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Acoustoelectric interaction of surface phonons in semiconductors: Isotropic approximation
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The acoustoelectric interaction of surface phonons with conduction electrons in piezoelectric
semiconductors is investigated assuming elastic isotropy. The electronic states near a semiconductor surface
are properly determined taking into account the existence of the surface space-charge layer and the potential
barrier associated with it. Employing the electron wave functions obtained in this manner, the acousto-
electric interaction is specified and it is applied to the study of the amplification of the surface phonons. For
an n-type semiconductor with bulk-electron concentration of 10" cm ', we find that the frequency
dependence of the amplification rate has two bumps in the frequency range from 1 to 10 6Hz, This result
will be interpreted in terms of the depth dependence of the electron wave functions and the electric potential
produced by the surface phonons.

I. INTRODUCTION

Since a surface acoustic wave (SAW) travels
along a solid surface localizing its amplitude with-
in a wavelength or so from the surface, the SAW
or the surface phonon (quantum of the SAW) will
play an important role in a number of surface
phenomena. A considerable amount of works has
been devoted in recent years to the problem of
attenuation of the SAW in order to understand the
properties of a solid near the surface. '

Assuming elastic isotropy, we have developed
theoretically the interaction of the surface phonon
with conduction electrons in a piezoelectric semi-
conductor and have applied it to the study of the
amplification characteristics of SAW's of GHz
frequencies. ' Because of their distinctive nature
as stated above, the propagation characteristics
of the SAW are affected deeply by the properties
of the solid in the vicinity of its surface. As for
the acoustoelectric interaction of the SAW in a
semiconductor, it might be highly sensitive to the
electrons which may travel within a wavelength
off the semiconductor surface. In an n-type (P-
type) semiconductor, the surface-electron deple-
tion (accumulation) layers are generally formed
at its free surfaces, ' therefore their existence
will have a critical effect upon the interaction if
the thickness of the surface depletion (accumula-
tion) layer begins to compete with the wavelength
of the SAW.

In the treatment of the amplification of the SAW
given in Ref. 2, we used the approximation that
the conduction electrons are distributed uniformly
from the bulk to the surface of the &-type piezo-
electric semiconductor. This can be justified in
the case that the thickness of the electron-deple-
tion layer is much smaller than the wavelength
of the SAW. However, this approximation may be
also applicable to slightly wider cases if we re-

member that the thickness of the depletion layer
can be made narrower by applying an electric
field perpendicular to the corresponding surface
or by making the surface region of the semicon-
ductor as a layered structure of epitaxial films
such that donor impurities are more highly doped
in the layers close to the surface.

The purpose of the present paper is to investi-
gate the acoustoelectric interaction of the SAW
with the electrons in the &-type piezoelectric
semiconductor in the situation in which the thick-
ness of the surface-depletion layer becomes of
the same order of magnitude as the wavelength
of the acoustic field. We shall try to solve this
problem by making use of quantum mechanics.
One of the reasons for employing quantum theory
is that the electronic states near the semiconduct-
or surface can be determined by solving the Schro-
dinger equation, .once the potential in the depletion
layer is found. Another reason is that the fre-
quencies in which we are interested are 1-10 GHz
and at 1-GHz frequency the condition ql ~ 1 is at-
tained, where q and l are the wave number of the
SAW and the mean free path of the electrons, re-
spectively. However, for those frequencies ~~
(~ and r are the angular frequency of the SAW and
the relaxation time of the electrons, respectively)
is still less than unity, the effect of the finite re-
laxation time of the electrons might be important.

