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An ab initio investigation has been carried out for the influence of isotropic, anisotropic, and anharmonic
phonons on the ionic and electronic contributions to the field gradients in zinc and cadmium. In addition to
explaining the trend of experimental temperature-dependence data in these metals, it is shown that the
different phonons influence the ionic and electronic contributions very differently. In particular, it is found
that the isotropic components of the phonon spectra lead to no variation in the lattice contribution to the
field gradient but produce substantial changes in the electronic contribution. These latter changes represent
the leading contribution to the temperature dependence of the total field gradient. The net lattice
contribution, composed of opposing contributions from the anisotropic and anharmonic components of phonon
spectra is of the same order and sign as the electronic contribution, although somewhat smaller in
magnitude. The relationship of our results to those from earlier work is discussed.

I. INTRODUCTION

There have been considerable advances' recent-
ly, in the understanding of the origin of field gradi-
ents q in metallic systems. In particular, in the
four hcp metals, beryllium, magnesium, zinc, and
cadmium, good agreement with experimental da-
ta' has been obtained' with respect to the magni-
tude of the field gradient, the sign also being in
agreement for cadmium, where it is experimental-
ly available. 4 Recently, attention has been focused
on the origin of the temperature dependence of q
in metals, experimental data' on which are avail-
able by several different techniques.

It has been recognized for some time' that the
influence of phonons has to be considered in at-
tempting to understand the temperature depen-
dence of q, the lattice contribution, q,~«, having
been the earliest one explored in this respect. The
temperature dependence of the electronic contri-
bution q„has only recently been analyzed' "
through two main approaches. In one, the electron
ic contribution to the temperature dependence has
been taken into account through a consideration of
the dielectric screening of the lattice potential by
the conduction electrons through a parametric en-
hancement factor for the field gradient. ' The sec-
ond approach"" discusses the influence of elec-
tron-phonon interactions on the band structure and
wave functions for conduction electrons as in an
earlier treatment" of the Knight shift and proposes
a parametric dependence of q„on T to explain the
observed temperature var iation. '

In the present work, we carry out an ab initio
treatment of the temperature dependence of the
ionic and electronic contributions to q in zinc and
cadmium, explicitly including the effects of the
isotropic, anisotropic, and anharmonic compon-

ents of the phonon spectra. Such a nonparametric
treatment was necessary because, while the aniso-
tropic Knight-shift and field gradient involve si-
milar operators, they show""'" opposite direction
tions of variation with temperature. The present
approach provides clear insights into the relation-
ship between the temperature variations of q„«
and q„as well as the relative importance of the
different features of the phonon spectra and gives
a satiafactory explanation of experimental data in
the two metals.

In Sec. II, we shall consider the contribution to
the temperature dependence from the influence
of phonons on the component of the field gradient
due to the ions in the lattice. In Sec. III, the cor-
responding contribution from the electronic com-
ponent shall be considered. In Sec. IV, the contri-
butions from the lattice and electronic components
of the field gradient to the temperature dependence
are combined and compared with experiment. The
relative importance of the various contributions
will be analyzed and the relationship of our results
to those from previous work will be discussed.
Section V summarizes the main conclusions from
our results and discusses further theoretical im-
provements that should be examined in the future
to bridge the remaining differences between theo-
ry and experiment in the two metals we have stud-
ied.

II. THEORY OF TEMPERATURE DEPENDENCE
OF THE LATTICE CONTRIBUTION

TO THE FIELD GRADIENT

The temperature dependence of the net field gra-
dient in metals is expected to be composed of con-
tributions from the charges in the lattice and con-
duction electrons as perturbed by phonons. Thus,
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q(T) = q„„(T)+ q„(T).
In the quantitative evaluation of q, «t(T) and q„(T),
both at any one temperature, as well as their vari-
ations with temperature, one has to incorporate
the influence of antishielding effects. '"" For the
lattice contribution

ql tt(T} ql tt(T)(1 y-)

where (1 -y„) is the antishielding factor calculated
for the ion core in the presence of external charge,
and q"„«(T) represents the field gradient at the nu-
clear site in question due to the ionic charges in
the lattice without a consideration of the influence
of the core electrons surrounding the nucleus. The
antishielding effect in q„(T) is somewhat more
complicated but a method for treating this effect
quantitatively has been r ecently developed. " We
shall discuss -this question in more detail in the
next section. The present section is concerned
with the lattice contributions.

