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Effect of adatom-phonon coupling on desorption kinetics in the heavy-adatom limit
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The Kramers-Langevin stochastic equation governing desorption is derived microscopically in the case where
the adatom is coupled to the lattice vibrations of the solid substrate, and in the limit where the adatom mass
is much larger than the atomic mass of the substrate. The systematic potential V,„and the friction coefficient

q are calculated, with the help of a local harmonic approximation, in terms of the microscopic binding
potential V and of the local static surface compressibility y of the isolated substrate. g is found to be position
dependent. It is shown that, for a given chemisorption potential V, two regimes may occur, depending on the
value of y. For "hard" substrates, the Kramers equation holds, but q may have significant space variations.
For "soft" substrates, a dynamic instability of the local deformation of the substrate around the adatom
appears at a particular value of the adatom position. This effect exhibits an intrinsic hysteresis and induces a
large energy loss. It leads, in spite of the large value of the mass ratio, to the breakdown of the
Kramers approximation.

I. INTRODUCTION

Recently, there has been a renewal of interest in
the study of the kinetics of desorption of neutral
atoms from solid surfaces. The calculation of a
desorption rate can be broken down into three dif-
ferent steps. (a) One first expresses the equation
of motion of the adsorbate particle as a ",stochas-
tic" equation, in which the interaction between the
atom and the substrate manifests itself via a sys-
tematic friction force and a random force, both
being, as usual, connected by a "fluctuation-dissi-
pation" relation.

It is always possible to formally write such an
equation' for any particle plus bath system (the
bath being, here, the substrate}. However, this
only gives another equivalent formulation of the
complete (N+ I)-pa(rticle problem, and does not
provide as such any explicit solution. Considerable
simplification occurs when the fluctuations of the
bath are fast compared with the motion of the par-
ticle" (this is, for example, the case in the clas-
sical Brownian-motion problem). The stochastic
equation then reduces to a I angevin one, i.e. , with
a white-noise spectrum for the random force and
a nonretarded friction coefficient (or, equivalently,
to a Fokker-Plane& equation for the distribution
function of the particle variables).

Such an equation was first written phenomeno-
logically, for the desorption problem, by Kra-
mers. 4 In its Langevin version, Kramers's equa-
tion reads

M —= F(x}—Mqv+ F(t},
GTv

dt

where M, v, and x are the mass, velocity, and
pos'ition of the adatom, F(x) is some systematic

binding force, and the friction coefficient (or vis-
cosity) q is related to the random force ():(t) by

n= —I (&(0)&(())e (p
= ), (2)

&s(o)v(f)& = ca(t) .
(b) If such a type of simplification is possible, one
must then calculate explicitly, for a given system,
the systematic force and the friction coefficient,
which are in general functions of temperature and
position. (c) Once the Langevin equation is com-
pletely specified, it must be solved to calculate ex-
perimentally measured quantities —that is, in our
case, the desorption rate or the sticking coefficient
(which are connected by a simple detailed balance
relation' ).

Part (c) of this program has been completed for
Kramers's equation(l), i.e. , with a constant q, by
several authors. 4 ' They find that one may define
three regimes: (i) low friction: q «w, k~T/V,
where V is the depth of the systematic binding po-
tential, and co, is the vibration frequency of the
adatom at the bottom of the potential well. In this
case the desorption time varies as q ', (ii) high
friction: q» &u„where r (x: q; (iii) intermediate
range: (d,k~TjV«q«ar, (which is very broad in the
chemisorption situation where ksT«V). In this
range, the result of Eyring's absolute-rate theory'
(ART) is valid, and r = 2 )T ~,' exp( P V).

parts (a} and (b) have been thoroughly investiga-
ted, especially by Suhl and co-workers, "with the
restriction that they have taken into account only
the interaction of the adatomwiththe electronic de-
grees of freedom of the substrate. With this re-
striction, and since the electron mass is much
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smaller than the mass of any adatom, the fluctua-
tions of the bath are obviously fast with respect to
the particle motion, and an equation of Kramers's
type is valid. The friction coefficient associated
with these interactions has been calculated for
several different forms of the electronic cou-
pling

However, it is clear that the adatom couples,
not only to the electronic excitations of the sub-
strate, but also to its lattice vibrations. The mass
mismatch is much weaker between the adatom and
the substrate atoms than between the adatom and
the electrons. Therefore, one expects that the
coupling to phonons gives much larger effects and
controls the kinetics of desorption —except possi-
bly when electronic effects are enhanced by the
existence of a soft mode in the electronic excita-
tion spectrum.

The effect of the coupling between adatom and
substrate lattice vibrations has been studied by
Beeby and coworkers, "whose approach is some-
what different from'the one described above: they
do not try to write an explicit stochastic equation
for the adatom, but calculate directly the desorp-
tion time with the help of two simplifying assump-
tions: (i) They identify the desorption flux with
the part of the atomic current which would flow
away from the solid surface if the whole system
was at thermal equilibrium. (ii) This current
is calculated at a given value of the relative dis-
tance between the adatom (of mass M) and the
nearest substrate atom (of mass m).

This model leads to a desorption time

7 ~ ~l/2

where p, is the reduced mass: p=Mm/(M+m).
It must be noted that this result predicts a fi-

nite value for the desorption time in the limit
M-~, while one must find, in that case, that

Indeed, when the adatom is infinitely heavy
it remains at rest with respect to the center of
mass C of the solid (or, equivalently, to the
average position of the substrate surface). It is
the distance of the adatom to that fixed point (and
not to the instantaneous position of the vibrating
surface atoms) which is the proper variable in
terms of which desorption must be defined. There-
fore, although the atoms of the substrate surface
do vibrate, the adatom does not move and 7 is in-
finite.

This shows that assumption (ii) is not correct,
and that the current must be calculated at a given
value of the absolute (i.e., measured with respect
to C) position of the adatom. However, when this
is done, it appears that, due to assumption (i), one
simply recovers Eyring's ART result which, as
shown in Ref. 4, is not valid in the low- and high-

friction regimes.
One is, therefore, led to come back to the three-

step stochastic approach, which avoids making an
assumption of thermal equilibrium and allows for
a direct out-of-equilibrium calculation. This is
the point of view which we take in this paper, with
the aim of completing —in the same spirit as what
was done for the electronic coupling —steps (a)
and (b) and obtaining, if possible, the appropriate
Kramers- Langevin equation. As already men-
tioned, this method only applies, in practice —at
least in the present state of the art —when the mo-
tion of the bath (made here of the vibrational de-
grees of freedom of the substrate) is much faster
than that of the particle. This means that we will
only treat the case of a heavy adatom adsorbed on
a light substrate (M»m).

