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Scattering-theoretic approach to the electronic structure of semiconductor surfaces: The (100)
surface of tetrahedral semiconductors and Si02
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We report the development of a method for calculating the electronic structure of semiconductor surfaces.
It is based on the Koster-Slater idea for treating localized, perturbations, which was later extended to
describe surfaces. The present method makes use of semiempirical tight-binding Hamiltonians and of a novel

way to create free surfaces. A Green's-function scattering-theoretical formulation is employed. The properties
of the bulk crystal are built in and preserved. Bound-surface-state energies are determined unambiguously
and accurately even for states whose wave functions are very extended. The total and local changes
occurring in the density of states due to the surface can be calculated directly, and therefore very accurately,
without having to subtract two large quantities. Some of the structure in the state-density changes is in the
form of narrow peaks, which can be identified as resonances or antiresonances. In order to point out
advantages of the method and to compare our results with the results of slab calculations, we present
applications to the Si and Ge (100) free surfaces. The present method is shown to be very efficient, accurate,
and fast. Despite the fact that a tight-binding Hamiltonian of a truly semi-infinite system is treated exactly,
the method employs matrices which are much smaller than those arising in slab calculations. Finally, the
method is applied to a study of the (100) surfaces of the isoelectronic series Ge-GaAs-ZnSe and to the (100)
surfaces of cubic SiO,.

I. INTRODUCTION

The problem of the electronic structure of solid
surfaces has attracted considerable attention
during the last several years. ' ' A variety of
methods have been developed and used to study
surfaces of metals and semiconductors. These
methods belong to one of four general categories:
(a) methods that simulate the semi-infinite solid
with a finite number of atoms' "(cluster methods);
(b) methods that simulate the semi-infinite solid
with a finite number of atomic layers having two-
dimensional periodicity"~4 (slab methods);. (c)
methods that solve the Hamiltonian of the semi-
infinite crystal directly (wave-function-matching
method" ";Green's-function- matching method"~';
transfer-matrix or continued-fraction method"~');
and (d) methods that treat the creation of a surface
as a perturbation of an otherwise perfect infinite
solid. ~'~' All the above methods may be used with
a variety of one-electron Hamiltonians (semiem-
pirical, Hartree-Pock, self-consistent pseudo-
potential, etc.) together with one of many possible
basis sets in terms of which the wave functions
are expanded (plane waves, atomic orbitals,
muffin-tin orbitals, etc.)

All four classes of methods have been used
widely in studies of ideal model systems as well
as studies of real materials. For semiconductors,
calculations have thus far been done in terms of
only the first three classes of methods. Methods
belonging to the fourth class, i.e., those treating
the creation of a surface as a perturbation of the

otherwise infinite perfect crystal, have been formu-
latedby several authors, ""in all cases making
use of Green's functions. Applications have been
mainly on ideal systems that simulate no real
material and on the so-called jellium model used
to simulate simple metals. ' '" More recently,
limited applieat;ions of such methods have been
reported for surface states of some transition
metals. '0&"

In this paper we develop a method which treats
the creation of a surface as a perturbation and is
particularly suited for semiconductors and in-
sulators. Its foundations are the same as those
of the methods used or discussed in Refs. 43-55,
in that it is based on a Qreen's-function formula-
tion of scattering theory. It therefore has a
number of distinct advantages. It deals with a
truly semi-infinite solid, instead of a finite
cluster of atoms or finite number of layers. As
a consequence, the band continua are described
in terms of continuous functions, instead of being
simulated by a set of discrete states. Further-
more, the changes produced in the electronic
structure of the infinite solid by the creation of
the free surface are obtained directly, thereby
avoiding the subtraction of two large quantities.
From the computational point of view, it deals
with matrices whose size is determined by the
range of the potential change due to the surface.
In contrast, cluster and slab methods deal with
matrices whose size is determined by the range
of surface-state wave functions, which is almost
always considerably larger.
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In our particular formulation, a linear-com-
bination-of-atomic-orbitals (LCAO) representa-
tion is used as in Refs. 43-45 and 47-53
but a novel way of creating the surface is
introduced, which allows the surface perturbation
to be represented by very small matrices. More
specifically, the matrices encount|. red in our
method are usually an order of magnitude smaller
than corresponding slab matrices.

The plan of this paper is as follows. In Sec. II
we give the general results of scattering theory in

solids, as it has been developed by Callaway, "
Garcia-Moliner, "and others, and give the general
form of the equations in a LCAO representation.
The equations are then specialized for perturba-
tions which, like surfaces, have two-dimensional
periodicity. Finally, the form of the perturbation
which corresponds to the creation of a surface is
described and the method of calculation is dis-
cussed. Iri Sec. III we present applications of the
method to the Si and Ge (100) surfaces using the
same Hamiltonian employed by Pandey and
Phillips""' in slab calculations in order to make
a direct comparison and demonstrate the power
of the present method to describe real materials.
In Sec. IV we apply the method to a study of the
(100) surfaces of the isoelectronic series
Ge-GaAs-ZnSe and of SiQ, . We end with the con-
clusions in Sec. V. Details of the calculations are
given in a series of appendixes.

II. SCATTERING-THEORETIC FORMALISM

A. General results

Let B' be a one-electron Hamiltonian describing
an infinite periodic solid. The corresponding
eigenvalue problem,

N(E) = —(I/v) Im Troa(E) .
Now let Ube any perturbation, and let

H=LP+ U

be the new one-electron Hamiltonian for the per-
turbed system. The new eigenvalue problem is

(H'+ U)g =Eg, (6)

y= g c.y. ,

Equation (7) can be transformed to a set of linear
algebraic equations for g

(9)

where the Green's function in the (Pj representa
tion is directly obtained from Eq. (3):

Go (E) ~ 8& ~4,%)(e %~4 )
afB EO„

nk
(10)

From Eq. (9), bound states corre'spond to zeros
of the determinant

and the solutions fall into two categories: states
with energies within the forbidden gaps of the
spectrum of B, and states within the band con-
tinua. One therefore usually seeks to determine
the positions of the discrete states in the band
gaps and the changes produced in the density of
states within the band continua.

For states in the band gaps one can immediately
rewrite (6) in the form

(1 —GD U)g = 0 .

If P is expanded in terms of an orthonormal basis
set p„ i.e.,

mfa y
~ —E~ g OI

yields the energy bands E„g and the corresponding
Bloch functi. ons ('„-„. The one-particle Green's
function G of this system is defined for outgoing
waves by

1 1
6'(E) = lim E

where the superscript (+) on E in the second form
is a short-hand notation for the full expression
involving the limit as z-0 from above. The
operator Go can also be conveniently expressed in
terms of the complete set of Bloch eigensolutions
of H as

As usual, the density of states of II is given by

D(E)=det 6 ~
—g G'„(E)U„~

An important feature of this result is that the ef-
fective order of the determinant in Eq. (11) is
equal to the order of the matrix U, so that the
method is particularly suitable for short-range
perturbations. The scattering-theoretical aspect
of this approach is quite obvious in that, in more
formal terms, Eq. (11) actually determines the
discrete poles of the scattering matrix. The pro-
cess under consideration here is, of course, the
scattering of Bloch waves by the perturbation po-
tential creating the surface.

Qnce the bound-state energy is determined from
Eq. (11), the corresponding wave function is
calculated from Eq. (9).

The change in the density of states EN(E)
=N(E) -N (E) within the bands is obtained by
first defining the Green's function G(E) for the
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perturbed system by

G(E) = 1/(E' —H), (12)

and relating it to G'(E) by Dyson's equation, i.e.,

G=G +G UG.

