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Mean-square displacement of an atom in an anharmonic crystal to O(X )t
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General expressions for all anharmonic contributions of O(X ) to the mean-square displacement of an atom

in a crystal have been obtained. Numerical estimates have been made for a nearest-neighbor central-force

model of a fcc lattice in the high-temperature limit and in the leading-term approximation. Our estimates for
Lennard-Jones systems show that anharmonic contributions of O(X, ) cannot be ignored. Estimated recoilless

fraction of 9.4-keV transition of "Kr in solid krypton is found to be quite close to experimental values.

I. INTRODUCTION

Recently, there has been interest' ' to study
higher-order anharmonic effects in solids. In an
earlier payer one of us' has obtained all anhar-
monic contributions of O(X ), X being a Van Hove
ordering parameter, to phonon self-energy in a
crystal. These expressions are being used by us
to study the yhonon self energy in a monatomic
linear lattice' and for the study of optical prop-
erties of alkali-halide' crystals. The yuryose of
the present work is to use the results of phonon
self-energy to obtain the anharmonic contributions
to O(X~) to the mean-square displacement of an
atom in a crystal. The knowledge of mean-square
displacement of an atom in a crystal is required
for interpreting the temperature dependence of in-
tensities in scattering experiments. The mean-
square displacement also plays an important role
in the phenomenon of melting. Therefore, in this
paper, we present the general expressions for all
anharmonic contributions of O(A4) to the mean-
square displacement of an atom in a weakly an-
harmonic crystal. Fop highly anharmonic crystal
(i.e., quantum crystals), a perturbative approach
is known to be inadequate. " Lower-order anhar-
monic contributions, i.e., O(X') to the mean-square
displacement have been obtained by Maradudin and
Flinn. " These have been also evaluated by them
for a central-force nearest-neighbor model in the
leading-term approximation (LTA).

In order to get an idea of the magnitude of an-
harmonic contributions to mean-square displace-
ment we estimate them for a central-force nearest-
neighbor model using LTA. For simplicity we use
the Ludwig approximation (LA) for the phonon-fre-
quency spectrum. Contributions to mean-square
displacement arising due to thermal expansion have
also been obtained to O(X'). It is found for Len-
nard-Jones (L-J) systems that the anharmonic con-
tributions of O(a') cannot be ignored. To make
contact with the experiments, results are applied
to calculate the recoilless fraction of a 9.4-keV

transition of "Kr in solid krypton. It is found that
our estimated results are quite close to experimen-
tal values. "

General expressions valid for all temperatures
and at high temperatures are given in Sec. II. Nu-
merical estimates and results are discussed in
Sec. III.

II. GENERAL EXPRESSIONS

The mean-square displacement of an atom in a
crystal can be expressed as"

where c», = ( e„~ e~, )/(v~ &o~, )'~' and k = (kj). Here
and in what follows we use the notation of our earl-
ier papers. ' " In terms of full one-phonon Green's
function' G», (l), Eq. (1) can be rewritten

Using Eq. (11) of Ref. V (hereafter called I) for a
full one-phonon Green's function, Eq. (2) can be
written

(v'& =U,'+v,'+v'„

where O'„U» and U~ are the mean-square dis-
placement of an atom in the harmonic approxima-
tion of O(X') and of O(A4), respectively. Using Eqs.
(15) and (lvb) of I, the expressions obtained for
lower-order anharmonic contributions U', are seen
to be in agreement with known results. "'

We obtain the expressions for U~ using higher-
order anharmonic contributions to the phonon self-
energy given in I. Using Eq. (16) of I we obtain the
contribution to U~ corresponding to sixth-order an-
harmonic term in the Hamiltonian as
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.(ig)U M~ ~ ckk' V5 (k ql ql q2 q2 )
kk~q

& q2

x (2n, + 1) (2n, + 1)

p, p, (1+nk3+nk, )

P6COk +P 7 (Ok'
(4)

kk q
Ckk

90(k2 T)

V5(» q. -q. q2 -q. k'}

GOk (dkr(d&(d2
(5)

where p,. =~ 1 and k' = (k, j'}. In Eq. (4) and iu what
follows, nk =(e3" 5 k —1) ' and nk =(es"27~k'- I) '.
In the high-temperature limit Eq. (4) becomes