In Sec. II, we rederive the formal general stoch-
astic equation for the adatom, and the simplified
Langevin equation which follows from it in the
adiabatic limit. In See. III, we apply the formalism
to the model of a harmonic substrate with a non.-
harmonic adatom —solid binding potential, which
we solve in the local harmonic approximation (that
is, for small amplitudes of atomic vibration). We
thus obtain approximate expressions for the syste-
matic effective potential and the friction coeffi-
cient which appear in the Langevin-Kramers equa-
tion. In Sec. IV, we discuss the validity of the
local harmonic approximation. We find that, for
a given microscopic atom-solid binding potential,
if the compressibility of the substrate is large
enough, the approximation breaks down at some
particuIar value of the adatom position, where
the energy loss becomes very large. In the close
vicinity of that "critical" position, the validity of
the Kramers-Langevin equation itself breaks down,
in spite of the large value of the mass ratio (M/m).

II. DERIVATION OF THE FORMAL STOCHASTIC EQUATION

In what follows, we restrict ourselves to a class-
ical treatment: this is sufficient to describe the
atom-phonon coupling at the high temperatures
(-300'K) of practical interest.

Let us define our system as composed of a semi-
infinite solid, made of N(N-~) interacting atoms
of mass m, positions r& and momenta p& (i
=. 1, . . . , N), and an adatom of mass M, position
Rp and momentum P„ interacting with the solid
via the potential V (R„Pr,}).

As discussed in See. I, in order to analyze de-
sorption, one must study the motion of the adatom
with respect to a solid of fixed macroscopic posi-
tion and orientation. This constraint can be most
conveniently imposed by fixing the positions of
three atoms belonging to the surface of the solid
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opposite to the adsorbing surface" (and lying at
infinity from it}. This we simulate by including in

the Hamiltonian H, of the solid an external ad hoe
potential V,. This eliminates from H, the spurious
global translational and rotational invariances.

The Hamiltonian of the total system then reads .

where we have taken advantage of the relation
(piL0= 0, and defined

(y+(f) e(1-(&'&i Li (y(0)

It follows from Eqs. (11) and (7) that

(6"(t})= (Pe( e&-i i 6'(0) 6' 6'(0) 0 (12)
H = Iio+ Po/2M,

+a=If, + V(R, pr;)).

(4a)

(4b)

To this Hamiltonian is associated the Liouville
operator

iL = iL0+ iL~,

where

P, y
BR BR

(5c)

6'( ")=&''')= — J[Pp;dr e'"'( ''), (6a)
Zp

N

Z, = IId p,. d r, e ~"0, (6b)

Z, being a function of R,.
Note that 6 describes the statistical equilibrium

of the adiabatic system, which is the Mlm -~
limit of the real one. Therefore, it is intuitively
clear that this choice is well suited to develop,
from the general exact formalism, an approxima-
tion for the M» m case.

We define the quantity at time t=0,

6:(0}= p, (0) —O'P, (0) p, —= ' =—,(7)di

and its time evolution in the complete system

S(t) = e'"6(0)
Inserting the identity

t
eiJ t —e(1-P)iLt+ d~ &iL&t-~ ZgLe(1 (P)i'

0

into Eq. (6), we obtain

(6)

F(t) = 7'(f)+ d~e'"'-"a il.,V (~),
0

(10)

It is seen that iL, is the I.iouville operator cor-
responding to the adiabatic Hamiltonian Ir„ i.e. ,
to the system composed of the solid interactirig
with the adatom fixed at position R,.

We then follow the method which has been de-
veloped in the microscopic theory of Brownian
motion, "as formulated by Mazur and Qppenheim. '
I,et us introduce the projector 6 defiried by

8 + BV= 6."(~) = p — '6(~) .BR BR~

If, moreover, one notes that
I

(15)

gy ~ eg ~ eg= —6'(0)+ =—-6"(0)+
BR, 0 8RD 0'

and takes once more advantage of Eq. (12), the
equation of motion (10) becomes

(16)

P,(f}=- „' V„,(R,)+7 (f)
8R0

dr/' t - i -((— 5'(0&P'(r&)Q P
0 gp M

(17)

This is the general formal stochastic equation
associated with our problem, which enables one to
define formally (i) an effective systematic (and
temperature-dependent) potential V,«, (ii) a, ran-
dom force I(('(i), of zero average value. Note that,
at this stage, and due to its definition (11},which
explicitly involves the projection operator (P, the

since 6&(1 —6') = 0.
Qn the other hand it @ay be checked easily from

Eqs. (6) and ('I) that P P,(0) = (- (8 V/8 R, )) is a
function of R,(0}only, so that the quantity

, exp(iI. t)6&P,(0) appearing in' 7 (t) only depends im
plicitly on time through the time dependence of
R,. That is, we may write it, in the equation of
motion [Eq. (10)], as —8[V,«( R,)]/8 R„where the
effective systematic potential V,« is

V,«(R,) = —(1/P) ln Z, (R,)+ const. (»)
The constant must be chosen so that V„&-0 in

the limit of zero interaction (for example, in our
adsorption problem, V„.«must go to zero when the
adatom is at infinity from the solid) and R, is to be
understood, as usual in mechanical problems, as
the solution R,(t) of the equation of motion itself.

Finally,

P0 8 9 V' 8
6 il. S'(r) = —. - — = - 6."(~)

BR, BR, BP,

P 8, a ay= —' ~ - 5'(~) — - ~ - 6."(~) .
M ~R0 ~P0 8R

(14)
By derivating (12)with respect to R, and using (6),

we get
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time evolution of 7+ does not coincide with that in
any real mechanical system, but mixes mechanical
and statistical effects, (iii) a retarded generalized
"friction" term. Its kernel is the correlation ten-
sor of the random force, which expresses the
generalized fluctuation-dissipation relation.

Let us insist that Eq. (17}is completely exact
but, af course, since one does not know, in gen-
eral, how to calculate the random force F', it is
a1.so, at this stage, devoid of practical usability,
and approximations must be made.