The instantaneous value of q„« is given by:"

3(Z„—Z,)' ( I R„—R, I)'
qlatt(T) —Q 5„e ((~ ~ )), (1 —y„)

gf 0 n 0

(3)

where g„e are the charges on the ions, (1-y„) is
the antishielding factor"'" and R„Z„R„,and Z„
refer respectively to the instantaneous values of
the radius vectors and z coordinates for the central
and nth ions. To obtain the temperature variation
of q„«, one has to carry out a Taylor expansion in
the changes &X„, 6P„and &Z„ in the lattice coordi-
nates due to the influence of phonons. Thus,

8
ei.it(&) =el. t(o) +Z Z e» ei.tt) «».I)

n

8
+2 g g 8X SX qlatt ( nl Xng)+

nf nf 08 j f «g

(4)

where X„,.X„f represent respectively the x, y, and
z components of the position vector R for i,j= 1,
2, and 3 and the averages are taken over the pho-

non spectrum. In Etl. (4), the subscript zero out-
side the curly brackets in the expressions for the
derivatives indicates that they are evaluated for
the equilibrium position of the lattice points. For
harmonic vibrations,

(5X„t)= 0

(6X„,6X„~)= (&X/5, q, (5)

where the subscript n has been dropped on the
right-hand side of Etl. (5) to indicate that the aver-
ages are independent of n. Thus,

g2

qlatt( } qlatt( } g g SXa qlatt
ng 0

(6)

where q„«(0) is obtained by evaluating the summa-
tions in Etl. (3} at 0'K. Now in the isotropic ap-
proximation

(&X,') = (5XP = (&X',), (7)

qlatt qtatt( } qlatt(0}

(4e/(0"'r. (()rt„;—,-,)
)V'„g„e—

x (6Xag(1 -y„). (8)

It is a well-known result in electrostatics" that
V'(I't /r' ")= 0 and so the lattice contribution to
the temperature variation of the field gradient van-
ishes in the isotropic approximation. When one
account of the anisotropy of the phonons in an axi-
ally symmetric system, "Etl. (7) is replaced by:

(5X,') = (5X,') = ~(T)(&X',), (9)

where &(T) is the temperature-dependent phonon
anisotropy factor different from unity. Using Elis.
(6) and (9), we obtain for the temperature-varia-
tion of the field gradient in an axially symmetric
lattice,

and the temperature variation arising from the sec-
ond term in E(I. (6) can be written in the form

&q„tt't'( )=( -y.)(q„„( ) -q„„(o))

9 90(Z„—Z,)' + 105(Z„-Z())
=( r()I t„e(( e(r))(tt»t " ' + " '

)Rp' I I R Rp I I R Rp I

(10}

Note that for a(T) = 1, corresponding to the isotrop-
ic phonon approximation [Etl. (7)], one gets
5q,",«(T) = 0 as was found from E(I. (8).

The anharmonic aspect of the phonons is reflected

by the thermal expansion of the lattice with in-
crease in temperature. The thermal expansion
leads to increases in both c and a of the hcp lat-
tice which lead to both an increase in volume of the
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lattice as well as a change in the e/a ratio. Thus,
the contributions of the anharmonicity of the pho-
nons to the temperature dependence of the field
gradient can be obtained by calculating q„«[Eq.
(3)] using the lattice parameters at different tem-
peratures. The field gradient is more sensitive
to the change in the c/a ratio rather than the vol-
ume since the former strongly influences the non-
cubicity of the environment around the nucleus.
The contribution 5;;,", (T) to the temperature vari-
ation of q„«due to the lattice expansion can be ob-
tained from the available expression" for the de-
pendence of q„,, on the c/a ratio, namely,

q„"„"(T) =[, 0.0065 —4.4584
2

a T

x &.6330

cussed earlier in Sec. II, the vanishing of 6qI~n, (T)
was a consequence of the specific form of the lat-
tice field-gradient term [I",(0- —-„)/ j R„-R, ~']
for which the Laplacian in Eg. (8) vanished. The
dependence of the electronic contribution on the
lattice coordinates is not expected to have this
form and therefore does not lead to a vanishing
temperature dependence. In fact, as we shall see
from the results in Sec. IV, the electronic contri-
bution to the temperature dependence from the in-
fluence of the isotropic phonons is the leading one
among all the contributions.