The new density of states is given by

N(E) = —(1/w) Im T rG(E) .

(13)

6(E)= —tan ' [Im D(E)/Re D(E)], (16)

where D(E) is as defined by Eq. (11). It should be
noted, that 4N(E) depends only on G' and U, so
that its evaluation does not require the solution of
Dyson's equation (13). Equation (16) shows that
6(E) goes through an odd multiple of —,m every
time ReD(E)=0. If such an energy is labeled Eo,
one may then expand D(E) in the vicinity of E, to
obtain the corresponding contribution to the
change in the density of states in a Lorentzian
forrp centered at Eo:

6N(E) = (I'/2v)(1/[(E E)'+ —,
' I'-]}, (17)

with the half width 1 given by

I'= 2ImD(E, )/Re D'(E,) . (18)

In (18), the prime denotes differentiation with
respect to energy. When I'&0, hN(E) corre-
sponds to a resonance of half width I', whereas
when I'&0, hN(E) corresponds to an antireso-
nance with half width ~I" ~. Note that the same
expressions apply within the gaps where ImD(E)
= 0 so that I' = 0 and Eq. (17) reduces to a 6 func-
tion indicating a discrete state.

4N(E) satisfies the important sum rule

dEEN = 0,
. %(Q

(19)

known as Levinson's theorem. When the discrete
states in the gape are counted separately, (19)
becomes

bands
dEEN = '-Nb, (20)

where N, is the number of discrete states in the
gaps.

The relation for the discrete states, Eq. (9), as
it applies to point defects in semiconductors was
first derived by Koster and Slater." A more
general treatment has been given by Callaway"

The change in the density of states b, N(E) can now
be conveniently written

( )
1 d6(E)
m cK

where the quantity 6(E) is the phase shift, given
by

and by Garcia-Moliner. " Callaway employed
Wannier functions for the set P, which are con-
venient for general analytical results but very
cumbersome for actual calculations. More re-
cently, the problem was formulated in terms of
LCAO basis sets in the above fashion by Bernholc
and Pantelides, e' who used the method to calculate
the electronic structure of the vacancy in several
semiconductors. Here, we turn to surface-re-
l,ated problems and study an arbitrary perturbation
that retains two-dimensional periodicity. Before
we proceed further, however, we must introduce
some necessary LCAQ terminology.

B. LCAO representation —Planar perturbations

In order to describe a perfect infinite crystal in
an LCAO representation, we introduce atomiclike
orbitals on each atom in the primititive unit
cell and denote them by q (P7'„), w'-here f„are
the positions of the atoms in the unit cell and e
labels the s, p, . . . , etc. , character of the orbit-
als. For the purpose of solving for the eigen-
solutions of II' we first define the Bloch sums

X-'"(r) =- Q e""~+"q. (r R~ &.—), (—21)

where R& are the Bravais-lattice vectors and N,
is the number of Bravais-lattice points in the
three-dimensional bulk lattice. The Bloch func-
tions are then expanded as follows:

4'.I(r) = g G".,(I ) X,"(r). (22)
QV

Upon diagonalization of the secular matrix
(yf" ~H ~yf'"') at eachk, one obtains the eigen-
values E'„-„and the corresponding eigenvectors
C„~, which define the Bloch functions. In the ap-
plications to be presented in this paper, the
matrix elements (y „~H'~y ~&,„,) which are needed
to construct (y-„"~H gI'"') are treated as param-
eters. The method has often been referred to as
the empirical tight-binding method (ETBM).

For an arbitrary perturbation U, one must first
choose a basis set in terms of which to expand
the new wave functions g, express the Green's
function G, evaluate the matrix of U, and pro-
ceed with the formalism described in the previous
subsections. In early formulations of the prob-
lem, the Wannier functions were thought to be
the natural set for localized perturbations. When
an LCAO representation is used for the bulk
band structure, however, the set of atomic or-
bitals (yj has been shown to be a more natural
and useful choice for point defects. e ' Along the
same lines, for planar perturbations, it is
natural to use the set (y ] and define layer
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q;,(r) = g A,', e,' (r),

where s numbers the various states at each q.
The Qreen's function G' and the perturbation
matrix U can then be evaluated in the (C J' repre-
sentation at each q, from which the determinant
D(E), the bound states, the change in the state
density hN(E), etc., can be determined.

(24)

C. Free surfaces

The next task is to identify the perturbation U
describing the creation of a free surface. There
are essentially two ways to accomplish this task.
One possibility is to "switch off" the interactions
(i.e. , cut the bonds) between orbitals on the atoms on
a number of adjacentplanes [Fig. la] so that twonon-
interacting semi-infinite solids are formed. Clear-
ly, the number of planes involved in this procedure is
determined by the number of nearest-neighbor
interactions that are included in the tight-binding
Hamiltonian FF of the bulk. For example, if only
first-nearest-neighbor interactions are included
in the bulk Hamiltonian, switching off the inter-
actions between only two adjacent planes will
accomplish the decoupling between the twin sur-
faces. The interaction between orbital n and or-
bital p on two different atoms is formally switch-
ed off by simply setting U ~= —IP~. In this pro-
cedure both atoms become involved in the process
of creating a surface.

An alternative way to create a free surface is

orbitals in order to take advantage of the fact
that the system retains two-dimensional period-
icity. Because of this periodicity, a two-dimen-
sional q vector is a good quantum number and
layer orbitals are simply Bloch sums in two di-
mensions. They are defined by

1
@mmv(~) g et+ (vying ) ~ (r p ym)

N 11 )
2 J

(23)

where p& are the lattice vectors of the two-di-
mensional Bravais lattice and X„are the position
vectors of the atoms in the two-dimensional unit
cell. The number of Bravais-lattice points in the
two-dimensional lattice is denoted as N, . The
index m labels different planes of atoms and the
index v labels different atoms in the same plane.
The above definition of layer orbitals is the same
as that used for slab calculations in a LCAO re-
presentation. For convenience, we will occasion-
ally use a composite index l= nm v for the layer
orbitals.

States of the perturbed system are then expanded
in terms of the layer orbitals

0 0 6 8 0 0
0 0 8 8 0 0
0 0 0 0

0 8 () 8 0
0 8 () () 8 0
0 8 () () 8 0

(b)

FIG. 3. Schematic graphs showingthe creationof the
twin surfaces in the two different methods: (a) "bond-
cutting" (b) "removal" of layers. In both cases the
resulting surface-layer atoms are shaded.

U ~=u6~~, (25)

for n and p on the atoms to be removed. With
this form of perturbation and in the limit u- ,
the condition for bound states, Eq. (11), becomes

D(E) = det
~

G'„, (E}
) ~

—0, (26)

where l and l' are layer orbitals on the planes of
atoms to be removed. The change in the density

to remove one or more layers of atoms so that
again two noninteracting semi-infinite solids are
formed [Fig. 1b)]. As it is clear from Fig. 1, the
number of planes involved in creating the surface
is now smaller (in most cases smaller by a factor
of 2). The "removal" of atoms is accomplished
by simply setting their diagonal matrix elements
to a constant u and then letting that constant go
to infinity. (The effective interaction between or-
bitals on such atoms and orbitals on all other
atoms goes to zero as u- ~). This procedure was
used earlier by Bernholc and Pantelides" in
the case of the vacancy in a bulk semiconductor.
In fact, the creation of a surface is equivalent to
the introduction of a "planar vacancy" (in the case
of nearest-neighbor coupling) or "planar divacan-
cy" (in the case of next-nea, rest-neighbor coupling),
etc. For example, in a one-dimensional crystal
with only nearest-neighbor interactions, a vacancy
creates two noninteracting semi-infinite solids.
Algebraically, the matrix elements of the per-
turbation U between atomic orbitals c, and p are
of the form
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o.

o Q o
Q'

GI ~~ D'a Q
0

= q

Q o Q o
FIG. 2, Topmost (100) surface layer and the following

three layers for diamond or zinc-blend lattices. In the
case of a zinc-blende material even and odd layers con-
tain either anions or cations, respectively. '

We retain
the crystal y and z axis. The bulk lattice constant is
denoted by a,

of states n. N(E) is given by the same expression
(15) and (16) with D(E) replaced by D(E) defined
by Eq. (26).

