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Self-consistent electronic structure of transition-metal surfaces: The Mo (001) surface
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A self-consistent pseudopotential method together with a mixed-basis set of plane waves and Gaussian

orbitals are used to determine the electronic structure of the (001) surface of molybdenum. The
pseudopotential is derived from a self-consistent calculation of the atomic levels and wave functions, and is

tested for bulk molybdenum. The resulting bulk band structure and density of states are compared with

existing augmented plane-wave calculations. The same potential is applied to investigate the electronic structure
of an uncontracted Mo (001) surface. A complete analysis of the surface states is given in terms of their

distribution in the two-dimensional surface Brillouin zone, charge-density distribution, and the local density

of states. The results are in very good agreement with recent photoemission measurements,

I. INTRODUCTION

Clean and adsorbate-covered transition-metal
surfaces have attracted increasing interest within
the last few years because of refined experimen-
tal techniques that are now available to probe these
surfaces. Angle-resolved photoemission, ion-
neutralization, and Auger-electron spectroscopy,
as well as field emission and low-energy electron
diffraction (LEED), are some of the tools that
have been used to obtain information about the
geometry and the electronic structure of clean
surfaces and surfaces covered with foreign atoms.

Despite the growing amount of experimental data
and of the importance of transition-metal surfaces
as possible catalysts, the theoretical determin-
ation of the electronic structure of these surfaces
still poses problems due to the presence and the
localized nature of the valence d electrons. Many
theoretical approaches have been used to calculate
the electronic properties of transition-metal sur-
faces, most of them based on a tight-binding pic-
ture of the d electrons. A summary of the various
methods is presented in Ref. 1.

The aim of this paper is to give a complete and
self-consistent description of the (001) surface of
molybdenum. Although the surface properties of
tungsten have probably been studied most exten-
sively, this material is expected to show important
relativistic effects. At present we have not yet in-
corporated relativistic effects into our method,
and we have therefore chosen molybdenum assum-
ing that relativistic effects are far less important
in this material. In fact, our results for the sur-
face electronic structure of Mo support this as-
sumption, since spin-orbit interactions are not
necessary to explain the existence of any of the
experimentally observed surface states.

Recent angle-resolved photoemission experi-
ments applied to a clean Mo (001) surface reveal

two sharp peaks at 0.3 and 3.3 eV below the Fermi
level E~ at normal emission, which are very
sensitive to surface contamination. ' ' They are
also observed for nonvanishing emission angles,
together with a third peak that appears about 0.6
eV below E~.4' lt should be noticed that these
peak structures also occur in tungsten at slightly
lower energies compared to the Fermi level. '

The theoretical approaches made so far to ex-
plain the surface structure of Mo(001) and also
Mo(011) have some rather incomplete features.
Noguera et al.4"' calculated the density of states
for both surfaces using a Korringa-Kohn-Rostoker
method, which builds up the semi-infinite crystal
from a sequence of layers. A non-self-consistent
sharp potential step at the surface was used to
separate the vacuum from the solid. A surface
state that could account for the peak structure at
normal emission near E~ was found only after re-
laxing the sharp potential barrier and including a
13' contraction of the first interlayer spacing in
the case of Mo(001). The actual size of the con-
traction, which was deduced from LEED experi-
ments, ' is, however, controversial, and is be-
lieved to be much smaller.

Weng, ' using a tight-binding Green's-function
method, was able to predict surface resonances
away from normal emission in satisfactory agree-
ment with the experimental results; however, this
approach did not explain the existence of a strong
surface resonance or surface state at E~ at nor-
mal emission. All the above calculations were
done without screening the ionic potentials at the
surface self-consistently. From the similarity of
the total surface charge density with the corre-
sponding bulk charge density of transition metals,
it was argued' that self-consistency is less im-
portant than in semiconductors. We have, how-
ever, found considerable differences inthe screened
potential at the surface as compared to the screened
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bulk potential in Mo, which makes the use of bulk-
type potentials for the surface atoms, as was done
in Refs. 4 and 6, almost prohibitive.

