity

BP P&I'y' m Ix ~ ~(x, X) I'I g (l e-&&&&s&&x, x&)(ea&&u&&R, x& l)

identified as the one-phonon structure factor, can
easily be shown to decrease as r, decreases (i.e. ,
for an increase in pressure) in the high temper-
ature regime. However, to compute its variations
with volume correctly, one would need a detailed
evaluation of phonon frequencies for volumes at
nonzero pressures. We note that the above formula
is good only for a metal with a spherical Fermi
surface; in the case of polyvalent metals, the
changes in the Fermi surface geometry as x,
changes will further complicate the issue as they
may introduce new possibilities for electron-pho-
non scattering events (or eliminate some of them,
for that matter). We also expect the effective
mass of the electron to change because of changes

in the band structure.
Finally, pressure induced changes in the liquid

state are of intrinsic interest. Qur systematic cal-
culations show that the interionic potential, as re-
flected in the hard-sphere diameter, does change
with the environment. Within the framework of the
hard-sphere approximation, we believe that these
results are to be expected. Certainly the adjust-
ment of the empty core radius x, together with q to
fit the experimental data, leads to values of x, that
differ from those calculations of other properties.
Part of this adjustment is probably due to the
rescreening of the electrons at a different density,
although it is difficult to calculate the exact magni-
tudes involved. On the other hand, Eq. (4) is a
first order result and forcing it to reproduce ex-
perimental data may introduce unphysical assump-
tions while the discrepancies can only be taken into
account by an extensive evaluation of higher order
contributions. We saw earlier that with the "liter-
ature" values of x„ the structure factors are re-
produced quite well. Together with the physically
reasonable assumption that the resistivity ratio
scales the same way as Eq. (4), it is our contention
that the second series of calculations gives a more
realistic guide as far as fractional changes in the
resistivities are concerned.
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