The contributions to U4 arising out of second-order
perturbation theory have been obtained using Eqs.
(19b), (2lb), (22b), and (23b) of I and carrying out
summation over l. They are found to be

2(2q) 90
4 ~ ~ ckkt 4( 1 qll q21 q3 }V4( qll q21 q31k )

kk'qlq2q3

plp2p3p5p7 n&,(I +nk, )(1 +n» +nk3) +nk2nk3(nk7 -npl )
X

P~P2P3P6 P7 P6 k P 7 k P g(JO g +P2QP2 +P 3 QP 3 P 7 (L)kl

2(2,) 288U' "=
@ p c» V,(-k, q„-q„')V4(-q„q„-q„q3)

kk'qyq2q3

1 +n, +n, n, -n, P5P7(1+nk5+nk, )
x (2n, +1) ' ' +

(d, +~, ~,-~, » P6ur +P, ~k,
6 7

2(2„) 360
U4 =

@. ckk V3(-k, ql, q2) V,(-q„-q2, q„-q31k')
MN kkiq~q

x (2n, +1) P1P2PeP7 nk7( +nkl +nk2 } nklnk2

P P P P P6 k P 7+k' P X i +J'2~2 ~7 k'

(6)

(6)

2(2, ) 120
U4 = ckk 3( qu q2~q3} V5( lquq21 q 31k }'~~ »"iq2q3

(
(1+n, +n2)(1+n, ) +nkn, n, n, +nkn3+nk-n, n2 p P,(51+nk, +nk )

(d ~ +h)2+F3 40g +(d2 (d 3 P P P6k+P7&k'6 7

I'n the high-temperature limit, Eqs. (6)-(9) reduce to

2(25)
4 M~ @ ~ kk I

kk'q q q

V4( k~ ql~ q21 q3) V4( ql~ q2p q3~ k )

COk (dk ih) & (d 2 (d 3

V. (k, q„-q„k') V4(-q„q» -q„q3)
Mk (dki(d& 602(d 3

V3( kl qlP q2 } V5( qlt q2t 'q3 q3 k )
k k~12+3

V3(-q» -ql, q, ) V,(-k, ql, q» -q3$ k')

Q)k (c)k r (d g CO 2 (d 3

(10)

(12}

(13)

In third-order perturbation theory there are four contributions. They are obtained using Eqs. (24b), (25b),
(26b), and (27b) of I. They are found to be

2(3,) 432
U4 ~+@2 g Ckk V3(-k, q3, q4) V4(ql, q2 q3 q4) V3(-ql -q2 )

kk'q &q2q 3q4

x g p,p,p,p,p,p,(1+n,, +n,, ) [(I+n,, +nk, ) nk, nk, nk,]-
1 2 3 4 6 7 (P5 (gk —P7(gk&)(P1 C01 +P2&2 P3& 3 P44 4)(Pl&1 P2 %2 PVMk )
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2(3~) 864
ckk V.(-k q q.}V.(-q. q. -q. q. }Vs(-qa. -q4 k'}

kk'q1q 2q 3q 4

2(d 2 P,P,P,P, [(I+np, +np, ) np, -np, np, jx (2n, +1)
(t)1 (()a p p p p (P6(t)k P (v )kt)t(P1(d 1+P 4(1(4 Pv&kt)

(15}

The above equation, for the case of repeated pole at w, =~„ is obtained as

2(3„) 432
ck„.V3(-, ql, q4) V4(-ql, qs, -qs, q, ) Vs(-q„-q4, k ) (2ns+1)

kk'q lq 3q4

P,P,P, np, (1+np +np }—np np tsfinpl(1+np, )(nps-np4)

p p p p P6 +2 Pv~kt (Pl +1 P4+4 P6 (dk) Pi +1 P4 tl4 P6 +k
1 4 6 7

npv(1 +npl+np4) -np np

t, ~,(t, tx, +t, tx. t, tx. ) )- (15a)