The conduction-electron contribution to the field
gradient at the nuclear site R„apart from anti-
shielding effects, is given by"'

3cos'8; g —1
a.;= eI: a-. , "~ a-. ),ir 8 i'

The anharmonic phonon effect on the lattice con-
tribution has been examined for cadmium in the
literature. " We have evaluated q„«(T) for zinc
and cadmium in the temperature ranges, 0 to
490 K and 0 to 462 K respectively using available
structural data" on c(T) and a(T). Our results for
the anharmonic phonon-lattice contribution

5qanharm( T) qanharm( T) qanharm(0)

as well as 5„,",'(T) for both metals shall be pre-
sented and discussed in Sec. IV.

where the summation is carried out over all oc-
cupied bands i and the region in k space in the first
Brillouin zone below the Fermi surface, 8; R re-
presents the angle made by the radius vector
r —R, with the c axis. The temperature dependence
of q„arises from both the change in R, and of the
conduction electron wave functions g.„,due to the
influence of the phonons. The temperature-de-
pendence of the wave functions g-„, is incorporated
through the use of a temperature-dependent pseudo-
potential, " which is used to obtain the tempera-
ture dependent pseudowave functions

III. THEORY OF TEMPERATURE DEPENDENCE
OF CONDUCTION-ELECTRON CONTRIBUTION

TO THE FIELD GRADIENT

I ~ a+RX jzfc+Rt
R

(14)

%e consider next the temperature variation of the
electronic contribution to the field gradient. For
this purpose, one needs the change in the expecta-
tion value of the field-gradient operator over the
electronic wave functions due to the influence of the
phonons in the lattice. This expectation value
changes" both because of the fluctuation in the po-
sition of the nuclear site where the field gradient
is being evaluated, as well as due to the changes
in the electronic wave functions, as a consequence
of the electron-phonon interactions. Qne would again
have to consider both the harmonic and anharmonic
components of the phonon spectra, the latter being
comprised of both isotropic and anisotropic compon-
ents. The most important point to notice is that
the isotropic phonon contribution to the change in
the conduction electron part of the field gradient is
not expected to vanish, in contrast to the case of
the lattice contribution. In the latter ease, as dis-

the X& -„-„being normalized plane waves of wave
vector k+K from bandi. The true wavefunction
g-„ is then obtained by orthogonalizing qa,. to the
atomic cores":

g„~,.—(1 —P) g-„.= Q c,i-„,„A,~„y„,R(r),

i representing the band index, k the wave-vector
in the reduced zone scheme, K being reciprocal
lattice vectors and g-„being orthogonalized plane
wave (OPW) functions given by:

where g„, (r) = P„,(r)/r YP(e, @) are the wave func-
tions for the core state in the metal and Q is the
volume of the signer-Seitz cell. The A,-„are
constants which normalize the QP% functions and
are given by

-Z/2

4k & &+K i Ir+K' ask+K g, j+K g j+K ~
K K k
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with f)t -„,-„(T) given by:

f)t -„,-„(T)= — i'Y, *(Qk.-K) cos(zK p)e "4m .

r oo

x &t(lk+Kl~y„, (~)~d~,
0

(18)

where t represents the quantum numbers nbn of
the core states and p is radius vector joining the
two atoms in each unit cell of the hcp lattice. The
function D(T) arising from the influence of the
phonons on the structure-factor brings the tem-
perature dependence into the wave functions and
can be evaluated" in terms of the experimental

dispersion curves for the phonons from neutron
scattering data. For the present we shall use the
Debye approximation, in which case"

7' ' "e"xdx
D(T) = — +-

MA~OD e~, e" —1 4

eD being the Debye temperature.
The pseudopotential matrix elements over the

plane-wave basis functions X-„,K

e«~.K).r
k&K ~g (20)

including their temperature dependence, are given
byl l ~ 22

(x;.-,.I v (z) Ix~.„-), = ((((Iz z I)+ P (z z, + v(e)) r,;,„(o)o, „-.(0)) e.". "'""'
t