We present in this paper the first self-consistent
calculation of the electronic structure of an Mo
(001) surface using a pseudopotential method. The
analysis of our results, which have been briefly
reported recently, includes not only the surface
density of states, but also the individual surface
resonance bands, their charge-density distribu-
tion in real space, and their k-space behavior.
We did not assume the tight-binding approxima-
tion, and treated the s, p, and d electrons on an
equal footing.

The method consists essentially of solving the
Schrodinger equation in the local-density formal-
ism. This method is used to get a nonlocal pseu-
dopotential that describes the ion cores in the
ground-state configuration of the atom from a
self-consistent calculation of the atomic levels
and wave functions. Adopting the frozen core ap-
proximation, this potential is used to obtain the
bulk and surface electronic properties. A slab
superlattice is used for the surface calculation
to achieve periodicity perpendicular to the sur-
face. In order to account both for the highly local-
ized valence d electrons and the delocalized s- or
p-like electrons, the wave function for the crystal
is expanded in a formally overcomplete set of
plane waves and Bloch functions made of localized
orbitals.

The details of the calculational techniques are
described in Sec. II. The results for the bulk and
surface and the comparison with experiment are
presented in Sec. DI. The paper is concluded with
a summary in Sec. IV.

II. CALCULATIONAL TECHNIQUES

The electronic band structure of both the bulk
and the (001) surface of Mo is calculated from a
one-particle pseudopotential Hamiltonian

H =P'/2 m + V + V, „,+ V„. (1)

V„o«is the usual electronic Coulomb potential that
is obtained from the total pseudo charge density
p (r) by using Poisson's equation

V (r) =e' d'r'.p r')
COUL

V„ is an exchange potential, which is given in the
local density formalism to lowest order by the
well-known "p " term'~'~'

The choice of the exchange parameter a is not
very crucial to the final results as long as its

value lies between —,'and 1. In accordance with
Ref. 1 we have chosen n to be 0.80 in this work.
The sum of V««and V„acts as a potential that
screens the effect of the ionic cores. The ions
are described by a superposition of nonlocal Mo"
ionic pseudopotentials

V„,(r, r') =g v„(r —R„,r' —R„), (4)
Rn

where the sum is over all atomic positions and v„
is a nonlocal atomic pseudopotential. V is used to
denote crystal potentials and v is used for atomic
potentials. Since the different angular components
of the wave function see a different core repulsion
due to core orthogonalization, we write

vps-Q v, P, , (5)

where the operator P, projects out the lth angular
momentum component of the wave function. Using
the completeness relation

QP, =1, (~)
l

Eg. (5) can be rewritten as a sum of a local poten-
tial v„ that acts on all angular components of the
wave function in the same way and a nonlocal cor-
rection EvNL that acts on the various $ components

differently:

V»= VL +6VNL = VL +P (V& —VL) P~ .

Notice that v„ is a nonlocal operator because of
the presence of the projection operator. In real-
space coordinates, Eq. (7) reads

v„(r, r') =5(r —r') vL(r) +5(r —r')

, p [v, (r) —VL(r)]P, (8, cp; 8', cp'),

where r =(r, 8, y), r' = (r', 8', y'), and

P, (8, q;8', q')=pl', „(8,q)r,*„(8',q'). (9)

Y, is the usual spherical harmonic with angular-
momentum quantum numbers l and m. We use the
s component of the expansion Eq. (5) as a local
potential vL, and keep a p and ad nonlocal correc-
tion.

The potentials v, (r), v~(r); and v~(r) are obtained
as follows. The core part of the self-consistent
Xn atomic potential for the ground state of Mo
computed with Herman and Skillman's atomic-
structure program~3 is removed to obtain smooth
and nodeless 4d, 5s, and 5p wave functions with
the same energy as the all-electron result. Fur-
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thermore, we require that the pseudo wave func-
tion matches the Xe wave function outside the core
region. In practice, this means that the pseudo-
potential starts deviating from the Xn result be-
tween the outermost maximum and the outermost
node of the radial Xn wave function. The shape
of the pseudopotentia1 in the core region is rela-
tively insensitive to the band structure when it is
used in bulk or surface. calculations. Since we
mainly work in Fourier space, where smooth non-
singular potentials can be conveniently treated,
we chose a parabola to simulate the repulsion in
the core region. The result of this calculation is
shown in Fig 1(a. ) together with the 4d, 5s, and 5p
atomic pseudo wave functions. The unscreened core