The last bvo contributions in third-order perturbation theory are given as

2(3~) 864Ua(3'=- . ckk V4(-k ql qa qs} V3(-qi -q2*q4} Vs(-q3 -q4tk'}
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2,„) 108
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E(luation (17), for the case of repeated pole at &02=~4, is obtained as

108
U4 =-
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In the high-temperature limit E(ls. (14)-(17}reduce to

216(kaT) 2 6 V,(-kt q3t q4) V4(qlt qat q3t q4) Vs(—qlt —qat k )
pa(sa}—

MN k GO~ (d~r 601(d 2 (d34) 4q1q2q3q4

482(kaT)' & ' Vs(-k, qltq4) V4(-q»q»-q»q, ) V3( qat q4tk )

MN (dp (der(d1{d2(d. 3Q)4
1 2 3 4

( )
864(k&T)' 2 ' V4(-k, qlt q2t q3) V3( qlt q2t q4} V3( qst q4tk )

(dp (der(d1 602(d 3(d4q 1q2q 3q4

(19)

(20)
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( 216(ks T) 2 ~ V4(-k, qs, -q4, k') Vs(-ql, q4, -q, ) V,(q„-qs, q3)
U2 3d)

Ckkr
PL kkP 01020304 (dk (dkP401(d2(03(d4
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There are two contributions to U4 which arise in fourth-order perturbation theory from the cubic term in
the Hamiltonian. Using Eq. (28b) of I we obtain one of these two contributions as

2(4 ) 1944
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The above equation for the case of repeated pole at ~, =&5 is found as

2(4,) 972
U4 k Ckk V3( ql q2) V3(-ql qs, q4) V3( qs q4 Il ) V3(-ql. -q2 k )I+@»"1020304

P2P3P4P6P7

pppppp (Ps k Pv k'
1 2 3 4 6 ~

~

7

~

2

~

~

I

3 4 3 4 ~ 7
~
~

2

~

np, (1+np, )(1+np, +np ) +np, np (np, -np, )
X

(Pl+1 P + 3P34+4)(P2~2 P +33P4+4 Pv+kt)

X
1 1 +PlP3 +SP4

+ +
P 1611P ~ 3P34 +4 P l+1 (Pl~1 P 3+ P34 +4)(Pl ~1 P2~2 P7 +k )

1 1 1
[(1+n, +np )n, -np n, ] + +

Pl+1 Pl+1 ~3+3 P4+4 ~l

+P@np (1+n, )(n, -n, ) (22a)

The last anharmonic contribution to U, is obtained using Eq. (29b) of I. It is found to be
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In the high-temperature limit, Eqs. (22) and (23) reduce to
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2(4,) 648(kjj T)' 2 Z»'~2( 1&1 &2) ~2( &»&2 &2) 2( &2 &2 &4)

X
~2( 441 q21k )

(d, COg, i(0, (d, G), (d~(d 5
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In this section we have obtained all anharmonic
contributions of O(X4) using a simple method. The
advantage is that once we know a one-yhonon
Green's function to a certain order, various an-
harmonic proyerties can be obtained with compar-
atively less labor. We have taken due care of
numerical factors appearing in the above expres-
sions. With availability of high-speed computers
it has already been demonstrated' that it is not
difficult to evaluate the above expressions at least
in the high-temperature limit for realistic models.
However, due to lack of resources to use, we es-
timate the contributions of O(X4) in Sec. III using
a simple model.

tJ'= 5.029,
U2(la) I 257yiv/(yji)2

U2(2a) 0 506(~iij)2/(~jj)3

U2(12) 0 0938~vi j(yji)2

U'"' "&= (0.0696 +0.4688) [(jIj")'/(jtj')'],

U'""'&=(0.1406+0.0469) [ysyv/(y")']

(26)

(27)

(a8)

(29)

(30)

(31)

U' "'"~ '4 =-(0.00311+0.1670 +0.1245+0.0835)

dudin and Flinn" for the mean-square displacement
in the harmonic approximation as well as of O(X2).
These, as well as contributions of O(X4), are