Now, we shall remark on some basic assump-
tions made in this work. First: the elastic iso-
tropy of the medium. That is, we approximate the
semiconductor to be isotropic in its elastic pro-
perties and regard the Rayleigh wave as a well-de-
fined surface mode of the acoustic waves that
may exist at the free flat surface of a nonpiezo-
electric semiconductor of infinite extent in the
thickness and width directions. We assume
furthermore that piezoelectric coupling between
the acoustic field of the Rayleigh wave and the
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electromagnetic field in the semiconductor acts
only as a small perturbation, and the Rayleigh
wave remains a well-defined mode even when the
piezoelectric coupling is turned on. Here, it
should be noted that the piezoelectric coupling is
the dominant mode of the acoustoelectric inter-
action for phonons of frequencies less than 10 GHz.

The latter assumption may be justified for such
semiconductors as GaAs and InSb which have
small electromechanical coupling coefficients,
e.g. , K' = 3.6 x 10 ' and 0.73 x 10 ', : respectively, '
which should be compared with unity. On the other
hand, unlike the case of noncrystalline (amorphous}
semiconductors the real crystalline semiconduct-
ors have to some extent elastic anisotropy. For
instance, the anisotropy ratios [defined as 2c«/
(c« —c»)j for GaAs and InSb of zinc-blende struc-
ture are 1.80 and 1.99, respectively. 4 The effects,
produced by the presence of the anisotropy on the
SAW theory are considerably complicated and
extensive computer calculations are required to
incorporate them. ' In this paper, we wish only to
survey the general characteristics of the inter-

actionn

and to obtain some qualitative results which
may be observed in experimental investigations.
Accordingly, we assume elastic isotropy as a
first approximation and isotropically approximated
elastic constants' will be used in the numerical
calculations. Hence, in the following, the SAW is
to be understood as the Rayleigh wave and the sur-
face phonon as the quantum of the Rayleigh wave.

In Sec. II, we solve the Poisson and the Schro-
dinger equations under some approximations in
order to specify the electronic states in the sur-
face depletion layer of the &-type semiconductor.
In Sec. III, we derive in some detail the electric
potential produced by the SAW and quantize it in
terms of the phonon variables. Then, the acousto-
electric interaction of the surface phonon with
the electrons is derived using the wave functions
of the electrons obtained in Sec. II. The formula
for the attenuation (or amplification) rate of the
surface phonon is presented in Sec. IV in the Born
approximation. Section V is devoted to the num-
erical example of the amplification rate for n-type
GaAs at T = 77 K and for 1-10-GHz phonon fre-
quencies. A discussion of the results is given in
Sec. VI with several remarks on the possible ef-
fects we may have neglected in our calculations.
Finally, we shall briefly remark that the same
kind of amplification characteristics would be ob-
tained also in the case of ql & 1, if a suitable con-
dition were satisfied.

II. ELECTRONIC STATES

In order to specify the interaction of the surface
phonon with the electrons, we must know the elec-

tronic states near the semiconductor surface in the
absence of acoustic disturbance. The electronic
states in the vicinity of the semiconductor surface
are different from those of the bulk region owing
to the presence of a space-charge region and the
potential barrier associated with it. This space-
charge region at a free surface of a semi-infinite
conducting solid may be produced by an electric
field outside the solid or by the presence of a
localized charge layer at the surface due to sur-
face states. ' From the viewpoint of the acousto-
electric interaction, we are mainly interested
in the n-type semiconductor and we shall consider
its energy-band configuration near the surface.

In the absence of surface states, the energy
bands of a semiconductor continue straight up to
the surface, provided there is no external field.
When acceptorlike surface states are introduced
below the Fermi level, they will not be in equili-
brium with the energy bands as long as they re-
main unoccupied. Since these states are empty
and below the Fermi level, some of the electrons
in the conduction band fall into them. In this pro-
cess, the surface becomes negatively charged
while a positive space-charge layer, i.e., a sur-
face-depletion layer, is formed adjacent to the
surface. Consequently, the energy bands at the
surface bend upwards with respect to the Fermi
level.

The surface-charge density and the shape of the
potential barrier associated with it are determined
by solving the Poisson equation under appropriate
boundary conditions, and the electronic states are
determined by solving the Schrodinger equation
with the potential obtained in this manner. Now,
we put the plan of solving these equations into
effect.