g„(k, r) = pa„(k+ 6)e' "'
G

+gf,". „(k) y,.„(k,r). (10)

potentials V„V~, and V„are obtained by subtract-
ing the (pseudo)atomic screening potential v„+v„
(the Hartree and exchange potentials) from the
screened pseudopotentials. The quality of the
core potentials is checked by calculating the
energies and wave functions of the neutral Mo
atom in various excited configurations, and com-
paring the results with Xn-type calculations. A

plot of the core potentials is given in Fig. 1(b).
As in the case of Nb, the d electrons see a much
stronger potential than the s and p electrons. The
s and p core potentials are practically identical.

To solve the SchrMinger equation self-consist-
ently for the Hamiltonian [Eq. (1)], we use an

iterative procedure that is started by approximat-
ing V„+V„„,+ V„by apseudopotential constructed
from a superposition of the atomic core pseudo-
potentials obtained above. From the valence
charge density, a new screening potential is ob-
tained and put back into the Hamiltonian. The
procedure is repeated until the input 'and output
screening potentials agree with each other within
0.01 Hy.

To account for the highly localized d part of the
total wave function, as well as for the delocalized
s and p contributions, it is very convenient to ex-
pand the crystal wave function in a mixed set of
plane waves and Bloch functions made of localized
orbitals~4:

—-l2
-l4

-l6
-l8
-20
-22—
-24

0
l I

4
r {O.u. )

FIG. l. (a) Self-consistently-screened pseudopoten-
tial for the Mo atom decomposed in its angular-momen-
tum components as a function of r. Also plotted are the
pseudo radial eigenfunctions rR„&(r) for the valence
states. Inside the core potentials, the wave functions
deviate from the all-electron result. The core region
is normally different for different angular momenta E.
The core radius is marked by an arrow for the various
l values. The double arrow indicates half the nearest-
neighbor distance in the metal. (b) Mo 6 ionic pseudo-
potentials. v~, v&, and v& are plotted as functions of r .

k is a Bloch wave vector, n is the band index, and
G denotes a reciprocal-lattice vector. The sub-
script j counts the number of atoms per unit cell
(for simplicity the formalism is presented for only
one type of atoms per unit cell). The subscript X

is an abbreviation for the angular-momentum quan-
tum numbers f and m. The basis functions P;q are
Bloch functions constructed from localized orbital
functions d q(r):

0;~(k, r)=pe'" "~""d~(r-H„-~.)&;, . (»)
pv

The sum is over all lattice sites R„and atomic
positions 7, in a unit cell. The coefficients 0;„
are determined such that only real matrix elements
occur in the diagonalization procedure. This can
always be achieved if the lattice has inversion
symmetry as in the case of bcc Mo.

We choose dq(r) to be a linear combination of
Gaussian orbitals

d g(r) = N, „r'Z, (O, q)—Q C,„,.e ~~ "' . (12)
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N, is a normalization constant and Z,„is a cubic
harmonic~' of angular-momentum quantum number

For I =2 the subscript m runs from 1 to 5, but
it is actually no longer associated with the z-com-
ponent quantum number of the angular momentum,
because the cubic harmonics are linear combin-
ations of spherical harmonics. The coefficients
C, , and the exponents y, are determined by fitting
the localized orbital dq(r) to the atomic d pseudo
wave function. It turns out that for Mo it is suf-
ficient to use only one Gaussian orbital with C,
=1.0 and y =0.80. This choice of the parameters
places the maximum of the radial part of d q(r) at
the position of the maximum of the radial atomic
pseudo wave function. However, the decay length
of the orbital d q(r) is much shorter than the decay
length of the atomic wave function. If one assumes
that the d part of the crystal wave function is very
similar to the atomic d wave function, the basis
functions Q; q(k, r} are certainly not sufficient to
represent the d haracter of the crystal wave func-
tion properly; however, the error is compensated
by including an appropriate amount of plane waves
in the expansion [Eq. (10)]. This flexibility makes
a mixed-basis expansion an extremely practical
scheme to deal with for transition metals.