As we have noted, the choice of the "adiabatic"
projector suggests that one should look at the
M» m limit. The evolution operator defining $'
can be written (since APL, =O}

exp [(1—6')i Lt] = exp [iL,t+ (1 —6')iL, t] . (18)

d~ p, (t 7) ~ (F"'(R„O)F"'(R„&)).

Here again, R, is the solution R&(t) of the equation
of motion (21), together with MR, =P,.

As shown by Mazur and Qppenheim (and as will
appear below for our particular model), the as-
sumption M»m entails that the time range of
(F"'(0}8:"'(7}}.is much smaller than the charac-
teristic scale of the time variations of P,. So, to
order (m/M)' ', one may rewrite Eq. (21) as

As discussed in detail in Ref. 2, to lowest order
in (m/M)'t', (1 —P)iL, can be neglected with re-
spect to iL,,; indeed, since the momenta p,. of the
bath particles are of order (m/p)'~', while P, is
of order (M/p)'t', "for any reasonably regular
dynamical quantity B,

iL,B-( /mM)'~'iLQ.

Keeping to lowest order, we, therefore, have

O'(t) =—e' 0'7'(0) —= F (Ro, t), (20)

thai. is, the random force cd be approximated by
the mechanical force 7"' acting on the adatom in
the system (8,), defined as solid plus particle
fixed at R,. Therefore, the autocorrelation tensor
of 7"' is independent of P, and [since the average
is taken at equilibrium for (S,)] stationary in time.
Equation (17) then becomes

0

p, = s V.„(R,,)+ &"'(R„t)
BR

which has the standard form of the Kra, mers-
Langevin. equation, but for the presence of a space
dependence of the friction tensor j.
III. KRAMERS'S EQUATION FOR A HEAVY ATOM ON THE

SURFACE OF A LIGHT VIBRATING SOLID

We now want to apply this formalism to the case
of a heavy adatom on a light solid, and we only
take into account the coupling of the adsorbate to
the lattice vibrations of the solid, neglecting all
electronic dynamical effects (the microscopic
binding potential V of course results from static
electronic effects). To simplify the problem as
much as possible we assume, following Beeby, "
that (a) the solid is completely harmonic and has
a perfectly plane surface (this second restriction
can easily be removed if necessary); (b) the ada-
tom solid potential V couples the adatom to one
single atom —which we call atom 1—belonging to
the surface of the solid; (c) the adatom is free to
move in only one direction, x, perpendicular to
the surface, and the interaction potential V only
depends on the distance between atoms 0 and 1
along the normal to the surface.

Namely, we take
N ~2 N

~(uv)q
i=1 i, j=l p. , v=g, y, z

+ V(X,—x,)+ V, ,
(23)

where q,. = r,. —r', , the r',. are the equilibrium posi-
tions of the substrate atoms in the absence of the
adatom, and the A',.~~"' are the elements of the force
constant matrix A of the solid. In order to get a
reasonable description of desorption, we must as-
sume that V (i) has a short-range strongly repul-
sive part (which prevents diffusion of the adatom
inside the solid); (ii) goes to zero (with a finite
range a) at infinity in the vacuum (x-+~); (iii)
has a minimum for Xo —x, of the order of an atomic
distance, and may or may not present an activation
barrier.

W'e want to calculate the two characteristic quan-
tities V,«(X,) and q(X,) which appear in the re-
duced stochastic equation (22}.

A. Effective potential

Following definition (13), we have

V„,(X,) = —(1/p) ln [Z,(Xo)/Z, (~)],

Po = — V„,(RO)+ 7"'(R„t)
~RO

—P,(t) j(R,), (22a)

Z, (X,)= dp, dp~dr, ~ dr~

x exp[- P&o(X,gp, 3,Ã, t)].

(24)

j(R,) = ~ d~(i"'(R, 0) i&OI(R„~)), (22b)
The integration on momenta factors out, yielding
a trivial constant C. IID is a quadratic form in all
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the variables f r,.), except for the single variable
It is, therefore, convenient to rewrite Zo as

(x ). (:f dx, exy(- }}[((x —x,)+w(x,}]),
l

where

exp[ pu)(x, )]

(25)

@gal QZl ~ r2

I

&& exp -p Q -', q,.„AI,". ")q,,+ V,
fgf=l gv

. (26)

so that ao(x, ) is also quadratic in x,. Clearly, up
to a constant, M}(x,) is the contribution of the free
energy of the -isolated solid due to the displacement
(x, —x,) of atom 1 from its equilibrium position.
Therefore, it has the form

m+2~ where &u~ is the Debye frequency), However,
in the situation we are dealing with, the solid is
semi-infinite and has, in general, not only volume
but also surface phonons. One may wonder whether
their contribution to X is regular or not. In Appen-
dix B, we ealeulate the explicit expression of X for
a particular phonon model, and check that it does
remain finite when surface phonons are taken into
account.

Strictly speaking, expression (25) for Z, can only
be calculated numerically. However, in adsorption
experiments one is in general in the. situation k~T
«V„where V, is the depth of the microscopic
binding potential. It is thus reasonable to calcu-
late V,«with the help of a steepest descent approx-
imation, which provides a low-temperature expan-
sion of Zo (valid at temperatures such that the
average thermal vibration amplitude of atom 1 be
much smaller than the atomic distance).

X = -g &)""'(&o= 0), (28)

u(x, ) = (I/2y)(x, —x,')'+ C'

where y is the (xx) component of the local static
compressibility tensor on site 1. Expression (2V)
is demonstrated directly in Appendix A, where it
is also shown that

Defining

and calling x~ (X,) the solution of

BP
~Xg

[with V'(z) —= dV/dz], we obtain

V'(X, —x,)+ ~ (x, —x',)=0

U(X„x,) = V(X, - x,)+ (I/2y)(x, —x,')', (30)

(31)

where g,'.&"' is the displacement Green's function
of the isolated substrate, which obeys the equa-
tion

mat(, '""'((o)—g I 2'""g'"'(ta)=ll (} (29)
4~1 4=Xy gy 8

As is well known from the theory of Brownian
motion of a system of harmonic oscillators, "or
from the study of phonon resonances, the behavior
of y depends critically on the dimensionality of the
solid.