The new procedure of creating free surfaces,
which we will refer to as the "atom- removal method, "
has a number of distinct advantages over the pre-
viously used method, which we will refer to as
the "bond-cutting method. " (a) In the bond-cutting
method one must set up the Green's-function
matrix and the nondiagonal perturbation matrix
U. . . whereas in the atom-removal method it is suf-
ficient to calculate the Green's-function matrix,
as can be seen in Eq. (26). This result illustrates
that the bulk Green's function contains complete
information about the electronic structure of an
ideal surface (i.e., no change of the bulk matrix
elements up to the surface). (b) Computationally,
the dimension of the resultant matrix in the atom-re-
moval method is usually smaller by a factor of 2.
(c) The Green's-function matrix G' is Hermitian
for the bound states, whereas 1 —G U, encount-
ered in the bond-cutting method generally is not.
As a result, the atom-removal method reduces

2~/a
'I

FIG. 3. Reciprocal lattice (dots) for a diamond or zinc-
blende {100)surface together with the surface Brillouin
zone. The irreducible square (C» symmetry) is cross-
hatched.

the labor at various stages by at least a factor of
4or 8.

In the above discussion we compared the rela-
tive merits of two different ways of constructing
the perturbation that creates a free surface in the
scattering-theoretical formalism. In either way,
the relevant matrices are substantially smaller
than the secular matrices encountered in slab
calculations. In particular, as will be seen in
Sec. III, the secular matrices of typical slab cal-
culations are an order of magnitude larger than
our Green's-function matrices.

III. (100) SURFACE OF Si AND Ge—COMPARISON

WITH OTHER CALCULATIONS

In this section we present calculations of the
electronic structure of the ideal (100) surface of
Si and Ge in order to illustrate that calculations
using the scattering-theoretical method described
above are in fact rather straightforward for real
materials and can easily provide a wealth of in-
formation.

TABLE I. Tight-binding matrix elements in eV defining the bulk Hamiltonians of the various materials in standard
notation, The superscripts (c) and (a) in the headings of the first four columns denote cation and anion, respectively,
and the superscripts 1 and 2 in the rest of the columns refer to first- and second-nearest neighbors.

Si'
Ge
Ge~
GaAs"
Znse'
Si02
O-O interactions

@(c)s

-4.203
-5.830
-5.75
-3.07
+0.01
13.86

@(c)
p

0.187
0.610
1.60
3.47
6.20

18.36

@(a)s

-8.09
-12.03

16.36

E(a)
p

1.28
1.10

-1.77

&ss

-2.08
' -1.69
-1.69
-1.69
-1.69
-1.5
-0.6

&sp
1

2.12 2.12 2.32
2.03 2.03 2.55
2.31 2.31 3.10
2.37 2.06 3.51
2.59 1.07 3.46
3.76 3.5 5.71
0.8 0.8 1,29

&pp

-0.52
-0.67
-0.95
-0.96.
-0.75
-0.64
-0.16

~pp
2 2

0.58 -0.10
0.41 -0.08

~ ~ ~

'Reference 58. "Reference 65.
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The geometrical arrangement of the atoms for
the (100) surface of Si is shown in Fig. 2. The
axes shown are the crystallographic y and z axis.
The two-dimensional unit cell is marked out by
the dashed line; it contains one atom in each layer.
The corresponding two-dimensional Brillouin
zone is shown in Fig. 3. We will use the same
ETBM Hamiltonian used by Pandey and phillips"'"
to study the (100) surface of Si and Ge so that a
direct comparison will be possible. This Hamil-
tonian uses only s and p orbitals on every atom
and retains only first- and some second-nearest-
neighbor interactions. The values of the param-
eters in standard notation are given in Table I.
An ideal surface is then defined as an abrupt
termination of the bulk crystal, keeping all the
intra- and interatomic interactions unaltered. In
this approximation, no new parameters are nec-
essary for the calculation of the electronic struc-
ture of the free surface. The creation of the sur-
face can be accomplished by removing two layers,
as shown in Fig. 4.
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FIG. 5. Projected bulk band structure and surface band
structure of Si(100) calculated with the second-nearest-
neighbor tight-binding Hamiltonian given in Ref. 58. The
letters b, d, and br denote the back-bond, dangling-bond,
and bridge-bond bands, respectively. See text.
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FIG. 4. Geometry in a plane perpendicular to the sur-
face containing the y axis. The two dashed layers are
"removed" to create the adjacent surfaces,

A. Energy levels of bound surface states

In the scattering-theoretical method, the first
task is the evaluation of the projected band struc-
ture (PBS), i.e., the projection of the bulk bands
E„f,with k=(q, k,) for each q in the surface Bril-
louin zone. The PBS is needed for the calculation
of the G' matrix (Appendix A), but it is also ex-
tremely useful in its own right. It allows one to
identify all the gaps and "pockets" where a search
must be made in order to determine the positions
of states that are truly bound at the surface. We
have calculated the PBS for Si(100) and Ge(100)
and display them in Figs. 5 and 6. Instead of the
usual practice of crosshatching the continuum
regions uniformly, we display the actual projected
eigenvalues at each q for a fixed set of k, values.
These are precisely the subset of bulk states
which would have to be used if the surface-state
wave functions were to be expanded in terms of

bulk Bloch functions. The distribution of points
at each q in Figs. 5 and 6, therefore, provides
visual information about which bands contribute
more heavily to the formation of surface states.
In particular it gives a visual impression of the
density of bulk states at each q.

Bound states in the gaps and pockets of the PBS
are determined in an unambiguous way by search-
ing for the zeros of D;(E) given by

D, (E) =det ii(4.' " IG'IO. '"'"')I, (27)

where, for the examples under consideration,

PBS 8 SURFACE STATES OF Ge (lOO)
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FIG. 6. Surface bgnd structure of Ge(100); for details
see caption of Fig. 5.
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the indices m and m' run over only the boo layers
that are removed for the creation of the twin non-
interacting semi-infinite solids (Fig. 4). The
size~ of the relevant Green's-function matrix is
therefore 8 x 8 and can be evaluated with modest
effort (Appendix A). The search for bound states
can then be made by using an efficient algorithm
described in Appendix B. The results are shown
as solid lines in Figs. 5 and 6. We will collec-
tively refer to the surface bands as the surface
band structure (SBS).