From the expansion [Eq. (10)] we obtain the
eigenvalue problem

g(P.„,-ES„„.) C„.=0, (13)
n'

where the indices cg, e' stand for the plane waves
~k+G) and the Bloch functions ~P&q(k)). The coef-
ficients C represent the coefficients a„(k+G) or
b,"I,(k) of expansion (10), depending on the index o,.
S„„iis the usual overlap matrix element. The
matrix eigenvalue problem is solved by using the
Choleski decomposition of $.

Although expansion (10}is formally overcom-
plete, overcompleteness is not reached if we in-
clude a finite number of plane waves in the ex-
pansion. Numerical instabilities that occur if one
approaches overcompleteness can be avoided by
monitoring the eigenvalues of the overlap matrix,
which should be of the order of 1.~' Some details
of the evaluation of the various matrix elements
within the mixed-basis scheme are given in Ap-
pendix A.

The method applies equally well to calculate the
electronic properties of the bulk material and the
surface, provided one is able to regain periodicity
perpendicular to the surface. This is achieved by
employing the slab method, which has now become
standard technique for treating surfaces. The sur-
face of the semi-infinite crystal is simulated by
either of the two noninteracting surfaces of a thin
slab that are exposed to a finite number of empty-

space layers. This arrangement is repeated
throughout all space. In the case of Mo we have
found that a five-layer Mo (001) slab exposed to
three-layer vacuum on each side gives a good de-
scription of the electronic structure of this sur-
face.

I y.(k, r) I'. (15)
] egz %, n

E (k)—,E~

With the self-consistent screening potential ob-
tained from the total charge density p(r), the en-
ergy eigenvalues along various high-symmetry
lines in the BZ are calculated. The results are
displayed in Fig. 2. The separation between en-
ergy levels tends to be smaller than in non-self-
consistent augmented-plane-wave (APW) calcula-
tions, e.g., E~ -E(I',) = 5.6 eV and E(H». ) -E(H»)
=8.37 eV in the present calculation, whereas APW
calculations' give 6.64 and 9.36 eV, respectively.
We believe this to be a result of self-consistency,
since our starting potential, which is a super-
position of atomically screened core potentials,
gives almost perfect agreement for the energy
levels with non-self-consistent APW results. One

HI. RESULTS

A. Bulk molydenum

In order to test the quality of our pseudopoten-
tials and to obtain a projected band structure for
the surface calculation, we calculated the band
structure and the density of states of the bulk
material. The advantage of using a mixed-basis
set to expand the wave function manifests itself
in the number of basis functions that have to be
included in the expansion in order to get stable
eigenvalues. Whereas a pure plane-wave expan-
sion requires the diagonalization of an 80' 80
matrix, only about 50 basis functions, that is, 45
plane waves and five 4-type orbitals, were nec-
essary within the mixed-basis scheme to get the
energy levels stable within 0.2 eV. Both methods
converge to the same results at self-consistency. ~'

To 'get the self-consistent potential, we used
eight special k points" in the 4', irreducible part
of the Brillouin zone (BZ). The Fermi level Ez is
determined by

8
2 g gm(k, )e(E~ -E„$,.))=z, (14)

k~ =1

where s is the number of electrons per primitive
unit cell, six in the case of bulk Mo. 9 is the step
function and w(k,.} is a weight factor that measures
the weight of the vector k,. according to its volume
in the BZ. The total valence charge density is then
given by
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FIG. 2. Energy bands along symmetry directions for
bulk Mo. Dashed lines are doubly degenerate levels.

major discrepancy occurs at the N symmetry point
where the unoccupied E(N~i) level may be some-
what high in energy. The results of the only self-
consistent APW calculation on Mo by Moruzzi
et el. ,2' which have not yet been published, indicate
that this level might fa11 in between the levels
E(N~) and E(Ã,), thus closing the gap that exists
in Nb between E(N~~) and E(N~). This has impor-
tant consequences for the projection of the bulk
band structure onto the (001) surface BZ, and
hence for the occurrence of surface states in the
corresponding region of the surface BZ, as we
shall see later. A comparison of the energy levels
at some symmetry points in the bulk BZ is given
in Table I for (i) the non-self-consistent, non-
relativistic APW calculation by Petroff and Vis-
wanathan'; (ii) a corresponding self-consistent
calculation by Moruzzi et af."(as far as the un-
published data were available); and (iii) for the
present calculation. Also given is the bulk den-
sity of states, which is obtained from 35 selected
k points in the irreducible part of the BZ by a fast

Fourier-series-expansion technique" (Fig. 8). Al-
though we were not primarily interested in getting
a highly resolved density of states, the principal
peaks agree reasonably we11 with photoemission
data and APW results (Table II).