(i) For a 1-dimensional solid (harmonic semi-
infinite linear chain) y

' =0. It is seen on Eq. (25)
that this entails

V„,(x,) =0,
I

which simply expresses that, if the last atom of a
linear chain is given a finite static displacement
q„ the chain takes a new equilibrium position with
each atom displaced by q, /N and, in the limit
N-, this does not cost any energy.

(ii) For a two-dimensional solid, y diverges at
low frequency as ln~, and one cannot separate out
an effective static potential. As was discussed in
Refs. 16, it is not possible in that case to justify
a Langevin equation.

(iii) If y is calculated for an infinite three-di-
mensional solid, it is found to be finite (for exam-
ple, with a Debye isotropic model, one gets g = 3/

V,ff(XO) = U(Xo, x, )+ ~ k~Tin[1+ y V"(Xo —x~ )].

Note that x, is the adiabatic equilibrium position
(along x) of atom 1 elastically bound to the rest of
the solid, and in the presence of the adatom fixed
at X,. As can be expected, V,« is temperature de-
pendent since it is an average of the microscopic
V on the thermal vibrations of the substrate. This
results in a decrease of the depth of V,«when T
increases.

In the low-temperature regime where Eq. (32) is
valid, and which is usually realized in chemisorp-
tion, this shift is linear in temperature. Such a,
shift results, in terms of the para, meters which
are standardly used to analyze desorption rate
data, in a linear shift of the activation energy
E„,. Since most experimental results are inter-
preted within the assumption of a constant E
the shift will finally appear as a temperature-in-
dependent renormalization of the prefactor [of
order of magnitude (1+V,y/a')'~'].

Let us now turn to the low-temperature limit of
the effective potential U(X„x,„). Clearly, the dif-
ference between U and V increases with X.. An
eza.mple (corresponding to a Morse potential for
V) is drawn in Fig. 1. It is seen that the minima
of U(X„x,„) and V coincide in value and in posi-
tion: more precisely if the minimum of V is locat-
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ed at (X, —x,) =d, the minimum of U(Xe, x,„)cor-
responds to Xp x j d This results immediately
by derivating Ec[. (30) [with x, = x,„(X,)] with re-
spect to X„and taking advantage of relation (31).
It implies that the minimum of U(Xe, x, ) is at-
tained when x, (X,) =x,'.

The minimum of U is always flatter than that of
V, due to the fact that the static deformation of the
substrate in S, is such as to minimize the total
free energy. The curvature of V,« is given by

(33)

so that we need to know explicitly the time evolu-
tion of x, in (S,). This means solving the following
set of equations of motion:

N

m q, ~ = —Q Q A,'~"'q,.„
f, =2 v

d2VVefg Ve(1+ yVe)-a
dXO

where V" —= V"(X, —x, ) .

N

mq, .=-PP AI;. "'q,.„
/=2 v

—g A', ,""'q,„(f=2, . . . , N),

B. Friction coefficient and Kramers's equation in the local

harmonic approximation

We should now calculate the friction coefficient
q(XO) in the heavy mass limit, i.e. , the autocorre-
lation function (6:„"'(X„O)6:„"'(X„t)) of the force
on the fixed adatom due to the substrate atoms.
The statistical average is to be taken on the equil-
ibrium distribution in this "adiabatic" system (Se).

Following definitions (16) and (20), in our model

z-d

where q,. =r,. —r', , p, &
v=x, y, z. Variables q,.

(i ) 2), q», q„can be eliminated formally, since
they obey linear equations of motion, by introduc-
ing the (retarded) Green's function 9",,". "' of the
isolated substrate in which one imposes q,„=0.
We shall not explicitly write 9 here. Clearly it
obeys an equation similar to (29), with the conven-
tion that the coefficient A,'","'=0 (but not the coef-
ficients A~~~"'). We call qIO'(f) the displacements
in that "frozen-q, „"situation. Then,

N

m q,„=—Q Q (1—6;,'6 „)A~",~'q',.'„'(t)
u

0.10

0.2

—A„q, — V(X, —x, —q, )X
Qq x

0.4

-0.5

-0.6

-0.8

FIG. l. Example of microscopic adatom-solid binding
potential, and of the low-temperature limit of the cor-
responding effective potential. Dashed line: micro-
scopic Morse potential

z-d Xp —x( —d

z-d & z-d ~i
=Vo exp —2 —2 expi-a

Full line:

(35)
The force which drives the motion of q,„contains

a retarded linear part (due to the rest of the solid)
and a nonlinear one, due to the binding of the ada-
tom. In such a situation, it is in general impossi-
ble to obtain an analytic solution for q, „(t). We
must therefore look for some sort of harmonic
approximation. Note that choosing for V a trun-
cated harmonic potential is not suitable, indeed,
the matching conditions at the truncation point
amount to reintroducing nonlinearity into the equa-
tions of motion.

We will, therefore, use, for the bindingforce BV/
8q, „, a "local harmonic approximation. " That is,
for each value of X„we write

z —d Xp —x) —d0

eff a +eff exp~ jmi
— =. —V'(Xo —b)+ (x, —b) V"(Xo —b), (36)

Qfor
2

——0.15.
X 0

which amounts to developing, for each X„Vup to
second order in x, around some point b (X,), to be
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chosen so as to minimize the error. Clearly, this
is realized if we choose for b(X,) the point of static
equilibrium x,„'(Xp) of atom 1 in(Sp), defined byEq.
(31). Indeed, this intuitively reasonable choice
does give ((x, —b)') =0, i.e. , ensures that (to the
order at which we are working) the average value
of the first neglected term in zero.

Qf course, our approximation will be valid if,
and only if, the average vibration amplitude of
atom 1 is small compared with the space range
a of the potential V. It is therefore a low-tem-
perature approximation, but which remains rea-
sonably good for volume atoms in most materials
up to room temperature —at which desorption ex-
periments are usually performed. Its validity for
a surface atom in our particular situation will be
discussed at length in Sec. IV.