The motion of electrons in a semiconductor can
be characterized in the effective-mass approxi-
mation by the following wave function:

C), „(r)=e'" "y„(z),
where r = (x, z ) = (x,p, z }and k = (&„,&„). We have
chosen the Cartesian coordinates such that the
semiconductor occupies the half space g & 0 with
its surface z =0 parallel to the x-y plane. The
wave function g„(z) satisfies the Schrodinger
equation

d2
+)'(&))(' (*) =~ () (*)

where m is the electron effective mass (assuming
a spherical constant-energy surface) and the ener-
gies of the electrons are

E), „——e„+Ik /2m
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The potential V(z) in the conduction band is obtained
by solving the Poisson equation. One has

&'V 4~8'
[n(z) —n, ]8(l, — ),

p

where E'p is the static dielectric constant and np
is the bulk electron concentration which is assumed
to be equal to the concentration of ionized donors
uniformly distributed in the semiconductor from
the surface to the bulk. The hole and the acceptor
concentrations have been neglected. 8(z) denotes
the unit step function, i.e., 8(z) =1 for z ~ 0 and

(} otherwise. Ep is a parameter which represents
the thickness of the depletion layer. The local
electron concentration &(z) is defined as follows
assuming that the wave function g„(z) is normal-
ized:

dVV=—=0 at ~ =E
6z py

dV 4''
V =eQ and —=- N at z =0

dz p
(8)

V = (2''&, /e, )(l, —z)'8(l, —z).

The width of the depletion layer f, depends on g,
and +p as

l, = (e,g, /2 zen, )' ~' . (10)

Also, we have a relation

where eQ, is the band bending at the free surface
and N, is the density of the charged-surface
states. The solution gives the well-known potential
barrier of the Schottky type (see Fig. 1),

where fq „=f(ET, „) is the electron-distribution
function which should be replaced by the Boltzmann
distribution for a nondegenerate semiconductor.
It should be noted that in the absence of the space-
charge layer at the semiconductor surface n(z)
is equal to &p irrespective of z.

Thus, in order to obtain the correct wave func-
tions of the electrons near the semiconductor sur-
face, we must solve Eqs. (2) and (4) simultaneously
with (5) under appropriate boundary conditions.
They should be solved numerically in general cas-
es, but unlike the case of electrons in the inver-
.sion layer where one may consider that only one
subband is occupied by the electrons, ' the situation
may not be so simple. However, if we confine
ourselves to the qualitative investigation of the
effect of the surface-depletion layer on the inter-
action of the surface phonon with the electrons,
we may solve Eqs. (2}-(4), and (5) approximately
as follows:

In the zeroth-order approximation, the wave
function g„(z) is assumed to be

Now, with the potential given by Eq. (9) we try
to solve the Schrodinger equation (2). For our
purpose, we need to know the electron wave func-
tions over the region where the electronic motion
is forbidden classically as well as over the region
accessible to classical motion. Unfortunately,
Eq. (2) can not be solved exactly and one of the
possible ways to find a solution is to employ the
WKBJ approximation. As is well known, this semi-
classical approximation is applicable to the wave
function in the range where the potential energy
changes so slowly that momentum of an electron

g„(z) = (2/I, )'~'sin[z(z —l,)]8(z —l,),
where L is the thickness of the semiconductor in
the z direction. This is equivalent to assume the
electron concentration as

u(z) =u,8(z —l ),
that is, there are no electrons in the depletion
layer 8

Next, making use of Eq. (l}, let us integrate
the Poisson equation (4}with the boundary condi-
tions

0 a

FIG. 1. Schematic drawing of the energy configuration
of the conduction band near an n-type semiconductor
surface. eP, denote the band bending at the surface and
Ip the thickness of the depletion layer. s =a is the turn-
ing point of the classical motion of an electron with en-
ergy e„. Also schematically illustrated is the wave
function of the electron with energy ~„.
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the electrons as follows:

4(r) = g bk „y„(z)e'"'",
].~

(17)

where && „and its Hermitian conjugate & are
annihilation and creation operators of the efectrons
which satisfy commutation relations of the Fermi
type, and S is the surface area.

