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General expressions for all anharmonic contributions of O(A*) to the mean-square displacement of an atom

in a crystal have been obtained. Numerical estimates have been made for a nearest-neighbor central-force
model of a fcc lattice in the high-temperature limit and in the leading-term approximation. Our estimates for
Lennard-Jones systems show that anharmonic contributions of O(A*) cannot be ignored. Estimated recoilless
fraction of 9.4-keV transition of *Kr in solid krypton is found to be quite close to experimental values.

I. INTRODUCTION

Recently, there has been interest'~° to study
higher-order anharmonic effects in solids. In an
earlier paper one of us” has obtained all anhar-
monic contributions of O(A*), X being a Van Hove
ordering parameter, to phonon self-energy in a
crystal. These expressions are being used by us
to study the phonon self energy in a monatomic
linear lattice® and for the study of optical prop-
erties of alkali-halide® crystals. The purpose of
the present work is to use the results of phonon
self-energy to obtain the anharmonic contributions
to O(r*) to the mean-square displacement of an
atom in a crystal. The knowledge of mean-square
displacement of an atom in a crystal is required
for interpreting the temperature dependence of in-
tensities in scattering experiments. The mean-
square displacement also plays an important role
in the phenomenon of melting. Therefore, in this
paper, we present the general expressions for all
anharmonic contributions of O(A*) to the mean-
square displacement of an atom in a weakly an-
harmonic crystal. For highly anharmonic crystal
(i.e., quantum crystals), a perturbative approach
is known to be inadequate.!® Lower-order anhar-
monic contributions, i.e., O(A%) to the mean-square
displacement have been obtained by Maradudin and
Flinn.!* These have been also evaluated by them
for a central-force nearest-neighbor model in the
leading-term approximation (LTA).

In order to get an idea of the magnitude of an-
harmonic contributions to mean-square displace-
ment we estimate them for a central-force nearest-
neighbor model using LTA. For simplicity we use
the Ludwig approximation (LA) for the phonon-fre-
quency spectrum. Contributions to mean-square
displacement arising due to thermal expansion have
also been obtained to O(A*). It is found for Len-
nard-Jones (L-J) systems that the anharmonic con-
tributions of O(A*) cannot be ignored. To make
contact with the experiments, results are applied
to calculate the recoilless fraction of a 9.4-keV

transition of ®3Kr in solid krypton. It is found that
our estimated results are quite close to experimen-
tal values.?

General expressions valid for all temperatures
and at high temperatures are given in Sec. II. Nu-
merical estimates and results are discussed in
Sec. IIL.

II. GENERAL EXPRESSIONS

The mean-square displacement of an atom in a
crystal can be expressed as!?

n H(T=T)ex
(U% = '27\/17:/,; Copr €3RI KA AT )

where ¢, =(8&, + &,,)/(w, wy)*/? and & =(kj). Here
and in what follows we use the notation of our earl-
ier papers.”® In terms of full one-phonon Green’s
function” G, (1), Eq. (1) can be rewritten

7 -
(U?) = DIN Z Cppr@@™ KK X (1), (2)
Py

Using Eq. (.11) of Ref. 7 (hereafter called I) for a
full one-phonon Green’s function, Eq. (2) can be
written

(U?) =U2+U2+ U2, &)

where U2, U2, and U2 are the mean-square dis-
placement of an atom in the harmonic approxima-
tion of O(A%) and of O(\*), respectively. Using Egs.
(15) and (17b) of I, the expressions obtained for
lower-order anharmonic contributions UZ are seen
to be in agreement with known results.!*+*

We obtain the expressions for Uﬁ using higher-
order anharmonic contributions to the phonon self-
energy given in I. Using Eq. (16) of I we obtain the
contribution to U3 corresponding to sixth-order an-
harmonic term in the Hamiltonian as
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X(2n,+1)(@Cn,+1 Vel - —qs k')
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. The contributions to U3 arising out of second-order
where p; ==1 and 2’ =(k,j’). In Eq. (4) and in what perturbation theory have been obtained using Egs.
follows, nsy=(eP™6“ — 1)~ and n,, = (e®"7% = 1)7", (19b), (21b), (22b), and (23b) of I and carrying out
In the high-temperature limit Eq. (4) becomes summation over I. They are found to be