B. (001) surface

The electronic structure of the (001) surface is
obtained by applying the .same method to the above
described "slab-crystal. " Here, the advantage of
using a mixed-basis set to expand the wave function
becomes even more obvious. Whereas the cal-
culation of the Nb (001) surface properties required
-110plane waves per atom, we were able to cut
back the number of basis function to -45 per atom
by including one Gaussian orbital per atom in the
slab unit cell. Convergence tests showed that the
most sensitive d levels were stable within 0.2 eV
when the number of basis functions were increased.

The (001) face of the bcc lattice is a square with
length a„which is the bcc cubic lattice con-
stant. The corresponding two-dimensional BZ is
shown in Fig. 4. The symmetry lines E, , Y, and
Z enclose the irreducible part (1/Sth) of the sur-
face BZ. The screening potential during iteration
is obtained from the charge density based on three
special% points'4; however, for the final potential,
a regular mesh of 15 k points in the irreducible
part of the surface BZ is used.

The local part of the screened total self-consis-
tent potential, that is, core plus screening poten-
tial, is plotted along the z axis perpendicular to
the surface (Fig. 5). The slab is approached from
the left- to the right-hand side. From the Fermi
energy E~, which is represented by a straight
line, one can deduce a work function value of 4.3
eV. The experimentally measured value for the
Mo (001) surface is 4.58 ev. ' It can also be seen
from this figure that the screening around the sur-
face atoms differs from the screening in the slab
interior. In particular, the poteritia1 above the
surface layer is much less attractive due to the

TABLE I. Comparison of the bulk energy levels at some symmetry points with other band-
structure calculations. The levels are quoted with respect to E(I'&).

AP%'
non-self-"consistent

(Ref. 2i)

APN
self-consistent

(Ref. 22)
Pseudopotential

(present work)

r,
~25'

H)2

%s
P4
P3

0
5.55
8.11
1,16

10.52
4.20
8.94

0
5.09
7.85
0.57

3.90

0
3.97
6.59
0.27
8.64
3.06
7.25
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FIG. 3. Density-of-states curve for bulk Mo. FIG. 4. Surface BZ for Mo(001). The indicated sym-

metry lines enclose the irreducible part of the zone.

lack of the neighboring atoms.
From the self-consistent potential we recalcu-

lated the total valence charge density, the energy
levels E„(k), and the electronic wave functions
g„(k~~, r) at the 15 points, including the symmetry
points l, M, and X and the symmetry lines E, Z,
and 1'. % ~i is the wave vector parallel to the sur-
face. This information was used to obtain the
local density of states (LDOS) in the various slab
regions Q,. from

N,.(E) = Q [g„(k)(,r) ['5(E -E„(k(())(Pr . (16)
Qq

k)lyll

To facilitate the analysis of surface states and
resonances, we make use of the fact that surface
states tend to be localized in k space in or near
the gaps of the bulk band structure projected onto
the surface BZ. Vfe have therefore projected the
bulk band structure obtained above onto the sym-
metry lines b, , Z, and F and also onto the sym-
metry points I', X, and ~ using the method de-
scribed in Ref. 1. The results, together with

various calculated surface resonance bands, are
shown in Fig. 6(a). The surface states or reso-
nances can be easily characterized by their charge
density in real space. In this work we distinguish
between a true surface state and a surface reso-
nance by its charge distribution with respect to
the surface. A true surface state has its charge
confined in the immediate neighborhood of the sur-
face layer with negligible charge inside the slab.
In slab calculations these states occur in pairs,
with an average energy-level splitting of less than
0.1 eV. A surface resonance has more than 50%
of its charge localized at the surface, but the
charge can extend quite far into the slab. The
resonance also occurs as an energy-level pair,
if it is strong enough. The splitting of the levels,

0.6

0.2—

0 —EF -'

TABLE II. Principal peak positions of the bulk density
of states obtained from experiment and theory. Energies
are given with respect to the Fermi level.