D, =4ne, kr Skr+~i, s (20 )

such as the semiconductors with high mobility con-
sidered in this paper is equivalent to incorporate
the electronic screening effects." This mill be
carried out in Sec. IV by introducing a dielectric
function.

The piezoelectric equations of state for the
acoustic and the electromagnetic fields are as
follows:

III. INTERACTION
g~i f ~ifkl Ski kif @k ~ (21)

8
Ei =-

Byi
(16}

Within insulating crystals, Gauss law is expressed
as

In the piezoelectric semiconductor, the conduc-
tion electrons interact with the surface phonon
through the deformation potential which is propor-
tional to the dilatation caused by the acoustic
field. ' They also interact with the phonon through
piezoelectricity. Although at very high acoustic-
wave frequencies the deformation potential be-
comes the dominant mode of the acoustoelectric
interaction even for the piezoelectric semiconduct-
or, it can be neglected compared with the piezo-
electric coupling in the frequency region from 1 to
10 GHz to be considered here.

Now, let us derive the acoustoelectric potential
produced by the surface phonon through piezoelec-
tricity and then specify the interaction of the sur-
face phonon with the electrons in the semiconductor.
Analogous to the case of bulk phonons, " it is as-
sumed that the interaction is only appreciable if the
induced electric field is longitudinal.

We start from the fundamental equations for the
acoustic and the electric fields. If the electro-
static approximation is valid, the electric field E,
is derivable from a scalar potential (I),

where (e;~,},(S»}, f e,,},(o,z}, and {c „.»} are
the piezoelectric, the strain, the dielectric, the
stress, and the elastic-stiffness (at constant elec-
tric field) tensors, respectively. Taking the di-
vergence of Eq. (20} and comparing with Eqs. (18)
and (19), we get the relation

i], Q= —e
4n BS~k

ifk
p i

(22)

where dielectric isotropy (e,~ =e,&;~) is assumed.
The quantized version of this equation is used to
obtain the electric potential y produced by the sur-
face phonon in the semiconductor. Equation (21)
together with the force equations for the particle
displacements gives after elimination of the elec-
tric field the piezoelectric stiffening, that is,
the velocity of the acoustic field becomes large
owing to the presence of piezoelectricity. This
modification of the sound velocity, however, is
neglected in the present work because it is small
for the material considered here, e.g., b, c/c
=IP/2 =1.8X 10 ' for GaAs.

The strain tensor is written explicitly in terms
of the displacement vector u of the medium, as
S„=-,'(Bu, /et&+su~/ar, ), hence, if we put

u, (r)=a, e 8"e'~'" i =x,y, and z, (23)

and

(I)(r}=a,e ~"e'~' " (24)
where D, represents the electric displacement and
the summation convention is applied. The modifi-
cation of Eq. (19) needed for conducting crystals

with q=~ q~ =(q„'+q'„)' ', a, is expressed as a linear
combination of a, as follows:

4m
0 e (1 P2)q2 a~ p [e/j q', +i()(e,&,+e,~, ))q, ]—e„. p 'q' + (e,~„ s„&, )q, q,)f=(&I&e+) l-(x, y)

(25)

For the crystals with zinc-blende structure (e,4
=e» =e„=e~ and other components vanish), Eq.
(25}yields

4ne~
a, =, ~,), [q„q„a, +i pq(q„a„+q„a, )]. (26)