~J
90
U:(Zb) = MNE " Conr Va(=R, 415 G5, 43) Val=q1, =42, =45, k")
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x(2n2+1)( -]': 3 + 3— 1) p6p7( Pg P7) , (7)
w;tws W= W3/ 55 DPe Wy +P 7 Wy
360
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3
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and

120
Ui(ze) = MNTI kklz Cinr Vs(=a1, =3, 4s) V(=R 41, 42, —qs, B')

219243

« <(1 +n, 1, ) (1 +n;) +nyn, 3 n1n3+n2n3+n2—n1n2> pep A1 +np, +np,) ©)
W, twytw; W; twy—=wg by DeWp +Prwp
In the high-temperature limit, Eqs. (6)—(9) reduce to
p2(ee) = 90(k5 T)° <_2__>4 Z c Val=k, 415 429 @5) Va(=q15 =@z =43, ") (10)
* MN r rRIQ a a, " Wy Wyt Wa W3 ’
2o = 288 (k5 7)° <_2_>4 Z: c Vilks q1s =435 k') Va(=a1, 42 =02 45) 11)
* MN r RR'd1d 543 k Wy WrW; W W3 ’
p2ed = 360(k,T)° (_2_)4 c Vs(=k, 41, 42) Vs(=q1, =2y 45, =435 #') (12)
: MN ) werd e, e W, WprW Wa W3 ’
p2e = 120(k, 7)° (_%)4 c V(=42 =q1, 93) Vs(=k; 415 42, =43, ') (13)
- ’ .
* MN r kR'q1d04a3 * Wy WprW; Wa W3

In third-order perturbation theory there are four contributions. They are obtained using Eqs. (24b), (25b),
(26b), and (27b) of I. They are found to be

432
Ui(sa) = VN2 Z Crr? Va(=k, s, 44) Valq1s g2 =43, "44) Val=q1, =4z, ')
kk'aja5a3ay
X Z D1PopspaDed (1 +np +1p,) [(1 415 +15,) 15, =15 15, ]

14
P182P3%4%6 07 (pow, 'p7wk1)(1’1w1+p2w2_Ps‘-'-’3"P4w4)(P1w1+pz‘-‘-’2—177wk:)’ (14)
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864
Uﬁ“”’ = MNTE Z Cont Va(=k, 45, 44) Val=q1, 93 —qs, 42) Val=q2, =4y k)

kR'e1d,030,
2w D1babeP (1 +1p; +1p,) g =10 1p, ]
X (2n5+1) _T___z .
(@ns wi-w} ﬂ1p§5p7 (e wp =P 7wer) (P, P oWy =P wyr) (15)
The above equation, for the case of repeated pole at w, =w,, is obtained as
432 :
Ui(sb) = 2 E Crpt Vi(=k, q,, Q4) V4('qn q3s —q3s 41) Vs("qv =G4 k') (2n4 +1)
MNE kk'q aqa,
9 DPaDePr <7Lp6(1 +1py HMp,) —np mp,  BRmp (1 +1p, ) (pg =15, )
b,8,550, PeWe =DrWer \ (P10, +Paw, = Ppgw,)? P1wy tP W= Pe Wy
_ N1 +0p, +12p,) =15 Mp, ) . (152)
Prwi(prwy +pswy =P wyr)
The last two contributions in third-order perturbation theory are given as
864 .
Uﬁ(sc) == VN Z Conr Va(=k, q15 45, (I:s) Val=q1, =42, Q4) V(=3 ~qas k')
N kR'ay20a30y
y P1D2PsPabPeP
PPN >y (Do Wp =P 7Wer)(Prw, +P2ws =P ywy)
X <(1 +n, +n, ) (L 110y 104 ) 9o~ 1p5trg 1
1 2 PswWstPawy=Pr W Pr1w; HPaWy TP3W3 = Py
x[(1 4, +n, J(L4ny ) 41, n, (1, —npl)]> ) (16)
108
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+
Pawathawy D1wy tPswztpawy
Equation (17), for the case of repeated pole at w,=w,, is obtained as
a2(say 108 ’ )
U™ =- MNTE Z Cont Val=R, 42y =42, R') Vo(=q1, 45 =q3) Vs( 41, =02 95
% P1PabepA(1 g +”p7)
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Npo(1 +1p, +1pg) +(1 415 ) (1 +125) > (172)
a,
Dawa(prwy HPowy HP3ws
In the high-temperature limit Egs. (14)—(17) reduce to
26 = 216(kg T)? <£>5 Cane Val~k,qs, 614) Vg1 925 =43 —44) Val~q1, =42 k') , (18)
* MN r RR'4,05050, Wy Wpr W WrW3Wy
2o = 432 (kg T)? <_§_>5 Cuar Vi(-k, q,, ‘14) V=1, 3y =43, CI2) V=2, =44, k') , (19)
* MN i BR'a, 0,050, Wy Wy W W W3 Wy
U269 = __864(k8 T) 3_ <_2_>5 Conr Va(=k, 41, G2, 95) Vs(~41, =G5, qs) V(=3 =qa k') , (20)
¢ MN r RR'a, 05030, W Wy WrW3aWy
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2(3d) _ 216(k, T)® (2 Va(=k, g5, =44y k') V(=415 445 =45) Vi(q1; =43, q5)
e = - —— 2 (= Canr . (21)
MN kR'a1a5039, W WprW WaWzWy
There are two contributions to U2 which arise in fourth-order perturbation theory from the cubic term in