0.2

-04—

Experiment
(photoemission)

Ref. 26 Ref. 27 Ref. 21
Theory
Ref. 28 This work

-0.6—

0.5

Mo

I.O l. 5
Distance (a, )

Mo

2.0

Mo

2.5

-3.6
~ ~

-1.6
~ ~ 0

-3.9
~ ~ ~

-1.6
1.0
2.0

-4.28
-2.92
-1.56
1.50
2.45

-4.0
3.1
1.7
0.9
1.5

-4.3
-3.2
-1,5
1.3
2.3

FIG. 5. Self-consistently screened local part of the
potential averaged parallel to the (001) surface, plotted
as a function of the coordiante z perpendicular to the
surface. The positions of the atomic layers are marked
by arrows. P is the work function.
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FIG. 7. Charge-density contour plot of the C surface
states. The contour plane is the (100) plane. Heavy lines
represent atomic layers, heavy dots indicate the atomic
positions. The charge density is normalized to one elec-
tron per unit cell. Successive contours are separated
by one-tenth of the maximum density value given in the
plot. The first. contour away from the maximum there-
fore has a value of 9.
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X24
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FIG. 6. (a) Projected band structure together with
surface resonance bands (dashed lines) along symmetry
lines. Vertical cross-hatching is used for states with
5 &, F&, and Z& symmetry and horizontal cross-hatching
refers to states with 4» F» and Z2 symmetry. (b)
Projected band structure for the symmetry points I'
=(0, 0), X= (~, 0), and lP= (2, ~).- Character tables for
the various irreducible representations are given in
Hefs. 1 aIld 28.

therefore interact with bulk states of the same
symmetry, which exist in this part of the surface
BZ. The character of the C resonance state at 1"

is probed by angle-resolved photoemission experi-
ments at normal emission and the whole C band
shows up away from normal emission and causes
the well-known peak structure at -3.3 eV below
E~.' ' Another resonance band E exists in the
absolute gap labeled by g~ along Y. Its charge has
d„, character (Fig. 8). Most of the surface reso-
nance bands are found in an energy interval be-
tween E~ and -1.5 eV. Two resonance bands E,
and E, exist in and near the h~ symmetry gap
along b. TheE, band has d„2 „2, d„2,2, and d„,
character; it is therefore of b, , symmetry, and
consequently shows a much stronger surface local-
ization than the E, band, which has d„and d„„
character, and therefore Z, symmetry (Fig. 9).
Along the 7 fine, we find a resonance band E3 that
can be analytically connected with the band Z,
along Z through an absolute gap that extends
throughout the irreducible part of the surface BZ
connecting the gape G, and G~ (Fig. 10). E, and
E4 have d,„,„character with an admixture of

however, becomes larger the more the resonance
couples to bulk states.

We find a relatively flat resonance band labeled
C along 6 around -3.4 eV, which also exists at I'.
The total charge density of this band has d„2 „2
and d„2,2 character (Fig. V). The d„2 „~ char-
acter dominates at I", but is overcome by an in-
creasing d„2,2 admixture away from I'. The
charge contributions below the surface layer toward
the slab interior are relatively small, even though
the resonance states are of h~ symmetry and can

F Surface States

Vacuum

FIG. 8. Charge-density contour plot of the E surface
states on the (110) plane. Conventions of Fig. 7.
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E~ Surface State

at k = (-,', 0)

Vacuum

a.

(

' 15„

E, Surface State

at k = (-,', —,'}

Vacuum

(8)

E2 Surface State

at k =(-,', O}
Vacuum

Vacuum

(b)
FIG. 11. Charge- density distribution of an E4 surface

state at k= (4, 4)(2~/a, ) on (a) a (110) plane and (b) a
(100) plane. Conventions of Fig. 7.