Before proceeding to calculate q(xp}, it is im-
portant to realize that, in order to be coherent,
we must. calculate V,«[Eqs. (24)-(25)] within the
same approximation as that used to obtain g. Oth-
erwise, we would get ((&V/Sxp) a-((&V/ex, ), and
the conservation of total momentum would not be
satisfied. We thus have, using expression (36):

0~

m U=-BU. (42}

where U is the 3N-dimensional column vector of
the u, ~'s (i ~ 1), and the new force constant matrix
is defined by

(43)

We solve Eq. (42) by means of a Laplace trans-
form. This immediately gives

U(t) = D(t)U(0)+ F(t) p(0) . (44)

5(s) =ms(ms'I+8) ',
F(s) = s ' 5(s) .

I is the 3N & 3N unit matrix.
In order to obtain

(45)

(u,„(0)u,„(t))= — e p"p u, „(0)u,„(t)
0

x J,ldu, dp (46)

p(0) is the column vector of the p,. (0)'s (i ~ 1), and
the matrix functions D(t), I'(t) are the inverse La-
place transforms of

dv„((xp) sV,
( )0 lm

0 +1
(3'7) we express H0 in terms of the u,.'s. Taking into

account the equilibrium condition (41), we get

S('&(t)=, —, =(x, —x,„)V"(x,-x,„).(0) ~V eV
(39)

Setting x, —x, =n,„, and writ'ng for simplicity
V"(X,—x, ) =—V" we therefore have to calculate
the quantity (u, „(0)u,„(t)).

Let us insert expression (36), with b =x,„, into
Eqs. (34). It is convenient at this point to define
new displacement variables for all the substrate
atoms, by

~(b)u ~ = r- —r-s (40)

where the r',.b'=—r',.+q',."are the adiabatic equ'li-
brium positions in (Sp), shifted from the r,. by the
effect of the static binding force —V'(X, —x, ).
They are the solutions of

N

P P X(;."q(t&= V'(X, —x,„)6,,6„„.
j-"l v

Note that, since x, itself depends on X„Eq. (37)
does not imply that V« = V. On the contrary, it
corresponds to

V (jI(XP) U(XP x& )

i.e„ to the zero temperature limit of expression
(32). To the same order of approximation, the
random force V(p&(t) defined in Eq. (33) is given by

X ~ Dl, u, ~nl„&xg)

l4
'( V&& l2

D&"e) t 8 1 (&")
p

11 11

VN$2

( D B-1)(xx&
p

11 (48)

The Laplace transform C(s) of the correlation
function C(&&) is therefore given by

C(s) = [ms(ms'I + B) ' B ']'""'
p ll

N

$yj=l p v

~2

g=l ™2 i,& j=l p. v

The first term on the right-hand side is a constant,
thus gives no contribution to the average (46).

On the other hand, the term linear in p(0) in Eq.
(44) does not contribute either, since (u,.„p,.„)=0.
Finally,

C(t) =(r"'(0)F"'(t))

(Vee)2 &(
plice,. exp ——La,',""'e,,e,. )0 t'=1 f, j

In terms of these new variables, the equations of
motion now read, in matrix form

VI/ 2

[G( (s) G( &(0)] (49)
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where G(s) =-(ms'I +B) ' is the Laplace transform
of the retarded Green's function G"(f) of the li-
nearized (S,) system, associated with Eqs. (42).
t" can be expressed easily in terms of the Green's
function g of the isolated substrate [defined by Eq.
(29)] with the help of Eq. (43),

G.= g+ g ( B—A) G ~

which gives

O.l

G(""&(s)=g (P&(s)/[1 —g,'"*&(s)V"] (5o)

%e now make the assumption, standard in the
heavy mass limit, that I', varies slowly on the
characteristic time range of C(t). We then can
use Eq. (22b}, which, here, gives

q(x, ) = —C(s = O)

0
z-9

t

FIG. 2. Space variation of the reduced friction co-
efficient g[(z —d/a)] =g [(Xp —x[ d/a)], for the Morse
microscopic potential V»& of Fig. 1, with a /2&i V2 = 0.15.

where

[v"(x,—x,.)]' iq'(0)
[I+XV"(X, -x,„)]' ' appropriate for chemisorption) Vc/ma&na' is

roughly of order 1, so that, for M»m,

g«co « co~
—ix'(0) = -i x(~) = -g,1* (~)(xx&

~=0

being the local dynamic compressibility of the
isolated substrate at site 1. Note that —iy. '(0}
=[dg,'1"&(s)/ds], 2 is a real positive quantity. It is
finite for a semi-infinite 3-dimensional solid with
surface phonons (see Appendix B). An order of
magnitude is given by its value for an infinite
solid in the isotropic Debye model: —iy'(0) =3»/
2m~~. As was expected, g depends on X„which
only appears, due to the local harmonic approxi-
mation, via the effective spring constant V"(X,
—x,„). It exhibits a local maximum in the vicinity
of the value of X„where V" is minimum. This is
illustrated on Fig. 2, for the case where A =(1+
X min V") = 6. The strength of this local enhance-
ment increases when A decreases.

Let us finally check that P, is effectively slowly
varying compared with C(t). The characteristic
frequency giving the time range of C(t) is the
average phonon frequency, of order ~~. On the
other hand, the time scale of the adatom motion
is controlled by the two frequency parameters g
and ~, appearing in the Kramers-Langevin equa-
tion (22a), a&, being a typical vibration frequency
in the effective potential U(X„x, ).

Using Eqs. (51) and (30), it is easy to see that

m(u' a'
(52)

In practice, for the Vc's (of the order of a few eV}

and the Krarners-Langevin equation (22) holds
with &I(X,) and V,«as given by Eqs. (38) and (51).

Before discussing the validity of the quasihar-
monic approximation, let us point out that, in the
M-~ limit, Eq. (22} trivially yields (X,}=const.,
i.e, gives the correct infinite limit for the desorp-
tion time ~. This is also in agreement with the
fact that the M-~ limit clearly belongs to the low
friction regime (&1«o&OI2sT/V, ) for the solution of
Kramer's equation (22), which therefore also im-
plies 7 g

IV. HARD- AND SOFT-SUBSTRATE REGIMES: BREAI&"DOYEN

OF KRAMERS'S APPROXIMATION

The local harmonic approximation (from now on
referred to as LHA) implies, qualitatively, that
for each value of X, atom 1 has, along direction
x, a well-defined equilibrium position x,„(X,), and
a small oscillation amplitude around x, .