We turn now to a comparison of the above re-
sults with those obtained by Pandey" using the
slab method in which the semi-infinite solid is
simulated by a slab of finite thickness. For the
(100) surfaces of Si and Ge Pandey" used 20
layers of atoms. The electronic states of the slab
were then expanded in terms of layer orbitals and
the corresponding secular matrix
(4.,""IIf IC ') was set up and diagonalized
at each q. The size of the slab matrix is thus
80 x 80, which is an order of magnitude larger
than the corresponding scattering-theoretical
matrix of Eg. (27). The slab matrix needs of
course be diagonalized only once at each q, in-
stead of at a mesh of energies, and, furthermore,
the Hamiltonian matrix elements encountered in
the slab method are easier to evaluate than the
Green's-function matrix elements. Nevertheless,
the scattering-theoretical method is less time
consuming if our way of creating the surface is
used together with the efficient root-finding
algorithm employed in our calculations (see Appendix
B). Asfor the actual results in Figs. 5 and 6, a com-
parison with the slab calculation shows excellent
agreement. For highly localized states the surface-
state energies in the case of Si agree within
better than 0.001 eV so that there was no reason
to plot the slab results separately. ln the case of
Ge the same agreement is found for most of the
states except for a rigid shift" of 0.06 eV. (States
in the small pockets and the empty states in the
conduction band were not reported in Ref. 58.)
As one might expect, for extended states there
are appreciable differences in the energy positions
of surface states. One example is the surface
state at I' in Ge. We find that the state extends
over more than 20 layers. Thus, it is not
surprising, that the slab-calculation result de-
viates from our surface-state energy by 0.32 eV.
Theoretically, these differences are significant
in that we try to solve a given model problem as
accurately as possible. Experimentally, extended
states are difficult to detect, so that the slab
method describes the experimentally interesting
states satisfactorily. We will now turn to a dis-
cussion of surface-state wave functions.

B. Surface-state wave functions

The calculation of the wave function in our
method is rather straightforward, and is de-
scribed in detail in Appendix C.

In Figs. 7 and 8 we plot orbital sums of the
wave-function amplitude on each layer defined by

f,",(E,)=P ~;;(E,) (26)

for several surface states of Si and Ge. In Fig. 7
we plot for comparison a number of wave functions
with distinct behavior. Example 7(a) shows the
wave-function amplitude of a gap state which is
completely localized in the surface plane. An
orbital decomposition of f, ,(E) shows that this
state is 50%%uo p„- and 50%%uo P,-like. This type of
bond acts like a link between surface atoms and
is therefore referred to as the bridge bond. The
second type of gap states usually encountered on
a (100) surface in group-IV semiconductors is
the so called dangling bond. The wave function
corresponding to the dangling-bond state at J is
shown in Fig. 7(b). The orbital decomposition of
f", ,(E) for this state shows that it has predomi-
nantly s and p„character, resulting in charge
density that "dangles" perpendicular to the sur-
face. A typical example for a back bond is given
in Fig. 7(c). This state is again very localized,
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FIG. 7. Wave-function amplitudes as a function of the
layer number for some surface states in Si(100) (summed
over the, s and p orbitals). The corresponding q and E
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from a 20-layer slab calculation (Ref. 58) are also given
in parentheses for comparison.
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but its amplitude is shared mainly by the first
two layers indicating a charge buildup in the
"back bond. " Example V(d) shows the wave func-
tion of an empty state in one of the tiny pockets in
the conduction band part of the PBS. Such states
lie very near the bulk energy continua and are
therefore very extended. Similar states in the
valence-band pockets are more localized, but
with most of their amplitude on the third to fifth
layers.

When a surface-state band approaches the bulk
band projection, the states might, depending on
the symmetry of their wave functions, become
more and more extended. This is shown for the
dangling-bond band in Ge between 1 and K in Fig.
8. At E [Fig. 8(d)] the wave function decays
within two layers. As the surface band approaches
the bulk band projection [Figs. 8(b) and (c)] the
wave function becomes more extended and even-
tually at I' [Fig. 8(a)] it extends over more than
20 layers.

We have included in Figs. V and 8 a comparison
between the surface-state energies calculated by
our method and by the slab method (energy values
in parentheses) for the states whose wave func-
tions we show. For highly localized states [see,
e.g., Figs. V(a), V(c), 8(c), 8(d)] the energies are
exactly the same in the two calculations. For ex-
tended states [Figs. V(b), 8(a), 8(b)] more or less
pronounced deviations occur. For such states the
slab method would have to employ thicker and
thicker slabs. The accuracy of the scattering-
theoretical method, remains unaffected by the ex-

LAYER NUMBER = g

FIG. 8. Wave-function amplitudes for the dangling-bond
state of Ge(100); for details see Fig, 7.

tent of the wave functions, because it deals with a
truly semi-infinite solid. Where the results of the
two methods disagree, the scattering-theoretical
method is to be viewed as more accurate.

C. Changes in state densities —Surface resonances

In addition to the bound surface states lying
within the gaps and pockets of the PBS, the pre-
sence of a surface also induces changes in the
density of states within the band continua. These
changes can be calculated directly by using Eq.
(15). For the particular problem at hand we have

~N;(E) = —S(E),
1 d-

(29)

~N;(E) = g [~(E)-~(E)],

where the sum is over all the layers, including
those removed by the perturbation. For the ac-
tual physical system of interest, i.e., a semi-
infinite solid, the relevant quantity should not
include the removed layers and their states at
infinity. Leaving those terms out, we obtain

~N;(E) =-,' [~N-, (E)+2m„-(E)],

(31)

(32)

where the factor of 2 inside the square brackets
corresponds to the number of removed layers and
the factor of ~ gives the final value for one semi-
infinite solid.

Both quantities, i.e., hN, (E) and AN, (E), were
calculated and found to satisfy Levinson's
theorem: LN-(E) integrates over the energy
range of the bulk bands to -8 corresponding to
the eight states at infinity introduced by the atom-re-
moval perturbation and AN;(E) integrates to zero.
The number of states is thus conserved.

A typical ~N~(E) for Si at q= (0.5, 0.5)(2v/a)
(the 8 point of the surface Brillouin zone, see
Figs. 3 and 5), broadened~ by 0.1 eV, is given in
Fig. 9. If comparison is made with Fig. 5, one
observes that the spikes at 1.5 and -1 eT cor-
respond to true surface states in the gap; the re-
maining structure corresponds to changes in the
continuum density of states. Some of the struc-

where

5,(E)= —tan ' [Im Q(E)/He D&(E)] . (30)

The changes given by Eq. (29), however, apply to
the complete "algebraic" system, consisting of
two semi-infinite solids and the "removed" layers
with states at infinity. In particular, if we define
n to be the new partial density of states for the
m "layer and m tobe the partial density of
states for any layer in the infinite bulk crystal,
we have
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ture can be identified as resonances and antire-
sonanees, as discussed in Sec. II. For example,
the negative spikes at -10, -1.2, and 4.3 eV are
clearly antiresonances. The structure that ap-
pears in the range -8.5- -5 eV looks rather
peculiar. At first glance, one might view it as
two neighboring resonances giving rise to a twin-
peak feature. Such an explanation is not adequate,
however, because the integral of hE~(E) over this
range corresponds only to one extra state. More
careful examination reveals that the structure
corresponds to two resonances of about the same
width plus a wider antiresonance between the
two. The two negative dips are thus the remnants
of the antiresonance tails. Therefore, the net
change in the number of states in this energy re-
gion should be one, as it was indeed found to be.
This structure, therefore, helps demonstrate the
fact that the change in the continuum density of
states may be considerably more complicated
than a mere succession of Lorentzian-type re-
sonances and antiresonances.