FIG. 9. Charge-density distribution of (a) an E& sur-
1face state and (b) an E2 surface state at k= (8, 0)(2m /

a, ) on a (110) plane. Conventions of Fig. 7.

d„2,2 (Fig. 11). The resonance band E, also has
d,„,„character, but with a d„„mixture (Fig. 12).
All the E type states can be derived in a simple
orbital picture from the bonding orbitals d, „and
d„, which are broken when the surface is formed.
In addition to these dangling-bond-like states, we
find a strong surface resonance R around I at
-0.2 eV, which becomes a true surface state at
I' of d„2 2 character (Fig. 13). It exists in a I',
symmetry gap [Fig. 6(b)] and is probed by angle-
resolved photoemission at normal emission, giving
rise to the sharp peak structure just below the
Fermi level. ' It can also be traced along Z as a

a.
E5 Surface State

at k = ( —,', —,'}

Vacuum

relatively weak resonance of Z~ symmetry [not
shown in Fig. 6(a)]. This state is the result of
self-consistency, since it is not present in non-
self-consistent calculations. The existence of
this state does not depend on contraction of the
first interlayer spacing as was proposed in Refs.
4 and 6. In the bond picture, the state can be
thought of as being formed by orbitals that split

Y

G]

Vacuum

FIG. 10. Extent of the absolute gaps G& and G2 within
the irreducible part of the surface BZ. Note the G2 gap
along Z is denoted by G3 in Fig. 6(a).

FIG. 12. Charge-density distribution of an E& surface
state at k= (4, 4)(2~/a, ) on (a) a (110) plane and (b) a
(100) plane. Conventions of Fig. 7.
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R Surface State at I

Vacuum

FIG. 13. Charge-density contour plot of a 8 surface
state at T' on a (110) plane. Conventions of Fig. 7.

off from the nonbonding part of the h, ~-type bulk
states and moves down into the I', gap so far that
it becomes occupied.

Above the Fermi level we find a surface reso-
nance band of distinct d„2 „2 character labeled B.
It exists mainly in a small absolute gap along 7
and decays as a resonance along Z. There is
practically no overlap of charge of the B states,
which is consistent with the weak dispersion of
the B band (Fig. 14). Finally, a true surface state
labeled A exists at3f in the absolute gap t"4 at 2.3
eV. It.is solely of d„2,2 character and decays
rapidly away from ~. The bands A and B also
exist in Nb(001). No true surface states are found
at M in contrast to Nb(001). ~ Since our results for
the wave functions and the energy levels are con-
verged within less than 0.2 eV, only the change in

]0

8—
L0

I I I

Mo (001) Surface LDOS

the bulk band structure at the N symmetry point
can be made responsible for the lack of surface
states at M. With the N, level higher than the N,
level the gaps Q, and G, are no longer connected.
The gap at M that exists in Nb(001) around 3 eV
above the Fermi level disappears. The twofold-
degenerate surface state of I, symmetry can now
couple to bulk states of the same symmetry [Fig.
6(b)], and becomes a very weak resonance in Mo.
This result clearly indicates that the rigid-band
model does not necessarily hold for predicting
surface states.

To compare our results with experiments that
are of spectroscopic nature, we have calculated
the LDOS at the surface. The result is plotted
in Fig. 15. The surface LDOS shows much more
structure than the bulk density of states; however,
this is partly due to the smaller number of k points
used, and also to slab effects. To extract surface
features we have subtracted the LDQS at the in-
nermost layer from the surface LDOS, keeping
only the positive contributions, which represent
an excess in electrons at the surface layer as
compared to the slab center (shaded areas in Fig.
15). The agreement between our calculated re-
sults and experiment is excellent. Besides a low-
lying surface resonance structure at -3.3 eV, we
find a double-peak structure near the Fermi en-
ergy at -0.2 and -0.6 eV. Surface resonances at
these energies were found from recent angle-
resolved photoemission spectra. ' In addition, we
obtain surface contributions around -2 eV and
unoccupied surface resonances, which presumably
have not yet been resolved experimentally. All

B Surface State at M

Vacuum

0
4

C
Q

2

0
O

00
—6

F

—2 0
Energy (eV)

B

I A 1

2

4.5

FIG. 14. Charge-density contour plot of a B surface
state at I on a (110) plane. Conventions of Fig. 7.