&ps& —P

Since we have assumed elastic isotropy and piezo-
electricity as a small perturbation on the acoustic
field, for wave functions of the SAW we can use
those of the Rayleigh wave. Explicit expressions
of them are
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(q) zh

and

j=x,y, (27)

g ( ) l l

-yes -ace»q x

Vj 1+0

where the wave vector q is related to the angular
frequency co and the velocity c of the Rayleigh
wave by e=clql =cq, and y, o, and & are constants
determined by the velocities of the longitudinal
sound wave e, and the transverse sound wave c,
as y' =1 —(c/c, )', &P =1 —(c/c, )' and J = (y —»»)

—(y —v+ 2yc')/2''.
With the aid of Eq. (2V), the following electric

potential is produced by the acoustic vibration
of the SAW traveling with wave vector q:

a/2

rp(F(=Q ( a „i;(F-)+ cH.

q

(30}

Taking these results into account, the interaction
Hamiltonian of the surface phonon with the elec-
trons can be written

HI =-e 4 r y r 4 r dr

In the phonon picture, the displacement vector
of the SAW can be expanded as

5
u(r) =Q l 2 &

aqu-„(r)+H. c., (29)
q

2p»d8

where p is the mass density of the medium and aq
and its Hermitian conjugate a~ are annihilation

q
and creation operators of the surface phonon satis-
fying commutation relations of the Bose type.
Making use of the expansion (28}, we find that the
electric potential is quantized as follows:

pq &r&=
0

3 ~, 2(1+2o )
cxy —,e &"+, e '")e»q'"

(28) with

4ve, e g k+ q ~ K k ~ K
0

xaq - „„.(q)+H.c. , (31)

2 X/a oo 3 2~1 2~»
2pcJ (32)

From this expression, one can see that the surface
phonon traveling in the [110j or its equivalent di-
rections on the (001) plane couples to the electrons
most strongly in the isotropic semiconductor of the
zinc-blende crystal structure with piezoelectricity.
On the other hand, the surface phonon with its wave
vector parallel to the [100j direction (or its equi-
valent directions) decouples from the electrons.

layer or electronic states near the semi-con-
ductor surface, and since we are not interested
-in anything more than its qualitative characteris-
tics, it will suffice to calculate the amplification
rate of the surface phonon in the lowest order of
perturbation theory.

According to the golden rule, the width I' of the
surface phonon will be

IV. ATTENUATION RATE OF SURFACE PHONON

We wish to discuss the amplification (or attenua-
tion) of the surface phonon due to its emission or
absorption by the electrons coupled through H~.
A detailed calculation of these processes requires
the solution of an integral equation, because for
the phonon frequencies of 1-10 6Hz in which we
are interested, q/ becomes unity or larger than
unity but not very large, and then the effect of the
finite relaxation time of the electrons might be
important.

However, since we shall be primarily interested
in the frequency dependence of the amplification
rate, which may be strongly sensitive to the ex-
istence of the surface-electron depletion

which becomes, upon applying it to the case at
hand,

x 5(Ek q „,-EX „-g'»('), (34)

where N(f } is the occupation number of the surface
phonon (the electrons} and it should be replaced by
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the Planck (the Fermi) distribution function. In
this expression, we have introduced the static
dielectric function e(q) =—1 + (q, /q)' which stands
for the electronic-screening effect, where q, is

the reciprocal of the screening length.
If the attenuation rate o. of the surface phonon is

defined as I' divided by the phonon flux N, c, then
it follows after slight manipulations,

(35)

where we have used the fact that the energy @co

of the surface phonon is much smaller than the
characteristic energy of the electrons and have
kept terms up to O(I~) in the expansion of the
electron distribution functions in terms of ke.
The integration over E should be performed in
the region where the argument of the square root
is non-negative.