If we integrate 6R,(E) of Fig. 9 over the va-
lence bands, i.e., up to about —1 eV (the top of
the projected valence bands at Z; see Fig. 5), we
find that a total of one state has been removed.
Similarly, if we integrate over the energy range
of the projected conduction bands alone, we also
find that a total of one state has been removed.
The two missing states are of course balanced
by the two states in the gap, and Levinson's
theorem is satisfied. However, the finding also
reveals that the two bound states are derived

from both the valence and the conduction bands.
This realization raises some questions about the
validity of a semiempirical Hamiltonian which is
chosen to fit the valence bands very well while
doing rather poorly for the conduction bands. It
is plausible that the lower of the two gap states
is determined predominantly by the valence bands
and is thus quite reliable, while the upper state
is determined by the conduction bands (this point
is explored further in Sec. III D below) The m. ost
crucial test of a semiempirical surface Hamilton-
ian is of course a comparison with the surface
states obtained by self-consistent calculations, as
pursued by Pandey, "who concluded that the re-
sults were quantitatively accurate.

In Fig. 10 we give the total change in the density
of states LN(E), which was obtained by summing
over q in the surface Brillouin zone. The main
features can be understood by referring to Fig. 5.
The states in the gap correspond primarily to
what we described as the bridge-bond band. The
peak at about -0.8 eV corresponds to the dangling-
bond band, also shown in Fig. 5. Finally, the
extra states at about -6 eV correspond to the
surface band that runs from a point near E
toward J' in Fig. 5.

%e turn now to compare with the slab method
once more. By its nature, the slab method is less
suitable for the description of changes in the band
continua because, unlike the scattering-theoreti-
cal method, it simulates the continuum with a set
of discrete. states. In the case of the (100) sur-
face of Si and Ge discussed here, the 80 x 80 slab
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whose wave function was shown in Fig. V(a), is
once more seen in Fig. 11 to be localized in the
first layer. In contrast, the bound state at -0.9
eV [Fig. 7(b)j, is seen in Fig. 11(b) to extend
over several layers. We also see in Fig. 11(b)
that the prominent antiresonances at about -10 eV
is localized within about three layers, whereas
the broad feature between -6 and -8 eV, which
we discussed in connection with Fig. 9, extends
over more than seven layers. Note that for the
first two layers, this feature appears to be a
single broad resonance at about -7 eV, and was
so identified in the slab calculation of Ref. 58.
Figure 11 confirms the interpretation of the
broad feature as a sum of two resonances and

one antiresonance, as discussed Sec. III C above.
In conclusion, we find that the scattering-theo-

retical method provides a much more direct and
accurate description of the changes in the con-
tinuum density of states than the procedures used
in slab methods.

The Koster-Slater-type scattering-theoretical
approach also has advantages over the transfer-
matrix method. 4' Both these methods describe
truly semi-infinite solids and the labor involved
may be comparable. However in the transfer-
matrix method one calculates the new Green's
function directly, without making use of the un-
perturbed-crystal solutions, so that charges in
the electronic structure must be calculated by
subtracting two large quantities as in slab
techniques. Furthermore the calculation of the
surface energy bandstructure in the transfer-
matrix method is significantly more laborious as
compared to the scattering theoretical approach.

E. Alternate calculation for Ge(100)

In addition to our calculation based on the
Pandey-Phillips Hamiltonian for Ge, we have
also performed surface-state calculations for
Ge(100) using the tight-binding parameters of
Chadi. " Chadi obtained a good fit to the Qe
valence bands with only first-nearest-neighbor
interactions (Table I). By comparing our results
of the two calculations we are able to arrive at
several conclusions about the origins and the
nature of the surface states.

The complete PBS and the surface states ob-
tained with Chadi's parameters are given in Fig.
12, which should be compared with Fig. 6. It is
clear that the valence-band projections are very
similar in the two cases whereas the conduction-
band projections are quite different. The first-
nearest-neighbor parameters yield a conduction
band with a width of 7 eV and its minimum at 1".
The second-nearest-neighbor Hamiltonian yields

PBS 8 SURFACE STATES OF Ge (l00)
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FIG. 12. Projected bulkband structure and surface band
structure of Ge(100) calculated with the first-nearest-
neighbor tight-binding Hamiltonian as given in Ref. 65.
The. letters b, d, and br again denote the back-bond,
dangling-bond, and bridge-bond bands, respectively.
The "atomic" energy levels are shown for convenience.
Note that the bridge-bond band is at the 4p atomic level
in a first-nearest-neighbor approximation.

IV. APPLICATIONS TO OTHER MATERIALS

A. (100) Surfaces of Ge, GaAs, and ZnSe

In this section we apply the scattering-theoreti-
cal method to the (100) surfaces of the isoelec-
tronic series Ge, QaAs, and ZnSe. This study

a conduction band with a width of 3.5 eV and its
minimum at the L point (which maps onto J and
J'). It is also clear from Figs. 6 and 12 that the
surface states obtained in the two cases are
qualitatively similar. In the valence bands there
is even quantitative agreement in both the energy
position and dispersion. The dangling-bond band
calculated with the Chadi Hamiltonian is shifted
upward by only 0.3 eV, whereas the bridge-bond
band is shifted upward by about 1.3 eP with re-
spect to Fig. 6. The width of the bridge-bond
band calculated with the first-nearest-neighbor
Hamiitonian is smaller (0.3 eV) than the width re-
sulting from the second-nearest-neighbor Hamil-
tonian (1.45 eV). These results suggest that the
dangling-bond band is indeed derived mainly from
the valence bands, whereas the bridge-bond band
is derived mainly from the conduction bands. It
should be noted, that I the first-nearest-neighbor
approximation the bridge bond band lies at the
atomic-p-level energy. This is a direct conse-
quence of the high localization of the bridge bond
and the fact, that neighboring atoms in the (100)
plane are second-nearest neighbors.
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will allow us to address a number of issues that
arise in the application of the method to com-
pound semiconductors. The materials were chosen
in order to carry out a study of the variation of
the surface electronic structure with increasing
ionicity. Similar studies of the (110) and the (111)
surfaces of this isoelectronic series have been
done by others. ~' ~

We again use ETBM Hamiltonians as in Sec. III.
For this study of qualitative trends, we use the
first-nearest-neighbor Hamiltonians given by
Chadi" (Table I).

The geometry for the zinc-blende semiconductors
is the same as for Si or Ge (Figs. 1-4) except
that we have alternate layers of anions and cations.
For example, to create a Qa- or an As-termi-
nated surface in QaAs, it is sufficient to remove
one As or one Qa layer, respectively. This re-
moval yields a 4 x 4 Qreen's-function matrix and
creates two inequiva1ent surfaces. " The left-
hand semi-infinite solid is rotated about the @-
axis by 90 compared to the right-hand semi-
infinite solid with respect to their common y-z
coordinate system. As a result, the zeros of
det}}GO(E)}}yield singly degenerate states (except
at I' and K) corresponding to the two surfaces.
The states on the two opposite surfaces are re-
lated by a simple 90'rotation, so that, e.g., the
J point of the one surface corresponds to the J'
point of the other, and vice versa. This complica-

tion may be avoided by removing two layers,
namely, a Qa and an As layer. The size of the
Qreen's-function matrix is increased to 8 x 8, but
the energies of the surface states of both Qa- and
As-terminated (100) surfaces are obtained from
the zeros of one determinant. The states of the
two surfaces can then be distinguished by either
examining the wave functions or, even more
simply, by performing a complementary calcula-
tion with 4 && 4 matrices (only one layer removed).