III. NUMERICAL ESTIMATES AND RESULTS X [~iv(xiii)2/(yji)2 ] (32)

We now estimate each contribution to U42 obtained
in Sec. II in the high-temperature limit. This has
been done for the model of fcc crystals with near-
est-neighbor central interaction and taking the
leading term in the anharmonic force constants.
We use the LA for the phonon-frequency spectrum
which enables us to obtain closed-form expressions
for anharmonic contributions of O(X4) to mean-
square displacement. The evaluation of these con-
tributions in LA is greatly facilitated due to our
earlier work' where details of calculations have
been described. Therefore we give in the follow-
ing, only final results. For completeness and
comparison we quote the results obtained by Mara-

U4
" ' = (0 0938+0.0220) [(jIj ) /(Q")'] ~ (33)

The above results for mean-square displacement
in harmonic approximation, of O(X') and of O(X )
are expressed in units of k2 T/( M&u )22, (k2T)'/Mid'„
and (k2T) 2/M&d22, respectively. Here 2&d22=+~2 =8jtj"/
M, where w~ is the largest frequency. In Eqs.
(26)-(33), jfj" is the nth-order derivative of poten-
tial evaluated at nearest-neighbor separation R, at
temperature T. Therefore, it is necessary to ex-
pand the derivatives about the minimum of poten-
tial energy at R,. Thus we obtain the so-called
thermal-expansion contribution to mean-square
displacement correct to O(X4) as

U' =-1 2573k T'aR fjtj~(R, )j[jjjj"(R )]']
U'~ "=ak'T'R (02534/y" (R ) y"(R )/[y'(Rjj)]'-2[0 (R )l'j[jjjj'(Rjj)]'&

-0.3143(yv(R )/[@'(R )] -3y" (R )y'"(R )/[y" (R.)]') )
—1.25735k T R ys(R )/[y" (R )]'+1.2573a'k T'R'

xf[y" (R,)]'/[y" (R,)]'- O. sy'"(R, )/[y" (R,)]'},

. (34)

(3s)

where a and b are defined through the thermal
strain g, according to the relation

g =aT+bT'.

Explicit harmonic and anharmonic contributions
are still given by Ejis. (26)-(28), but it is now to
be understood that the derivatives in these equa-
tions as well as in Ejls. (29)-(33) are to be evalu-
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ated atR .
In order to find the magnitude of various anhar-

monic contributions to mean-square displacement
we use L-J potential. The thermal expansion con-
tributions have been evaluated using the values of
a =0.0729 (ks /e) and 5 =0.0288 (ks je)' (s being po-
tential depth), obtained from the expressions of
Jindal and Pathak" in LTA. It can be seen from
Eqs. (29)-(33) and Eq. (35) that there is strong
cancellation among various anharmonic contribu-
tions of O(X~). Therefore, none of them can be
ignored. We finally obtain the expression for the
mean-square displacement as

(U ) =0.0175(ksTjs)R0+0.0150(ksT/s) Ro

+0.0280(k, T/~)'Il,'.
It can be seen from Eq. (37) that perturbation ex-
pansion is just sufficient for expansion to be valid,
a conclusion in agreement with Shukla and Milk. ~

To make contact with experiment we use the re-
sults of our model to calculate the recoilless frac-
tion f (T) =exp(-E'(U')/38'c') of 9.4-keV transi-
tion of Kr in solid krypton. Here E -is the gam-

y.ma-ray energy and c is the speed of light. Using
for Kr, q =325x10 "erg and~0=3. 99~ A, value
quoted by Horton, "we present the results for f (T)
in Table I at temperatures of 60, VO, and 80 'K,
respectively. In Table I, fo, f,(T), and f~(T) denote
the recoilless fraction in the harmonic approxi-
mation, toO(X') andto O(A~), respectively. It can
be easily seen from Table I that our estimated
values of the recoilless fraction are quite close

TABLE I. Recoilless fraction f (T) for 83Kr at three
different temperatures.

Temperature
('K) fo(» f2(» f4(T)

Exper imental value

60
70
80

0.585 0.520 0.492
0.535 0.456 0.418
0.489 0.397 0.349

0.46
0.40
0.34
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In view of the complexity involved in the compu-
tation of the anharmonic properties, it is worth-
while to know the approximate analytic results.
These provide some check on the computed results.
Therefore we feel that our results in LA for mean-
square displacement may also prove useful in the
future.
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