Now, we easily see that the n defined by Eq.
(35) is positive. This tells us that the surface
phonon is attenuated by the interaction with the
electrons. In the presence of an applied de elec-
tric field, however, the situation is considerably
modified. In this case, a displaced distribution
must be used for the electrons. If the electrons
have a drift velocity v, by the applied field, in the
direction parallel to the wave vector q of the sur-
face phonon, the effect of the displaced-electron
distribution is equivalent to replace the frequency
v of the phonon by —&ux in Eq. (35), where x is the
so-called drift parameter defined by x =u/c —l.
Therefore, the attenuation rate n changes its sign
from positive to negative as the electron drift
velocity o exceeds c and amplification of the sur-
face phonon is attained.

V. NUMERICAL RESULT

10-

5

E

I
I

I
I

I
I

e—tA)
3

I
I

x =lO

I

lem of how to estimate the Debye screening length
For the present purpose of a qualitative in-

vestigation, we have calculated lD in terms of the
bulk-electron concentration and found l ~' =q,
=4.75&&10'/cm. If we consider the fact that
the electrons which develop into the depletion lay-
er also interact with the surface phonon, this val-
ue foi the reciprocal of the screening length
should be slightly overestimated. We shall return
in Sec. VI to the question of how the correct
screening length changes our results quantitative-
ly.

The calculated frequency dependence of the am-
plification rate of the surface phonon is shown in
Fig. 3 for a drift parameter x =10 and q„=qy
=q/v2 . The solid and the dot-dash curves are
those obtained based on the electron wave func-

As a numerical example, n-type GaAs is con-
sidered at T =77 K with a bulk-electron mobility

p = 1.71 xi0' cm'/V sec. The electron effective
mass is m=0.07m„where m, is the mass of the
free electron. The velocity of the surface phonon,
c =2.79x 10' cm/sec, has been calculated using
the values of elastic constants obtained from the an-
isotropic ones by employing the isotropic approx-
imation' and with density p =5.32 g/cm'. The
dielectric constant is taken as c, =12.9 and the
piezoelectric constant as e~ =4.71 x10' esu/cm'.
The value of the mobility cited above corresponds
to the value of the bulk-electron concentration
n, =1.07X10" cm '-. Combining with the band
bending eQ, =0.59 eV, the thickness of the deple-
tion layer is computed to be lo =0.283 p, m.

The electronic screening will be considered in
the Debye approximation in which the difference
between electronic motions parallel and perpen-
dicular to the surface is neglected. However, in
this approximation there still remains the prob-

o
I—

4 05

CL
X

0-th Approx.

0.1--
1 1.5

S

2 3 4 5 6 7 8 9

FREQUENCY (GHz)

FIG. 3. Frequency dependence of the amplification
rate for a drift parameter x=10. The solid curve and
the dot-dash curve are amplification rates calculated
from the electron wave functions Eqs. (12) and (6), res-
pectively. The dashed line represents the amplification
rate proportional to &3 which is obtained assuming no
depletion layer.
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FIG. 4. The depth dependence of the electric poten-
tials which are produced by the surface phonon in the
isotropic semiconductor are drawn for 1-, 3-, and
5-6Hz frequencies. The moduli of the potentials de-
crease exponentially at large distances away from the
surface.

tions Egs. (12) and (6), respectively. We have
also shown by the dashed curve the amplification
rate evaluated assuming no surface depletion lay-
er. The frequency dependence of the latter is ex-
pressed as co' for frequencies corresponding to
wave numbers satisfying q «q, . Referring to this,
the existence of the depletion layer at the semi-
conductor surface turns out to change the frequen-
cy dependence drastically when the wavelength of
the surface phonon becomes the same order of
magnitude as the width of the depletion layer. It
should be noted that the wavelength is 3.58 p.m at
1-QHz frequency of the surface phonon. For a
0,283-p, m thickness of the depletion layer, a re-
markable change in the frequency dependence of
the amplification rate can be seen in the range from
1 to 10 GHz, that is, two bumps appear in this fre-
quency region and the amplification rate decreases
rapidly at higher frequencies. Furthermore, if we
compare two curves which reflect the existence of
the depletion layer, we find that the electrons dis-
tributed in the depletion layer act to shift the fre-
quencies to higher values at which two local max-
ima and a minimum of the amplification are rea-
ched, as well as to make the overall magnitude of
the amplification rate larger.