The surface band structure (SBS) for Ge(100),
calculated in the first-nearest-neighbor approxi-
mation has already been given in Fig. 12 and was
discussed in Sec. IDD. Qur results for the QaAs
and the ZnSe (100) surfaces 'are given in Figs. 13
and 24, where separate plots for the anion- and
the cation-terminated surfaces are given.

The first result that is evident from Figs. 13
and 14 is that surface states of an anion-termi-
nated surface tend to be within the valence-band
region. Conversely, surface states of a cation-
terminated surface tend to be within the conduction
bands. This result correlates nicely with the mell
known fact that bulk valence bands are dominated
by anionlike states while conduction bands are
dominated by cationlike states (see also Fig. 15).
It also demonstrates that the character and ener-
getic position of most surface states depend
primarily on the nature of atoms in the first
faye r.
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PROJECTED BANDSTRUCTURE ej SURFACE STATES OF Zn Se (IOO)

(0) (b)

Se —TERMINATE D Zn —TERMINATED

I I[/1!".

I~ l ill:::::::":,/!!
.

:: . ::::::::'ii. :jL:!:~ :I
iji'

0
0 ~(, l

I

UJ 4 I::-::-
Z
UJ I I Ill

bi
d

I; jill I!!„I„!!l ill j 1 I:,
I

.::.:!t ~ b; !.;::.::::!::::
:;jlllllllljs, . ' ~+ITjlljjjj j l:,!

l

l

, II!«. ,

ii Ii. j

Se 4p

-I2 b
(its ~ ~ ~ ~ ~ ~ . . ~ ~ . , Il i llj !'Il/

IlllI I'll
J I

I/Ij
~ Se4s

FIG. 14. Surface band structure for the anion- and cation-terminated (100) surfaces of ZnSe. For details see Fig. 12.

lf we recall that our ETBM Hamiltonians de-
scribe bulk valence bands quite accurately and
bulk conduction bands rather poorly, it follows
immediately that our calculations of the SBS of
the ideal anion-terminated surfaces are quite
reliable, whereas the corresponding calculations
of the SBS of the ideal cation-terminated surfaces
are qualitative at best. We will therefore first
discuss anion-terminated surfaces in detail and
then make a few remarks about cation-terminated
surf aces.

Both GaAs and ZnSe anion-terminated surfaces
have a back-bond-type band that lies entirely
within the heteropolar gap. These state's are
highly localized and are predominantly anion s-
like, very much like the bulk band immediately
below them. These characteristics become more
prominent as one goes from GaAs to ZnSe. Simi-
larly, the dispersion of the back-bond-type sur-
face band gets smaller with increasing polarity,
as does the dispersion of the bulk band imme-
diately below it.

Both GaAs and ZnSe have another back-bond-
type surface state that appears in the pocket
around -4 to -6 eV. These states turn out to be
more spread out and their dispersion decreases
much more slowly along the isoelectronic series.

We turn now to the two surface bands in the
fundamental gap. As in the case of Ge, the lower
band has a dangling-bond character formed by s
and p„orbitals, whereas the upper band has a
bridge-bond p, -p, character. In fact, the separa-
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FIG. 15. Partial bulk densities of states at a Se atom
(top) and a Zn atom (bottom) for ZnSe calculated with
the tight-binding Hamiltonian given in Hef. 65.

tion between the bridge bond and the dangling bond
may be la.rgely due to the presence of the s admix-
ture in the latter. This is consistent with the
fact that the average separation between the two
types of states is smaller in ZnSe where the Se
atomic s state is lower in energy than in As and
thus does not admix as much. As for the dis-
persion of the two types of states, we note that
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the bridge-bond band is almost dispersionless
and lies at the atomic p level, whereas the dari-
gling-bond band has more dispersion through
interactions mediated by the second layer.

Turning to the cation-terminated surfaces, Figs.
13 and 14 reveal that, qualitatively, a similar set
of surface bands is obtained. As noted earlier,
the bulk conduction bands are given rather poorly
by the ETBM Hamiltonian used in our calculations.
The two surface bands within the range of the
projected conduction bands are therefore only
qualitatively meaningful. The dangling-bond band
of Gahs, however, which lies in the fundamental

gap appears to agree rather well with the self-
consistent results of Appelbaum, Baraff, and
Hamann. 28 We investigated the origins of this
state at sample q points by calculating Ml;(E)
and integrating it over the projected valence
bands. The resulting integral was -1 indicating
that the state is main1y derived from the valence
bands, very much like the dangling-bond band of
the (100) surfaces of Si and Ge and the anion-
terminated (100) surfaces of GaAs and ZnSe. This
finding suggests that the dangling-bond bands even
of cation-terminated surfaces can be calculated

fairly reliable in a first-nearest-neighbor approx-
imation. Finally, the back-bond states appearing
in the valence-band pocket of cation-terminated
surfaces (Figs. 13 and 14) are probably derived
totally from valence states and are therefore even
more reliable.

B. (100) Surface of Si02

- In this section we study the Si- and the 0-ter-
minated (100) surfaces of the ideal cubic form of
SiO„ i.e., p-cristobalite. SiO, is an important
technological material and is widely used as a
substrate for depositing other substances. Knowl-
edge of the surface electronic structure of this
material might help understand the way it bonds
with other substances. The study we present here
is somewhat crude, since we calculate only sur-
face states with the P-cristobalite geometry. On
the other hand, studies based on P-cristobalite-
like geometries have helped understand most
electronic properties of bulk crystalline and
amorphous SiO, . %e therefore expect that the
present study of SiO, surfaces, which is the first
to be attempted, will serve as a guide for more
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I
I
I
l

I

I
I
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FIG, 16, Topmost (100)
surface layer and the fol-
lowing seven layers for
the cubic Si02 (ideal P-
cristobahte) lattice. We
again retain the bulk-crys-
tal Cartesian coordinate
system. The bulk lattice
constant is denoted by n.
Si atoms are shown as full
and 0 atoms as dashed
circles.
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detailed understanding in the future.
The first-nearest-neighbor parameters (Table

I) used in the bulk ETBM Hamiltonian, were
found by fitting to the Si0, bulk valence bands
given in Ref. 70 and to a band gap of 9 eV." The
valence bands and the band gap are reproduced
accurately by retaining only the Si-0 and the Q-Q
first-nearest-neighbor matrix elements. . The
Si-Si interactions are left out. The geometrical
arrangement of the atoms for a Si-terminated
(100) surface of SiO, is shown in Fig. 16, where
we have depicted the first eight layers, including
the surface layer. The two-dimensional unit cell
is again marked by a dashed line. It should be
noted, that the unit cell contains one atom in each
Si layer but two atoms in each 0 layer. The
point-group symmetry (C,„) and the surface
Brillouin zone (SBZ) are the same as in the zinc-
blende materials (Fig. 3).

The creation of two adjacent Si-terminated sur-
faces is accomplished by removing one 0 layer,
yielding an 8 x 8 Green's-function matrix (two
atoms per unit cell). The creation of two adjacent
0-terminated surfaces cannot, however, be
accomplished by removing only one Si layer, be-
cause the resulting two semi-infinite solids are
still coupled via the first-nearest-neighbor Q-Q
interactions. In order to accomplish the desired
decoupling, at least two layers (one Si and one 0
layer) must be removed. The result is a 12 x 12
Green's-function matrix describing one Si-ter-
minated surface and one 0-terminated surface.
The calculated states can then be sorted by com-
paring with the previously obtained states for the

Si-terminated surface.
The projected valence bands of SiQ, are shown

in Fig. 17. The upper part of the projection, with
a width of about 3 eV, results mainly from the
nonbonding or "lone pair" 0 2p orbitals which lie
perpendicular to the Si-0-Si chain. The lower
part, with a width of about 7 eV, results mainly
from the bonding 0 2p orbitals, which lie along
the Si-0-Si chain. The bonding bands have the
same overall structure as the valence bands of
Si. The similarity in the corresponding parts of
the projected band structures may be seen by
comparing Figs. 17 and 5.