(21)

the quantities involved in the large parentheses in
Eq. (21) having the meaning explained in Ref. 22.
The pseudopotential matrix elements in Eq. (21)
are energy dependent, which is important in our
present work since the conduction-electron field
gradient in Eq. (13) involves the entire occupied
k space below the Fermi surface instead of only
the region near the Fermi surface as in other
properties such as the Knight shift. Temperature
dependence is introduced into the pseudopotential
through the structure factors in Eq. (21). The co-
efficients c,. -„,„- in Eq. (14) are obtained at various
temperatures by minimizing the energy variation-
ally using the pseudofunctions" t)kt [Eq. (14)] lead-
ing22 to the linear equations

t, k+Ke[( l))k+Kek+K ~ k+K ~ keR']

with

(&,);„R,;.R = &x;.R l
—&'+ l', (&) l x;.- &

k+Ke k+K' RK' g t, k+K( ) t, k+K'( (24)

The solution of the linear equations for c; -„,K leads
to the secular equation:

detl(+P)k R k+K' Esk+R k K'I = 0. (25)

The process of solving the secular equations self-
consistently with respect to E~ which occurs in
the expression for the pseudopotential matrix ele-
ment has been described earlier. " The pseudopo-
tential parameters U(lK —K' ) and v(t) for zinc
and cadmium were taken from the work of Stark
and Falicov" who had derived them from the study
of Fermi-surface properties of the two metals.

Once the c, -„,K are obtained, we have the con-
duction electron wave functions t/rk t [Eq. (15)]at
various points in the occupied Fermi-volume which
are needed to carry out the expectation values in
Eq. (13) for the electronic contribution to the field
gradient. On evaluating these expectation values,
one gets thxee types of terms. "' The first is the
pure plane-wave-plane-wave type terms, the sec-
ond is hybrid terms involving both plane-wave and
core-wave functions, and the third involving purely
core-state terms. The expectation value of the
field gradient also involves structure factors which
give additional temperature dependence besides
that arising from the c, -„,g. This is the tempera-
ture variation arising from the fluctuation in posi-
tion of the nuclear site referred to earlier. The
plane-wave-plane-wave terms in the expectation
value, Eq. (13), for the conduction electron con-
tribution are given by

2 64~ li

f ~ k KK'
(26)
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TABLE I. Choices of antishielding parameters for various contributions to the field gradi-
ent in zinc and cadmium.

Nature of
cont j ibutio Metal

LocaI (Z)
Hybrid ty~&& hybrid)
Distant electronic (y&& ~~.~)
Lattice contribution (y„)

0.0
0.0

-9.0
-13.97

0.0
0.0

-20.0
-32.26

This number is about 3 y„and was chosen from the results of the ab initio antishielding
calculation in Ref. 15,

where the A g and c,. „;Iarise from the wave func-
tions [Eq. (15)]and are themselves temperature
dependent. The summations in i and k in Eq. (26)
refer respectively to each of the occupied bands
and corresponding occupied regions of k space in
the first Brillouin zone for each of these banda.
One gets corresponding expressions for the tight-
binding and hybrid terms.

In evaluating the temperature-dependent elec-
tronic contribution quantitatively, One has to in, -
corporate appropriate antishielding effects. The
extent of antishielding of the field gradient due to
different componerits of the conduction electron
density depends"'" on the extent of their penetra-
tion of the core region of the ion containing the
nucleus at which the field gradient is being eval-
uated. A first-principle procedure has recently
been developed" for quantitative evaluation of the
antishielding effect associated with the conduction
electrons. Using this procedure, it has been founQ
that we have to antishield (shield) the "local" con-
tribution to the field gradient from the conduction
electrons, that is, terms involving the tight-bind-
ing component of the wave functions, by (1 -8), an
atomic-like antishielding factor, such as that as-
sociated with the shielding of the field gradient @ac
to the valence electrons in an atom, whi. ch is neat'-
ly unity. The "external" contributions purely from
the plane-wave components of the charge density
such as the plane-wave-wave term in Eg. (26) has
to be antishielded by a factor (1-y,«), where y,«
= —,'y„. It should be noted that this antishielding
has an important effect on the variation of the con-
duction electron contribution to the field gradient,
making the plane-wave-plane-wave component ac-
count for about one-half of the change with tern-
perature of that due to the conduction electrons.
The hybrid terms are expected to experience a
small antishielding effect", much smaller than
y„and closer to A. We have taken y,«=0 for these
terms. For easy reference, the antishielding pa-
rameters we have used for the various contribu-
tions to the field gradients are listed in Table I
for both metals.