At a given temperature, the oscillation ampli-
tude is proportional to

x~ Uq~X x ~I
-1/2

(~Ot '1)
[ -1(1+ Vlf)]-1/2

~x xy= xgm

Therefore our approximation breaks down if
(1+yV ) becomes very small. When this happens,
the divergence of the LHA vibration amplitude for
atom 1 results in the divergence of the LHA fric-
tion coefficient [Eq. (51)].

x, is well defined if the equilibrium condition
(31) for atom 1 in the potential V(X, x,) has a sin-
gle solution. Let us study graphically the solutions
of Eq. (31). Any reasonable microscopic potential
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aV' j2VQ

0.1

0.02
0
-1

FIG. 3. Graphical determination of the adiabatic
equilibrium displacement of atom 1: z&~=x&~ —x&, forp

the Morse potential Vz and a /2 X Vp= 0.08 (soft-sub-
strate regime). For a given zp ——Xp-xg, (z$ —d)/a isthe
abscissa of the point(s) of intersection of the curve
aV'/2Vp with the straight line y

'
(zp —z). For z~&zp

& z 2, there are three intersections.

V has a positive curvature for small Xp xy

negative one for large X, —x„so that V' has the
shape shown on Fig. 3 (with or without a negative
minimum, depending on whether V is of the acti-
vated barrier type or not). The solution(s) of Eq.
(31) for z„=X,—x, correspond to the point of in-
tersection of the curve V'(z) with the straight line
(I/y)(X, —xo —z), of negative slope (- y '), which
cuts the z axis at z, =X,—x,'. It is clear from Fig.
3 that two situations are possible, depending on
the value of A = 1+g minV" with respect to zero,
or, equivalently, on the value of y with respect to

'y, = —(min V") '.
(i) A&0, i.e. , y&y„. Whatever value we have for

Xo there is only one intersection and, provided
that A is not too small (more precisely A&m/M),
the LHA is valid. It is precisely this situation
that we have implicitly assumed to hold in Sec. III.

If A is positive but small (A & m/M), the char-
acteristic oscillation frequency of atom 1, co,
= [(1/my)(1+ y V")]'~' is of order ~, [Eq. (52)] or
smaller. The adiabatic system (S,) is no longer
fluctuating rapidly with respect to the adatom mo-
tion, and it is no longer possible to justify a Kra-
mers's equationfor those X, such that V" = (minV").

(ii) 6&0, i.e., y&y, . Note that this mayper-
fectly occur in the chemisorption case. Indeed,
then, typically V" -10~ erg cm ', while y '-(10'
—10')A erg cm ', where A is the atomic number
of the substrate. If this condition is realized,
there exists a range of values of X,(z, & z, & z,) in
which there are three intersections A, B, C (see
Fig. 3) and x, is no longer defined uniquely. For
z, =z, or z„ the quantity I+XV is zero for the

U (XQ ~])

minimum

minima

(b) (c) (e)

for hilTerent

value ot' Xp

FIG. 4. Soft-substrate regime: shape of U(Xp xg) as
a function of x& for various values of Xp; (a) Xp&z~
+x&. there is only one x& (see Fig. 3), U has a single
minimum; (b) Xp=z&+x&. an inflection point with hori-
zontal tangent appears on U, corresponding to point C~
of Fig. 3; (c) z&+x&&Xp&z2+xg there are three possible
x&~, i.e., three extrema to U. By dynamic continuity
atom j. stays in a position corresponding to the vicinity
of minimum A: (d) Xp approaches z 2+x& from the left,
minimum A is shallow, the distribution of x& begins to
leak into well C; (e) Xp &z 2+x&. U has again only one
minimuIn, C.

values of x, corresponding to points C, and A,
defined on Fig. 3. So, at these points, U(X„x,„)
is no longer well defined, and the vibration ampli-
tude of atom I diverges, as well as the friction
'coefficient q. Therefore, our approximation is
clearly not valid in the immediate vicinity of zo
=z„z„and must be reconsidered in the rest of
the three-intersection range.

Let us consider in more detail what happens in
that case. Obviously, the LHA expression (38) for
V,«(X,) no longer has any meaning. One could be
tempted to come back to the more general defini-
tion (24} and (25) of V,«. The physical situation
to which sue/ a definition would correspond ap-
pears in Fig. 4, where the structure of U(X„x,) is
depicted for various values of z,. Equation (25),
if valid, implies that x, has the equilibrium dis-
tribution in potential U, so that, at low enough
temperature, for z, &z, &z, [Figs. 4(c) and 4(d)]
atom 1 sits in the deeper well. This would be
physically meaningful if U remained unchanged
on a time t, » t, t„being the time of complete
equilibration of the initial distribution in U.

But the situation we are dealing with is intrinsi-
cally dynamic: due to the adatom motion, U

changes continuously from shape (a} to (e) (respec-
tively, (e) to (a)] of Fig. 4 when the adatom leaves
(respectively, goes towards) the surface. The
characteristic time for this deformation t, is of
order ~,'-&ug(M/m)' '. On the other hand, the
time necessary to relax from one of the wells of
U into the other is t - &u~' exp( pb, U), where b, U

is the corresponding barrier height. Note, more-
over, that there is another characteristic time in
the problem: the time of partial equilibration in-
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0.02

0.01

I
z-d I

a
I

O.O5

5
a

FIG. 5. Hysteretic behavior of the space variation of
the reduced friction coefficient in the soft-substrate
regime, and in the local-harmonic approximation, for
V= V~, & /2 &&0 = 0. 08. (note that the LHA is not valid
in the immediate vicinity of the points of discontinuity. )

side a given well, of order co~'« tp.
This enables us to make the following analysis:

consider, for example, the case where the adatom
is moving away from the surface, starting from
Xpp such that zpp&zy.

(a) z, z, [Fig. 4(a)]. Uhasonlyonewell, the
LHA is valid. Atom 1 has the adiabatic equilibrium
distribution in the bottom of the well.

(b) z, =z, [Fig. 4(b)]. U develops an inflexion
point C, where 1+ X,V"=0. Atom 1 is still in the
A minimum.

(c) ~~«o &82 [Fig. 4(c) and (d)]. Although the
second minimum has developed, atom 1 stays in
well A as long a t„»t,. Since t » ~~', there is
a Kramers-Langevin equation and the LHA is
valid, with the value of V,«and q corresponding
to the x, of minimum A [i.e., followedby con-
tinuity from Fig. 4(a)] and not to the equilibrium
definition (25).