The surface states for the Si- and 0-terminated
(100) surfaces of cubic SiO, are shown in Figs.
17(a) and 17(b). No bound surface states were
found in the optical gap for either surface. The
nonbonding bands are affected very little by the
creation of the surface. No dangling-bond bands
are. split off, as expected, because there are no
bonds to begin with. Instead, the states in the
nonbonding bands are very much atomic in char-
acter, so that the creation of the surface is only a
weak perturbation, as far as the lone-pair orbitals
are concerned. The bonding bands, on the other
hand, show pronounced surface states, as one
might expect, since bonds are broken by the
creation of the surface.

For the Si-terminated surface [Fig. 17(a)] we
find a number of surface states which are pre-
dominantly localized on the 0 2p orbitals in the
0 layer immediately below the surface Si layer.
They are therefore best described as back-bond
states. The Si dangling-bond states are high in

PROJECTED BANDSTRUCTURE 8 SURFACE STATES OF Si 02 (IOO)

(a) (b)

0 —TERMINATED
S i —TERMINATED

IIII gtjlutjmg I III. ' ll ~
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FIG. 17. Projected valence-band and surface band structures for the Si- and 0-terminated (100) surfaces of cubic
Sio2. The energetic position of the "atorpic" 0 2p orbitals is indicated.
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the conduction bands. Most of the back-bond states
lie very close to the bulk band projections and
show similar dispersion. This behavior may be
explained by the fact that the O atoms in the
strengthened back bonds retain all their Si neigh-
bors and four out of their six 0 neighbors.

In the case of the 0-terminated (100) surface
[Fig. 17(b)], the perturbation has an even stronger
effect. Two of the six 0 neighbors and one of the
two Si neighbors of each surface-layer O atom
are removed. The 2P orbitals on the surface-
layer oxygen atom are, therefore, left dangling,
giving rise to two dangling-bond-like bands at
around -4 eV in the gap of the PBS between the
projection of the nonbonding and the bondingbands.
These two dangling-bond bands (resulting from
the two atoms in an 0 layer) are almost degen-
erate at I', but split slightly at other q points,
because the two 2p orbitals point in different
directions. Finally, the lower-lying bands have
again back-bond character.

The most significant of the above results is the
finding that oxygen atoms at the free surface give
rise to occupied dangling-bond states which lie in
the gap between the bonding and nonbonding valence
bands. This finding is independent of our Hamil-
tonian parametrization and special crystal struc-
ture, since the dangling-bond states must lie in
the gap" "above the bonding bands and below the
nonbonding bands (the energy of a Si-0 bond is
lower than the energy of an O 2P orbital, and the
energy of a Si-0-Si bond is even lower). These
states should be observable and can probably
be detected by high-resolution experiments.

V. CONCLUSIONS

We have demonstrated that the Koster-Slater
method for dealing with localized perturbations
can be formulated in a way that allows the study
of the electronic structure of surfaces of real
materials. We have pointed out the various ad-
vantages of the method, when used in conjunction
with tight-binding Hamiltonians. We illustrated
applications of the method to the free (100) sur-
faces of Si, Qe, GaAs, ZnSe, and cubic SiO, .
The method would be particularly suited for the
study of reconstructed surfaces, where large unit
cells are involved. Such studies have not been
pursued yet. Instead, we have modified the method
to treat interfaces between two semi-infinite
crystalline solids. This work will be reported in
a separate paper. Finally t'he method has the
potential of being a very efficient way of carrying
out self-consistent calculations of the electronic
structure of surfaces and interfaces.
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APPENDIX A: EVALUATION OF THE GREEN'S-FUNCTION

MATRIX ELEMENTS

The matrix elements of the Green's function
Go(E) [Eg. (3)] in the layer-orbital representation
[Eg. (23)] are given by

~(l4~nk) (nk I l'q)
(Al)lPP ' ~ @+ @ (k)4

where ~nk) are the Bloch functions [Eq. (22)] and

~/q) are the layer orbitals defined by Eq. (23).
In order to evaluate the matrix elements in

(Al), we must introduce further notation. We
first rewrite the bulk atomic-position vectors in
terms of two-dimensional Bravais-lattice vectors
p& plus appropriate basis vectors in the form

R~+ 7'„=p~+ Xm„. (A2)

Note that the surface-parallel component has been
written as the sum of a q vector in the SBZ and a
two-dimensional reciprocal-lattice vector g, be-
cause the projection of k onto the surface does not
necessarily lie within the two-dimensional
Brillouin zone.

With the above decompositions, the matrix ele-
ments appearing in (Al) can be evaluated. The
result is

G;,, (z, q)

N, ~ ~ ~ E' E„(k~,g+ g )—
n

xP~i ~ (ku &+ g ) . (A5)

Furthermore we need to decompose the basis
vector X, into a surface-parallel component o „
and a perpendicular component v

yt1g gt5+ I(. foal (A3)

Note that for any bulk atom, p,. locates a two-
dimensional Bravais-lattice point, ~ locates a
particular plane, and finally 0 „defines the atomic
position in the two-dimensional unit cell in that
plane.

Along the same lines, the bulk k vector must be
decomposed into surface-parallel and -perpendi-
cular components:

k= (q+g)+ki. (A4)
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The auxiliary function P is given by

&gp( z~q+g)=C~. ~.g.( g~q+g) umph(kgpq+g)

(A6)

Nate that the Bloch-function coefficients C now
have the double index m, p, in place of the single
index v appearing in Eq. (22) because of the de-
composition given in (A2). Finally, the prime on
the g sum in Eq. (A5) means that the sum is
carried out only over those g vectors necessary
to cover the projection of the bulk Brillouin zone
onto the surface as required by the decomposition
(A4).

For the (100) surface of a diamond- or zinc-
blende-type material, the projection of the bulk
Brillouin zone is shown in Fig. 18 together with
the SBZ. Also shown is the irreducible segment
of the SBZ, marked by the four high-symmetry
points 1", J, J', and K. For q vectors inside the
crosshatched region of the SBZ, no g vectors
contribute to the sum in Eq. (A5). For q vectors
in the remainder of the irreducible square there
exist nontrivial contributions to the g sum in Eq.
(A5). This means that one must sum over k~=k„

both at the q point itself and at the corresponding
q+ g, as shown by the hatched regions in Fig. 18.

For q points inside the crosshatched region of
the SBZ, the sum over k~=k„extends from
-2v/a to +2m/a, where a is the lattice constant,
as illustrated for q points along the 1"J line in
Fig. 19. The figure is simply the cut of the bulk
Brillouin zone by the plane which is perpendicular
to the surface and contains the line 1"J. For q
points outside the crosshatched region of the ir-
reducible square, the limits at q and q+g are
different and q dependent, as illustrated in Fig.
19 for one such point q. By making use of sym-
metry considerations, it can be shown that in-
stead of summing over the appropriate ranges of
k„at both q and q, + g, the same result may be
obtained by simply summing only at q, over the
range -2w/a to 2v/a (Fig. 19). This alternative
way of evaluating the sums in Eq. (A5) is a sub-
stantial simplification especially for q points away
from high-symmetry lines in the SBZ.