For studying the influence of the anisotropy of
the phonon spectra on the electronic contribution
to the field-gradient one has to take into account"
the dependence of the Debye-Wailer factor in the
pseudppotential matrix elements on the direction
of.K. The corresponding Debye-Wailer factor
would be substantially more complicated to eval-
uate than that for the isotropic case [Eg. (19)].
Pro~ Our experience with the results for the lat-
tice coDtributions discussed in Sec. II, the influ-
ence of phonon anisotropy on &q„ is not expected
to be insignificant. However, there is a difference
bet een 6q, «an &q„ in this respect. While

(&q„«)„,vanished, (5q„)„,will be seen in Sec. IV
to make the most important contribution to the net
5q. Therefore, (5q„} „,is expected to be rela-
tively less important in effect on the net &q„ than
vrou1d have been the case for &q,«, .

Finally, the influence of the anharmonic phonon
spectra can, as in the case of the lattice contri-
bution to the field gradient, be incorporated by in-
cluding the changes" in the lattice parameters c
and a in the electronic field gradient calculation.
%e have done this and find that the influence of lat-
tice expansion leads to changes, (5qz) „,in the
cogguctioo electron contribution, of less than 5/o

of the isotropic-phonon contribution (&q„}„,.

1V. RESULTS AND DISCUSSION

Our results for the various contributions to the
temperature variation of the field gradient are
presented for zinc and cadmium in Fig. 1 and 2,
respectively. The lattice parameters at a number
of temperatures in the ranges studied for zinc and
cadmium and Debye temperatures used are given
in Tables II and III. In both metals, the electronic
contribution, &q„(T), is seen to be larger in size
than the lattice contribution but the latter also
makes a significant contribution to the net tem-
perature dependence of the field gradient.

Considering the electronic contribution first, it
arises mainly from the isotropic phonon effect and
is seen to lead to a decrease in the field gradient
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TABLE II. Lattice parameter data for cadmium in the
temperature range studied, distances are, in atomic
units.

FIG. X. Temperature dependence of the field gradient
in zinc. Our calculated anharmonic and anisotropic
lattice contributions are labeled &q~h and &q~l80 re-
spectively, with 6qlatt~ ~qel and ~qtot being the net lattice
net electronic, and total changes in q, respectively. The
experimental values &q,~t are obtained from H. Bertsc-
hat, R. Recknagel and B. Spellmeyer in. Ref. 2.
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from the positive value of q„at O'K in both metals.
This change is in the same direction as experiment
and is opposite in sign to the change in the aniso-
tropic Knjght shjft found in cadmjum. "" This is
interesting since, apart from antishielding effects
for the field gradient, the latter as well as the
anisotropic Knight shift (K „,) both involve the
expectation value of the same operator F2O/r'.

However, E „,involves" only the region of @-
space near the Fermi surface while q„ involves
the entire Fermi volume, deriving its major con-
tribution (about 95% in cadmium) from the first
and second bands at all temperatures. Both q„
and K „,depend on the differences between the

p, and the sum of the p„and p, characters of the
p-components of the conduction electron-wave
functions. The results of our calcuiation for (5q„)
and the earlier ones' on temperature variation of
K „,are a consequence of the fact that the changes

~Taken from Reference 11.
"Reference 20.
~Reference 20, Sec. IV, p. 115.

in the character of the conduction-electron wave
functions with temperature for the first and sec-
ond bands are very different from the changes at
the Fermi surface. One other feature of the elec-
tronic contributions ~q 1 is the comparable con-
tributions from the local and the plane-wave-
plane-wave components of the conduction electron
charge density, after proper antishielding effects
(as discussed in Sec. II) are utilized for the field
gradient due to the latter.