(d) When zo approaches z, from the left, ~U(zo)
decreases; when ~U(zo) -ksT in(M/m), t~ becomes
of order t,. Atom 1 then starts flowing from well
A to well C. Once the atom has crepf, over the
barrier into the top of well C, it relaxes down to
its bottom in a time of order ~g (necessary to
evacuate the excess energy of atom 1 into the solid
by radiation of a bunch of phonons). However, the
time w, needed for the whole distribution to tumble
from A into C may be longer, since the time of
escape from A is itself, in the important region,
decreasing between t, and ~ '

In this region, all our treatment collapses; ob-
viously. , the LHA becomes meaningless, but, what
is more important, the Kramers's equation(21) it-
self is no longer valid, since one of the character-

istic times, t„, of the adiabatic system becomes
comparable with the characteristic time t of the0
adatom. For this reason, we are not able to give
for &, an estimate better than co ' «, & tp.

(e) For z, =z„, atom 1has jumped into the new
equilibrium position corresponding to point C„
then when zp increases beyond z„ there is only
one x,„[Fig.4(e)], the LHA is valid and unam-
biguous, as for zp&rcsy.

The friction coefficient q therefore has the be-
havior depicted on Fig. 5: when zp approaches z2
from the left, q increases as q, [2yV"(z, —z,) ] '
(where q, = —iy'(0)/My', and V"' is the third de-
rivative of V at point A,), and jumps down to a
finite value corresponding to point C, for zp =z„.
As already mentioned, this expression is not valid
for very small 4U's i.e., for

z, —z, & y(V")'t'[ks Tln(M/m)]'~',

in which region our definition of g loses its mean-
ing. All we can do, in the absence of a more
sophisticated theory, is to estimate the energy loss
+Ep of the adatom induced by the sudden relaxation
of atom 1. The jump of atom 1 from A, to C, gives
rise to a quasidiscontinuous drop, 4V"', of V,«
(Fig. 6) at X,"'=z,+x,'

hV"'= U(X,"' —x,„(A,)) —U(X,"' x,„(C,)).
(53)

Provided that X, is not too close to its critical
value y, =-(min V") ', b V"' is a finite fraction
of Vp i.e., 4V"'»kT for chemisorption. As-
suming —which is reasonable at least as far as
orders of magnitude are concerned —that the
change of the adatom velocity during the jumping
time 7, is negligible, we see that &Ep» k~T.

Conversely, when the adatom is moving towards

"err-
Vg

0

-0.1

-0.2

-0.3

0.4

-05 '

-0.6

-0.7

4 z d
8

FIG. 6. Hysteretic behavior of the effective potential
V,zq in the soft-substrate regime and in the local har-
monic approximation for Q= V&, a /2&VO= 0 08.
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the surface, atom 1 remains in minimum C until
z, approaches close to z, (from the right), where
it jumps into minimum A, . In the three-intersec-
tion range (z„z,}, q (Fig. 5}, and V,«(Fig. 6) are
to be calculated from the I HA, with the x, of
point C. They are therefore different from those
for the outgoing path. Again, the discontinuous
drop of V,ff at Xo AV is in general of order
V, » k~T. So, the instability exhibits a systema-
tic hysteresis, imposed by the intrinsically dy-
namic character of our problem.

V. CONCLUSIONS

It therefore appears that, even in the supposedly
simple large mass limit, Kramers's equation may
be nonvalid. The very simple model we have used
show's that, for a given microscopic binding po-
tential V, there are two completely different re-
gimes for desorption, depending on the value of
the local static compressibility at the substrate
surface.

(i) Hgxd substrates (X &y,): a Kramers-Langevin
equation holds (as long as 1 —g/y, & m/M), with a
well-behaved position-dependent friction coeffi-
cient, and a well-defined continuous effective po-
tential. Both quantities can be calculated within
the local harmonic approximation. In order of
magnitude, q/~o- (m/M)'t'. This ratio cannot be,
in practice, smaller than at best 0.3 tq 0.2. On
the other hand, for chemisorption, kBT/Vo-10 2.

Therefore in this case &u,ksT/V& q& ur, , which
corresponds to the intermediate range where the
solution of the Kramers's equation with constant g
is given by Eyring's ART value. So, in order of
magnitude, the desorption time

7- (u,' exp ( p V,}= &uD'(M/m)'~' exp ( p V'0) . (54)

. Qf course, this only gives a rough estimate of the
prefactor, which~ may certainly be affected
seriously by the X, dependence of q, especially in
the case where the later has an important local
maximum at a relatively large distance of the sur-
face. This will have to be investigated numeri-
cally.

For 0&1—y/y, &m/M, the Kramers-Langevin
picture breaks down. This defines the size of the
critical region on the hard substrate side of y,.

(ii) Soft subsA ates (y&y,). A dynamic instability
of the local deformation of the substrate appears
at a particular value of the adatom position. At
this critical value of X, (which depends on the di-
rection of the adatom) the deformation changes
suddenly by a finite amount. In the critical re-
gion, the framers's approximation breaks down,
due to the appearance of a slow component in the

motion of the adiabatic (substrate plus fixed ada-
tom) system. Each time the adatom passes one of
the points of instability, it looses an energy 4 E
» k~T, of the order of a finite fraction of V,. Iche
and Nozieres' have shown that this corresponds,
again, to the intermediate range (or ART) regime
for desorption, from which we can again expect
the order of magnitude of & to be given by expres-
sion (54).

That is, the appearance of the instability should
not affect the fact that the prefactor in the expres-
sion of ~ is proportional to M' '. However, this
estimate is certainly even poorer than in the hard
substrate case, since it does not take into account
the local and sudden character of the energy loss.
In order to be able-to improve on it, we must im-
prove our description of the critical region (i.e. ,
of the dynamics of the instability), by going beyond
the Kramers's approximation. This is presently
under study.

Finally, the question arises of whether this in-
stability may be present in an actual chemiso~-
tion system. Indeed, our simplified model leaves
out several complications: (a} the adatom couples
to more than one atom of the substrate, (b) it may
move in the directions parallel to the surface, (c)
the microscopic potential is not translationally in-
variant along the surface.

Due to effect (a}, the condition for instability
will become slightly more complicated, but not
essentially different (the elastic term in the po-
tential U(Xo, x,) will be replaced by

the sum running on the group of atoms which par-
ticipate to the microscopic interaction].

