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Ultrasonic attenuation in copper and the temperature dependence of the nonlinearity parameter
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Phonon-phonon interactions give rise to hypersonic losses whose estimation is possible using theories
proposed by Akhieser and Mason. These estimations involve the nonlinearity parameter D which is a
function of second- and third-order elastic moduli. In the present work, the temperature dependence of the
nonlinearity parameter of copper has been evaluated in the temperature range 50-300 K, for longitudinal as
well as shear wave propagation along the $100) axis, making use of the experimental results on the
temperature variation of second- and third-order moduli. The nonlinearity parameter Di g for longitudinal
waves is found to increase with temperature, while an opposite effect has been obtained for shear waves. Our
estimations of ultrasonic attenuation in Cu at 150 MHz using the temperature variation of D„„g are in good
agreement with experimental results. The agreement is remarkably good at very low temperatures where the
calculations of previous workers depart considerably from experiment.

INTRODUCTION

Phonon-phonon interactions play a very im-
portant role in acoustic attenuation; the acoustic
losses at low temperatures indicate that the at-
tenuation is caused by direct conversion of acoustic
waves into heat. Klemens' suggests that the at-
tenuation is due to direct interactions of the acous-
tic wave with individual phonons, when the product
of the angular frequency co of the acoustic wave and
the relaxation time 7', is greater than unity. %hen
ew& 1, direct interactions of the sound wave with
phonons cannot be followed and other techniques
have to be sought. Another method of conversion
of acoustic energy into thermal energy was first
proposed by Akhieser, 2 by taking into considera-
tion the temperatures of the phonons propagating
in individual longitudinal and shear modes.

ATTENUATION DUE TO PHONON VISCOSITY

The alterations in temperature cause a storage
of thermal energy which are proportional to altera-
tions in elastic moduli associated with the strain.

Mason, ' by assuming that there is no dispersion
in ultrasonic velocity, has shown that the as-
sociated stress

T, = C~~+3 E) y; S +3 &)y],

where C,, is the elastic modulus resulting for zero
heat exchange between any of the modes. &, is
here the thermal energy associated with each di-
rection and mode, and y', the corresponding
Gruneisen number.

The term 3Z, E,y', represents the stress re-
quired to keep the volume constant as the tempera-
ture varies. The term 3ZE,.(y';)2 shows that there
is an addition 4C to the elastic modulus, as postu-

lated by Akhieser. For a longitudinal mode, the
increase in modulus resulting from the difference
between adiabatic and isothermal conditions should
be subtracted and, therefore,

.hC = 3+E)(yt)2 —y'C „T

where y is the volume Griineisen constant defined
in terms of the temperature expansion coefficient
A~

y = 3aB/C„.
Here B is the bulk modulus and C„ the specific
heat per unit volume of the material. The
Gruneisen numbers y', can all be calculated for
different directions in the crystal when all the
third-order moduli have been measured.

Since the Akhieser effect is essentially a relaxa-
tion process, it results in an attenuation

& =(o AC7'/[2pV'(1+ co'& )](Np/cm) .
Here p is the density and & is the relaxation time
associated with the equilibration of the energy
stored by the suddenly applied strain in the form
of phonon temperatures. For shear waves, & is
determined by the thermal relaxation time 7,„

~,„=3K/C„V2,

where E and V stand, respectively, for the ther-
mal conductivity and Debye average velocity given
in terms of the longitudinal and shear velocities
V, and V, by

& '=-:(2/i:+ i/~;) . (6)

Experimental results bear out the fact that the
relaxation time for longitudinal waves is about
twice the thermal relaxation time.

The attenuation, then, can be written as
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where

E,(D/3)(o'7, ,) (Np/cm),

(8)
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which is the "nonlinearity parameter" governing
attenuation in the Akhieser region.

CALCU I.ATION OF 8
Equation (8) suggests that the nonlinearity pa-

rameter is temperature dependent. We have cal-
culated the temperature variation of D for copper
from the second-order and third-order' moduli in
the range 50-300 K. We have also taken into con-
sideration the temperature dependence' of the
Debye characteristic temperature eD which is re-
quired in the estimation of the thermal-energy den-
sity E,. The variation of specific heat and density
has been taken from literature, ' For shear waves,
@=0 and y', has to be replaced by y', .

Our calculations indicate that D is a mono-
tonically increasing function of temperature for
longitudinal waves, and a decreasing one for shear
waves (Fig. 1). At higher temperatures, the varia-
tion in D is small. Table I gives a representative
calculation leading to the estimation of D.

ULTRASONIC ATTENUATION

Mason @nd Hosenberg' have evaluated the tem-
perature variation of thermoelastic attenuation,
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FIG. 1. Temperature variation of D,~g and Dsh,» in
copper for wave propagation along the (1.00) axis.

electron viscosity and phonon viscosity losses,
employing an arbitrary value D„,~=42.8, in the
temperature range 50-300 K for longitudinal
waves along (100) axis at 150 MHz. The sum of
these three effects is not in good agreement with

TABLE I. p~& along (100) axis and calculation of D of copper at 300 'K.

No. No. of waves=n ny'. n(V';)'

1
2
3

5
6
7
8
9

10
11
12
13
14

1
2
2
2
2
2
2
2

4

4
4

2.953 95
6.321 93
4.32674
4.944 95
0.18012
2.558 29
7.604
4.944 95

11.732 45
-0.501 59

6.502 06
9.484 54

10.073 82
2.965 16

8,.725 82
19.983 39
9.360 34

12.226 27
0.016 22
3.272 42

28.91041
12.226 27
34.412 59
0.062 90

10.569 19
22.489 12
25.370 46
2.198 04

nyig = 74.5428

nY'='= 1.9114

gn('yI) =189.82344
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FIG. 2. Ultrasonic attenuation in copper for longitudi-
nal wave propagation along the $00) axis at 150 MHz .

the experimental values at low temperatures, as
indicated by the solid line in Fig. 2. Our calcula-
tion of the phonon-viscosity contribution using the
estimated temperature dependence of Dy, leads to

values of total attenuation which have much closer
agreement with the measured values even at lev
temperatures. The trend of our calculations
(shown by the dashed line in Fig. 2) bears a re-
semblance to the experimental points, while the
other curve shows an almost exponential increase.
The discrepancy between experiment and the theo-
retical predictions of former workers in the low-
temperature region is considerably reduced by our
approach. Qualitatively, this explains the tempera-
ture-dependent behavior of D. One may also assess
the behavior of D from a theoretical concept'
utilizing the lattice thermal conductivity of Cu as
obtained by White and Woods, "or by the I,eibfried
formula. '""
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