These notable characteristics of the frequency
dependence of the amplification rate brought by
the existence of the surface depletion layer may
be understood qualitatively with the aid of the elec-
tric potential produced by. the surface phonon. In
Fig. 4, we have illustrated the electric potentials
induced piezoelectrically in the isotropic medium,
Roughly speaking, the frequency dependence of the
amplification rate is determined by the product of
q', which comes from the electronic screening as-
suming q «q, , and the square of the overlapping

integral of the electron wave functions and the
electric potential produced by the surface phonon,
i.e.,

00 2
q' g*, (z)y&(z)g (z)dz

For the electron wave functions, we shall employ
those of the zeroth-order approximation, for sim-
plicity. In this case, there are no electrons for
z & lp. The dominant term of the above expression
is the one for &=w'. Since

i g„(z)i ' = 8(z —lo)[1 —cos2z(z —lo) j/L,
and the second term in the square brackets oscil-
lates with z, we neglect the latter against unity.
Then, the above expression is reduced to

(p( z dz
lp

In practice it must be oversimplified, but we can
still understand the essetitial point of the problem
in terms of this expression as follows.

First, let us consider what will happen when we
increase the frequencies continuously from 1 QHz.
With the help of Fig. 4, we see that the square
of the integral decreases with increasing frequen-
cies up to a frequency of about 3 GHz at which it
becomes zero. In this process, owing to the pres-
ence of the factor q4, the amplification rate will
grow with frequency at much less than 3 QHz.
However, it will begin to decrease at some fre-
quency and tend to zero corresponding to the van-
ishing of the integral. The correct amplification,
of course, never vanishes and has a local mini-
mum at a certain frequency around 3 QHz, since
we must sum up all contributions arising from the
integrals for z& &'. If the frequencies grow higher,
the modulus of the integral begin. s to increase and
then the amplification rate also does. Because the
potential diminishes exponentially with increasing
frequencies and atveryhighfrequencies this effect
will surpass the rising of the amplification due to
the factor q4, the amplification rate of the surface
phonon will finally fall off exponentially. . It should
be remarked that the sign change of the electric
potential induced by the SAW is associated with the
fact that the particle motion of the Rayleigh-type
SAW is backward directed at a depth closer to the
free surface, but forward directed at greater
depth.

VI. DISCUSSION

In this paper we have investigated the acousto-
electric interaction of the surface phonon in the
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isotropic semiconductor by solving for the motions
of the electrons near the surface. Applying the in-
teraction to the study of the amplification rate of
the surface phonon in the GHz region, we found
that the existence of the surface depletion layer
in the n-type semiconductor has a crucial effect
on its frequency dependence when the thickness of
the depletion layer becomes the same order of
magnitude as the wavelength of the surface phonon.
The calculated wave functions of the electrons are
approximate ones, but they should describe quali-
tatively the correct characteristics of the genuine
wave functions.

In addition to the approximation made concerning
the electron wave functions, we made several
simplifications in order to derive the results, that
is, we neglected the finite relaxation time of the
electrons and used an approximate electron
screening length. We shall now comment briefly
on these points and finally discuss the anisotropy
which would be important in practical applications
of the theory to real semiconductors.

A. Relaxation time of electrons

For the value of the mobility given in Sec. V,
ql becomes unity at about 1-GHz frequency of the
surface phonon, so that the effect of the finite re-
laxation time or the broadening of the energies of
the electrons may contribute somewhat to the in-
teraction of surface phonons of the frequencies
considered in this paper. Generally speaking,
this effect may modify to some extent the magni-
tude of the amplification rate and the frequency
dependence, especially at lower frequencies near
1 GHz. However, the qualitative characteristics
of the amplification rate, that is, the appearance
of two local maxima in the frequency range from
1 to 10 GHz, will not be changed by incorporating
the finite relaxation time of the electrons because
their existence is substantially due to the depth
dependence of the electron wave functions and not
to the detailed structure of their energy levels.