Effect (b) results in an increase of the desorption
time with the desorption angle (measured from the
normal to the surface), which is essentially the
same in both regimes, since it affects mostly the
exponential term and not the prefactor.

Due to effe'ct (c) there will be, instead of two
critical planes X,", two rippled critical surfaces,

' and the discontinuity of V„', along the trajectory
will depend on the position of the point of impact
of the adatom on these surfaces. The modulations
of 4V will of course have the periodicity of the
substrate surface. Hut the points of instability
are found in the region of negative curvature of
V, i.e. , not very close to the surface. So we can
expect the modulation effect to be rather weak as
far as our instability is concerned.

It will certainly be interesting to include these
effects into the above treatment. However, they
should have no crucial influence on the existence
of the instability phenomenon itself.
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APPENDIX A

We want to calculate the potential i()(x,) defined
by ( (4 = r, —r ',.)

exp[- pg()(x, )]

or
N

qs =q (A-1)(xx&g p ~(xv)qs (A6)

we get

( A 1)(xx) — + ixx&(& —0)

h —1 qs [(A-l)(xx)) 1

On the other hand, defining the Green's function
g', ~jv) of atomic displacements by

mq'q!'"'(qO-g p s';;"q'„'"(tq)=0;;0„. (Ao)

(with q&„-=q,„). (A2}

We then define new displacements; yj = q,.—q,'.
(y,„=o). The potential energy now reads

Q Q &~ig
'

q;vq;v 0

P V

dqlg d q2 ~ d qN

"qxo —l!(g Q —q,.„s!;."'q,.„+q.)
(Al}

The external potential V„which fixes the positions
of 3 far-off atoms, can be eliminated by making
the corresponding elements of the force-constant
matri:. A. zero.

In order to integrate over all degrees of freedom
except q,„, which is fixed, let us define the equili-
brium positions q,'„q,'„q',.(i) 2) for a given q,„:
they are the solutions of

N

(1 5 5 )g g ~(u, v&q(s) 0
j=l v

A("v) = (2o, + 4p)ji

o 0)
I 0

o ()..
(v v)

A;. ;.„„=- 0 p 0"*
I. ~ 0)..

and cyclic for (O, a 1, 0); (0, 0, +1), where i=(i„i„
i,) labels the position of atom i.

(ii) At the surface (i, =i,)

APPENDIX B

I.et us consider a semi-infinite harmonic cubic
lattice of lattice spacing a, with a perfect-plane
free surface in the [100] direction. We describe
the harmonic couplings in the simplest possible
model consistent with the symmetry and invariance
rela.tions for this system. Namely, -"

(i) In the bulk (i, (i,—1)

N

g, v
[A( vv)qs qs

+ (ij (qi)q &ay. + qsv3;)0)++~(~s yi(o piv] ~

i S42~3& $S $2+1 ~3 2

0

+-', () 0)
0

o 0)..
(A )

The term linear in the y's is zero, due to the
e(luilibrium condition (A2), the term quadratic
in the y's simply contributes to e ~ '"l' a multipli-
cative constant, exp (- (6C'}, independent of q,„.
Finally, with the help of E(I. (A2) we have

O ~ P/2

0

~ )..
'~(gv)

is(2(Si'qc(S(SS& ! (

(.P)2 O

.(B2)

=1h, —— Q A(;," 'q', ,q',.„
ig j=l pv

I ~ („,)~ +lj qlxq jv ~

j=l v

Using (A2) once more, we can write

(A4)

(y.v)
iSi2is~ iS li2i3

0 0 0)
0 p 0

ko o 0)..

P (1 6 6 ) ( A-) )(x)q&~()qv)qs 0 (A5)
0iSi2igyiSi2$3

0 2..3p)'„.
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Using Eq. (29) to define the displacement Green's
function, and calling g', ,"f,'(e, q) the two-dimen-
sional space Fourier transform of g in the plane
parallel to the surface, one gets" for X, defined
by Eq. (28):

d2
a2

' q g(xx) (~ 0 q~)(2 )2 js' gs

(88). We then obtain

SQ d g'

(2r) ( & ) Qk + P[(q&/k&)+ (q /k }]

where the cutoff, as in the Debye model, is chosen
so as to get the right number of modes. Using
Eq. (B4), we find

2Qslnk 0

exp [- i(a/2)(k, + k, )]
4 cos(k, a) cos(k, a) (B8) 1/2 cos'8

p [(o./p) cos'8+ sin'0]"'
where k„,k„k, are defined by

4o. sin2(~ k„a)= m uP —4p [sin'( ~ q a) + sin'( ~ q, a)],
4p sin'(& k, a) = maP —4o.'sin'(~ q„a) —4p sin2(~ q, a),

sin2g
[cos'8+ (o/p) sin'8]"' '

lt is easily seen that, since n& p, strictly

(B6)

4psin'( —', k, a) =m&u' —4psin'(~ q, a) —4n sin'(-,' q, a),
(B4)

and

exp [-—,
' ia(k„+ k, + k,)]

8 cos(k„a/2) cos(k, a/2) cos(k, a/2)

p sin'(q, a) exp(- —', iak, )
n 8 sink„asink, acos(k, a/2}

p sin'(q, a) exp(- —,
' iak, )

o. 8sink„a sink, a cos(k, a/2)
'

This system has surface phonons" (of the acous-
tical type only), only if n& p, which we assume to
hold from now on.

%e want to check whether the m =0 limit of X is
finite or not. Therefore, we may safely (up to a
small finite correction) take the qa«1 limit in Eq.

u&(n/p)"' 1&0,

so that X is finite, even when surface phonons are
taken into account.

Qne can also prove, by the same type of argu-
ment, that the quantity —iy'(0} [where y'(0) = [dy(~)/
d~]„,j which appears in expression (51) for the
friction coefficient, is finite and positive.

The same calculation can be done with a con-
tinuous isotropic model for the semi-infinite
solid. " Again, it is found that y and —iy'(0) are
well-behaved finite quantities. This result, in our
opinion, must be model-independent (while the
values of y and —iy'(0) depend on the details of the
coupling). Indeed, although the semi-infinite solid
has a two-dimensional set of surface excitations,
these coexist with the volume phonons which ef-
fectively control the resistance to deformation.
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