the Hamiltonian. Using Eq. (28b) of I we obtain one of these two contributions as

1944

2(4a) —
U4 MNﬁ3
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X
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The above equation for the case of repeated pole at w, =w; is found as

, 972
Ui(‘“) = 73 Z Crr? V(=5 41, CIz) Val=a1, a3 qq) V(=3 —4a, q:) Va(=qi, =q2, k')
MN: kk'210,439,
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1 1 1 )
- +
[[(1 oy +n,,2)n,,7 nplnpz] <1’1w1 * Prw i HPwatPawy  PiWy tPWa = Pr Wy
+Bﬁnp1(1 +np1)(np7 -npz )J} . (223-)
The last anharmonic contribution to U2 is obtained using Eq. (29b) of 1. It is found to be
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In the high-temperature limit, Eqs. (22) and (23) reduce to
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U2(4b) = M ( 2 )6
4

MN I3
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X

- Vil-q4, 95 ")

Crwr Va(=k, g5, Qz) V(=41 a3, a5) V=42, =43, q4)

Wy WprWy W W3Wa Wy

In this section we have obtained all anharmonic
contributions of O(\*) using a simple method. The
advantage is that once we know a one-phonon
Green’s function to a certain order, various an-
harmonic properties can be obtained with compar-
atively less labor. We have taken due care of
numerical factors appearing in the above expres-
sions. With availability of high-speed computers
it has already been demonstrated* that it is not
difficult to evaluate the above expressions at least
in the high-temperature limit for realistic models.
However, due to lack of resources to use, we es-
timate the contributions of O(A\*) in Sec. III using
a simple model.

. NUMERICAL ESTIMATES AND RESULTS

We now estimate each contribution to U2 obtained
in Sec. II in the high-temperature limit. This has
been done for the model of fce crystals with near-
est-neighbor central interaction and taking the
leading term in the anharmonic force constants.
We use the LA for the phonon-frequency spectrum
which enables us to obtain closed-form expressions
for anharmonic contributions of O(A*) to mean-
square displacement. The evaluation of these con-
tributions in LA is greatly facilitated due to our
earlier work® where details of calculations have
been described. Therefore we give in the follow-
ing, only final results. For completeness and
comparison we quote the results obtained by Mara-

i |

(25)

r

dudin and Flinn!! for the mean-square displacement
in the harmonic approximation as well as of O(\2).
These, as well as contributions of O(A*), are

U2=5.029, (26)
U200 = _1 257¢1/(1)?, @7
U229 20,506 )2/ (1), (28)
U2 = -0,0938¢ " /(¢1)°, < (29)
U229 = (0,0696 +0.4688) [ (#)%/ ()%, (30)
U2(24.29) = (0,1406 +0.0469) [ ¢ ¥/ (41)*], (31)
U2(32:38,3¢,30) = _(0,00311 +0.1670 +0.1245 +0.0835)
X[t (¢8)?/(¢)°] (32)
U24ast9) = (0,0938 +0.0220) [(6™)*/(6%)°]. (33)