For the (100) surfaces of diamond- and zinc-
blende-type materials, z = 4 am and Eqs.
(A5)-(A6) simplify to

(q E) — dz eL i'(m~' &/211
El&

n

C~p"(x q )C",(x, q)

where x= k„a/2v. Before this expression can be
evaluated, one must deal with the fact that E+
stands for E+ia, and the limit e-0 is tobe
taken. In the gaps and pockets of the PBS one can
simply set e =0 and evaluate Go„, (Q, E ) without any
complication, because the denominator in (AV) is

FIG. 18. The dots at I'and at 1, 2, 3, and 4 are re-
ciprocal-lattice points for the Si (100) surface. The
heavy line shows the surface Brillouin zone. The square
denoted by 1",J,K,J'is the irreducible part of the sur-
face Brillouin zone. When q runs over this irreducib1e
part, the vectors q+g; for i =1,2, 3,4 (g& being surface
reciprocal-lattice vectors) run over the four squares
marked by the corresponding q+g&. The dashed octagon
is the projection of the bulk Brillouin zone onto the (100)
surface and the dashed-dotted square is the projection
of that part of the bulk Brillouin zone, for which -2n/a
& k„2m/a holds. The details concerning the cross-
hatched and the shaded areas are discussed in Appendix
A.

FIG. 19. Cut of the bulk Brillouin zone perpendicular
to the (100) surface containing the line J, I',J of the sur-
face Brillouin zone. For details see discussion in Ap-
pendix A.
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never zero. In addition, 6„, is Hermitian, which
reduces the computational effort even further.
Within the PBS continua, however, a cannot be set
to zero. There are two ways to proceed: The
most direct way is to set e to a small but finite
energy and evaluate Eg. (AV) as it stands. The
result will be a Qreen's function which is broad-
ened by the amount. c. Alternatively, one intro-
duces the spectral function

l~ E&x
(A 9)

where the bar on the integral sign denotes princi-
pal value. 8», can be evaluated directly. The
result is

. S,g, (q, E) = Q (lq nk)(nk ~l'q) 5(E -E„-„), (A8)
nk

and takes the limit f -0 analytically resulting in

g
L

where k,' are defined by

E = E„(k,', q+ g ) .
For our particular case, the final result for $»,
is [x,= 0,'(2n/a) ]

~ ( E) ~ s(icy/(m~& )/23
ll~

x g Cs (x/ j)Ci(x„q)

!
&E„(x,q+g)

where x& is defined by

E =E„(x/, q),
and -1&gz&l.

(A12)

(A13)

APPENDIX B: SEARCH FOR THE BOUND-STATE

ENERGIES

The energies of bound surface states are deter-
mined by the zeros of

D(E)=det G', p(E, q) =0, (»)
where l and l' run over the layers which have to
be removed for the creation of the surface. (See
Appendix A for the evaluation of the matrix
G', , ) The determinant in (Bl) may be evaluated
numerically in a variety of ways but the search
for the zeros could be a time-consuming task.
Instead, - the zeros can be located much more
efficiently by first converting the matrix Ggg to
triangular form and counting the number of nega-
tive diagonal. elements. If this number is different
at the two ends of a given energy range, the dif-
ference corresponds to the number of zeros of
D(E) in that range. The chosen range is then
systematically bisected until the positions of
zeros are determined to the desired degree of

accuracy. In our calculations the surface states
of the chosen Hamiltonians were determined with
an accuracy of 1 meV.

(= y+ Go Up= y+ G Ucp, (Cl)

where cp is the solution of H', i.e., y stands in
our problem for a bulk Bloch function. In the
pockets and gaps of the PBS, where the true sur-
face states are encountered, there exists no non-
trivial solution of H . Therefore, the wave func-
tion for the surface states is given as

/=Go Ug. (C2)

In the surface problems discussed in this paper,
the perturbation operator acts only on a very
limited part of the Hilbert space of SP, as was
extensively discussed in Sec. II. Vfe, therefore,
partition the perturbation operator, the Qreen's
operator and the wave function in the two sub-
spaces of SP, which we labelA and I3:

(.1. 0)
(0 0) (G',„G„)

(C3)

where 1„is the unit operator in the subspace A.
With (C3) inserted in (C2) we find

~A AA+~A &

4B GBA +~A

Equation (C4a) may also be written

Hl/~) 1A —GAA] (N4) = o

(C4a)

(C4b)

This is a homogeneous set of linear equations and
can be solved for (ugA) for any arbitrary value of
u. In the limit u- one simply diagonalizes

APPENDIX C: CALCULATION OF THE WAVE FUNCTIONS

The eigenvectors of the Hamiltonian H are given
by the Lippmann-Schwinger equation
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Go „and the resulting eigenvectors u(A are finite
so that (A=0, as expected. The quantities u(A
are then inserted in (C4b) and (B can be directly
calculated by simply multiplying the matrix G»
by the column vector (u(A).

G=G'+G'UG, (D1)

can conveniently be written in terms of the scat-
tering matrix

7= U(1 —Go U) ', (D2)

APPENDIX D: THE SOLUTION OF THE DYSON EQUATION

The formal solution of the Dyson equation (18)

This result holds for any perturbation confined to
subspace A. . Note that Q~ is precisely the matrix
one has to evaluate in order to search for bound
states. The complete evaluation of the Green's-
function matrix for the perturbed system can then
be done directly by inverting the small matrix
Q» and multiplying matrices as required by (DV).

The above results simplify further in the case
of the perturbation that creates surfaces used in
this paper. The perturbation is of the form

(D8)

where I is a constant that is eventually let go to
infinity. Equation (DV) then becomes

so that

G=G'+G'T G' (D8)

AA & AB & BA

BB BB BA( AA) AB '

Q

&QBA IB&

(D5)

and can be inverted analytically, even though QB„
and 1~ are infinite submatrices. The result is

(Q..) '

BQBA(QAA) Bf
(D6)

Equation (DS) shows that the complete information
about the new features of the perturbed system
H=H'+ U is contained in the scattering-matrix T.
Due to the limited range of U, the. scattering
matrix can be calculated exactly. To calculate T,
we have to evaluate (1 —Go U) '. We introduce the
notation

Q=1-GOU,

and employ the same partitioning convention as in
(CS). The matrix Q is of the form

These equations are valid for all finite energies. "
Note that G»=0 corresponds to the fact that
there are no states at finite energies in the space
occupied by the removed layers. G»= 0 and
G»=0 correspond to the fact that the removed
layers are completely decoupled from the two
semi-infinite solids described by G». It is of
particular interest that G» is given entirely in
terms of G', which describes the infinite bulk
solid. This result is of course true because no
electronic or lattice relaxation is included at the
surface.

G» contains a wealth of information. In partic-
ular, one can evaluate the local density of states
at the 1th layer (with / in subspace I3) as follows:

nr(q, s) = ——q~(G'r(q &l —P G'i(G~)l~GiI)
ig

(D10)

Using this result we obtain

GAA GAA GAA UAA (QAA) GAA &

AB AB AA AA (QAA) AB &

BA GBA+ GBA AA (QAA) GAA &

BB GBB+ GBA AA (QAA) GAB '

(DV)

where i and j run over the layer orbitals in the
removed layers in the subspace A. . The second
term in the large parentheses clearly yields
directly the change in the local density of states
for the Ith layer [The sum of these quantities
over all layers is equal to hN(P, E) discussed in
Sec. III.j
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