B. Screening effect

In the numerical example, the electronic screen-
ing is incorporated by following the Debye approx-
imation. There we have estimated the screening
length simply in terms of the bulk-electron con-
centration, although this may not be justified quan-
titatively. Strictly speaking, the screening
length should be evaluated by taking into account
the local variation of the electronic density,
which can be obtained from Eq. (5) combined with

Eq. (12). In the surface depletion layer, the elec-
tron concentration is small, and so the screening
effect would be expressed by an effective screening

length slightly larger than the one we have used,
that is, the screening may be less effective. How-
ever, the local electron concentration decreases
rapidly going from z =to into the depletion layer,
so that even if we use the correct screening
length, it will only act to increase the overall
magnitude of the interaction by some modest
amount.

C. Lower-frequency phonon

In this paper, we have developed the acousto-
electric interaction along a microscopic quant-
um-mechanical approach assuming the relaxation
time of the electrons to be infinite. Hence,
strictly speaking, the results are valid in the high-
frequency regime satisfying ql»1. However, the
main characteristics caused by the effect of the
surface depletion layer on the frequency depend-
ence of the amplification rate will also be present
for a surface phonon of low frequency, that is
q/ & 1, provided an appropriate condition is satis-
fied. According to the discussion given in Sec. III,
the appearance of the two bumps seems to occur
when the wavelength of the surface phonon changes
exceeding the thickness of the depletion layer.
Therefore, for the semiconductor of lower bulk-
electron concentration, or of thicker depletion
layer, we may find the same kind of amplification
characteristics at lower frequencies of the surface
phonon. if the corresponding wavelengths become
of the same order of magnitude as the thickness
of the depletion. layer.

D. Elastic anisotropy

As was mentioned in Sec. I, the real crystalline
semiconductors have elastic anisotropy. The main
characteristics of the SAW introduced by the
presence of the anisotropy are: (i) the particle
motion may include three independent orthogonal
components, against just two in isotropic media;
(ii) the SAW velocity depends upon the direction of
propagation; and (iii) the decay constants may be
complex instead of real numbers and the particle
displacements decay oscillating away from the
surface.

As for the first point, it is generally shown that
the SAW traveling in a direction parallel to a cry-
stal axis of a cubic crystal. e.g. , in the [100] di-
rection on the (001) plane, has no displacement
component normal to the sagittal plane. So, in
this case, the wave has the form of a pure Ray-
leigh wave. When the direction of propagation is
rotated away from the crystal axis, the displace-
ment normal to the sagittal plane grows gradually.
Hence, as far as the SAW traveling in a direction
rotated by a small angle from the crystal axis is
concerned, the isotropic approximation may be
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justif ied.
The second point is not so relevant to the iso-

tropic assumption and its effect can be taken into
account by calculating the sound velocity in terms
of the isotropically approximated elastic constants.

From the viewpoint of the acoustoelectric in-
teraction of the surface phonons in piezoelectric
semiconductors the last item may be the most
serious characteristic introduced by the aniso-
tropy confuting the isotropic approximation. The
electric potential produced by the SAW in real
semiconductors will also manifest itself as an
oscillatory decay away from the surface, having
the same behavior as the particle displacements.
Since the mgin characteristics of the amplification
rate which we have obtained depend essentially
upon the spatial decay profile of the potential as
well as on the local density of the electrons near

the surface, this oscillatory damping might modify
our results unless the oscillation is not so promi-
nent.

More detailed and quantitative discussions about
all these problems are outside of the scope of the
present paper and we will come to them in a future
publication.
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