The above results for mean-square displacement
in harmonic approximation, of O(x?) and of O(\*)
are expressed in units of k;T/(Mw2), (kzT)*/Mw3,
and (k;T)YMw}, respectively. Here 2wi=w?2=8¢/
M, where w; is the largest frequency. In Egs.
(26)—(33), ¢" is the nth-order derivative of poten~
tial evaluated at nearest-neighbor separation R at
temperature 7. Therefore, it is necessary to ex-
pand the derivatives about the minimum of poten-
tial energy at R,. Thus we obtain the so-called
thermal-expansion contribution to mean-square
displacement correct to O(A*) as

UR(TE) = _1.2573k, T%aR o {0 (R )/ [ % (R ,)]%}, - (34)
UATE) =q 2 T°R ,(0.2534 {¢ (R,) ¢™(R o)/ [¢E (R,)]* - 2[0% (Ro)]¥/[ 9" (R )]}
-0.3143 {$(R,)/[9"(R,)]* - 39 (R,)p™(R,)/[91 (R )]} )
= 1.2573bk, T°R o ¢ (R )/ [¢% (R,)]* +1.2573a%, T°R}
x{[p" (R )/ [¢"(Ro)I° - 0.5¢™(R )/ [6" (R P}, (35)

where a and b are defined through the thermal
strain n, according to the relation

n=aT +bT?. (36)

Explicit harmonic and anharmonic contributions
are still given by Eqs. (26)—-(28), but it is now to
be understood that the derivatives in these equa-
tions as well as in Egs. (29)—(33) are to be evalu-
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ated at R,

In order to find the magnitude of various anhar-
monic contributions to mean-square displacement
we use L-J potential. The thermal expansion con-
tributions have been evaluated using the values of
a =0.0729 (k, /€) and b =0.0288 (k, /€)? (¢ being po-
tential depth), obtained from the expressions of
Jindal and Pathak!® in LTA. It can be seen from
Eqgs. (29)-(33) and Eq. (35) that there is strong
cancellation among various anharmonic contribu-
tions of O(A*). Therefore, none of them can be
ignored. We finally obtain the expression for the
mean-square displacement as

(U®) =0.0175(k, T/€)R 2 +0.0150(k, T/)*R 2
+0.0280(k, T/€)°R2. (37

It can be seen from Eq. (37) that perturbation ex-
pansion is just sufficient for expansion to be valid,
a conclusion in agreement with Shukla and Wilk.*
To make contact with experiment we use the re-
sults of our model to calculate the recoilless frac-
tion £ (T) = exp(—Ez(Uz)/37'Z2 2) of 9.4-keV transi-
tion of ®Kr in sohd krypton. Here E, is the gam-
ma-ray energy and ¢ is the speed of light. Using
for Kr, € =325x107" erg and R,=3.991 A, values
quoted by Horton,'® we present the results for f(7T)
in Table I at temperatures of 60, 70, and 80 K,
respectively. In Table I, fo,, fo(T), and f,(T) denote
the recoilless fraction in the harmonic approxi-
mation, toO(A%) andto O(A%), respectively. It can
be easily seen from Table I that our estimated
values of the recoilless fraction are quite close

TABLE I. Recoilless fraction f(T) for ¥Kr at three
different temperatures.

Temperature Experimental value
°K) T KT fi(7) f(m
60 0.585 0.520 0.492 0.46
70 0.535 0.456 0.418 0.40
80 0.489 0.397 0.349 0.34

to the experimental values. It is known that the
LA provides us only order-of-magnitude estimates.
Therefore our estimates could change if this ap-
proximation is relaxed. However we note that ex-
pressions for anharmonic contributions of O(\*) to
mean-square displacement are similar to expres-
sions for anharmonic contributions of O(A*) to free
energy. Therefore it is hoped that errors involved
in our estimates will be of the same order of mag-
nitude as in the case of free energy.+®

In view of the complexity involved in the compu-~
tation of the anharmonic properties, it is worth-
while to know the approximate analytic results.
These provide some check on the computed results.
Therefore we feel that our results in LA for mean-
square displacement may also prove useful in the
future.
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