FIG. 15. The local density of states for the surface
layer. The shaded areas represent the excess density
of states (see text). Energies are measured with res-
pect to the Fermi level. The labeling of the surface
states is according to Fig. 6(a). The positions of the
principal bulk peaks are marked by open arrows.
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surface contributions in the surface LDOS can be
uniquely associated with the resonance bands ob-
tained in the k-space analysis of Fig. 6.

DMR 76-20647-AOl. One of us (G.P.K.) was
supported by a Deutsche Forschungsgemeinschaft
fellowship.

IV. SUMMARY AND CONCLUSION APPENDIX

We have calculated the electric structure of the
Mo (001) surface using a self-consistent pseudo-
potential method that allows for screening of the
ionic cores near the surface. The core potentials,
which are input to our method, reproduce the bulk
properties of Mo in reasonable agreement with
other calculations and experiment. A combined set
of plane waves and Bloch functions made of local-
ized Gaussian orbitals is employed as basis func-
tions, leading to a very efficient representation of
both the highly localized d part and the plane-wave-
like s, p part of the cyrstal wave function.

We have analyzed the prominent surface states
and resonances in terms of their k-space behavior
in the two-dimensional BZ and in terms of the loc-
al density of states. We have also examined the
charge-density distribution of the various surface
states. Excellent agreement with recent photo-
emission spectra is obtained. To our knowledge,
this is the first self-consistent calculation that
reproduces all experimental data satisfactorily.
Neither relativistic effects nor surface relaxation
is needed to obtain the characteristic structure of
this transition-metal surface. Our calculation pro-
vides a striking example of the importance of self-
consistency at a transition-metal surface. The
surface state that exists at the Fermi level at
normal emission is not present in non-self-con-
sistent calculations. Noguera et al. ' obtained this
state by simulating the self -consistent solution,
but a rather large inward contraction of the sur-
face layer was necessary to place the state at the
observed energy. Finally, we note that the rigid-
band model is only of limited value in predicting
surface states. Comparing our results with the
results of a similar calculation for the Nb (001)
surface, we find that some of the Nb (001) surface
states no longer exist at Mo(001), whereas others
only occur at Mo(001). Photoemission experi-
ments, however, indicate that surface states at
W(001) are most likely to be similar to Mo, both
in their extent in k space and in their charge-
density distribution.
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(,. „(k, G)=( Qe ' '"8,.„)

e "~'e''rr (e)d*e)0, (A2)

N is the number of unit cells, Q, is the atomic
volume, and M is the number of atoms in a unit
cell. Once the expansion coefficients are known,
all matrix elements can be calculated in a pure
plane-wave representation. We omit the details
of this calculation, since they are discussed at
length in Ref. 25.

ln the case of Mo, the evaluation of the matrix
elements (C;&,(k) lhV&(& lC; q (k)) is facilitated by
taking into account that both the d orbitals and the
nonlocal d correction to the core potential are
extremely short ranged. We can therefore make
the so-called on-site approximation

((t; & (k) l&l'»r. l(t)g&(k))

+Bye r, r
a

&& d &((r)d'r d'r', (A3)

which contains only a one-center integral. The
quality of this approximation can be easily checked
by evaluating the exact expression using the plane-
wave expansion (A1) of the orbital Bloch functions.
The result is practically the same as the result
obtained by the on-site approximation.

The use of a mixed-basis set to represent the
crystal wave function requires the calculation of
both the Hamiltonian matrix elements H „„.and the
overlap matrix elements $ „ in order to diagonal-
ize the eigenvalue problem of Eq. (13). Here, c(c('
refers to either a plane-wave state lk+G) or a
Bloch state made of localized orbitals l C; q(k)).
To avoid summations over lattice sites and the
evaluation of multicenter integrals, we have com-
puted the above matrix elements in reciprocal
space whenever it was possible and convenient.
For this purpose, we expand the localized-orbital
Bloch function in plane waves,

y. y(k r) = g(, y(k G)e&&"+ &'' (A])
a G

where the coefficients $, q(k, G) are given by
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