The lattice contribution &q„« in both metals is
seen from Figs. 1 and 2 to be dominated by the
anharmonic contribution ( q„«) „which is in
the same directiori as experiment and 6q„. The
anisotropic lattice contribution (5q„«) „,is sub-
.stantially smaller than (5q,«,)~~ and of opposite
sign. The ratio of the net 6q„« to &q„ is seen to
range from 0.40 to 0.33 in zinc and 0.68 to 0.21 in
cadmium over the temyerature ranges covered.
The fact that ~q, « is a signifj. cant fraction of 6q„
in both metals indicates .that the former gas to be
included in attempting to explain the experimental
temperature dependence. Further, the fact that
the ratio 5q„«/5qz is temperature dependent also
indicates. the necessity for combining 5q„«with
~q„ in attempting to explain the experimental
curvatures' of the plots of ~q„against T.

This point ragarding the ratio of 5q„(T) and

5q„„(T) is worth remarking further on. The fact

TABLE IQ. Lattice parameter data for zinc jn the
temperature range studied, distances are in atomic
units.

FIG. 2. Temperature variation of the fieM gradient in
cadmium. The calculated anharmonic and aoiyotropic
lattice contributions are labeled 6q~h and 6q~&~ re-
spectively, with 6qlgtt ~ 6qel aQd 6qtot being the net
lattice, net electronic, and total changes in q, respec-
tively. & represents data obtained from R S Raghavan
and P Raghavan in Ref. 2, and 0 represents data obtained
from J Bleck et al. also from Ref. 2.

300
400
490'
560~

~Reference 20.
"Reference 26.

.9.330
9.389
9.441
9.479

5.027
5.034
5.041
5.048

310o5
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that 5q„(T) and 5q„«(T) do not bear the sanie fac-
tor of proportionality to each other at different
temperatures means also that

q.,(T) q„(0)+ &q„(T)
q„„(T) qi,~~(0) + 6qi,~t(T)

would also be expected to be temperature depen-
dent, although not as strongly as &q„/5q„«be-
cause 5q„(T)/q„(0) and &q„«(T)/q„«(0) are small
(about 5 and 4%, respectively, in cadmium) over
the temperature range over which experimental
data' are available. This expected departure of
q„(T)/q„«(T) from a constant should not be con-
strued as a manifestation of departures from the
empirical universal correlation'4 found for this
ratio for different metallic systems, in principle,
at the same temperature. Instead, the departure
of this ratio from a constant value for the same
metal at different temperatures is more a reflec-
tion of the fact, found from the results of the pres-
ent work, that the major contributions to the tem-
perature variation of q, ,(T) and q„„(T)arise from
different aspects of the phonons, the isotropic and
anharmonic components, respectively. From
Figs. 1 and 2, our calculated 5q(T), obtained by
combining the net 5q, «(T) and 5q„(T), are in
reasonable agreement with experiment and in gen-
eral (especially for zine) somewhat larger than
the latter. Since the present work does not in-
volve any adustable parameters, we can properly
look for sources that could bridge the remaining
differences between our theoretical results and
experiment. Two possibilities are the use of
more accurate wave functions for the conduction
electrons and the influence of band effects asso-
ciated with the d electrons which have been pres-
ently handled'"' " as core st3tes. One effect
that could contribute to the temperature depen-
dence is the additional influence of the phonons on
the pseudopotential matrix elements in Eq. (21)
through any changes in U(~K —K'~) and v(t) which
have not been included. The phonon effect which
has been included in the pseudopotential is the
major one arising from the temperature depen-
dence of the structure factors in Eg. (21).

We consider next the relationship of our work
to earlier theoretical approaches to the origin of
the temperature dependence of the field gradient.
In a recent parametric approach to the tempera-
ture dependence' of q„, it had been assumed that
the effects of electron-phonon interactions would
be to produce a decrease in q„with temperature.
Our ab initio claculation of &q„(T) shows that the
assumed direction of change in this earlier work
was correct. However, it was important to demon-
strate this, in view of the fact that, as pointed out
earlier, the anisotropic Knight shift, which in-

volves the same operator [F20(8, &f&)]/r' as the field
gradient, shows an increase"'" with temperature.
Our analysis has shown that the field gradient
which involves contributions from the entire k
space, in contrast to only the Fermi surface re-
gion which influences the Knight shift, does in fact
lead to a decrease with temperature for &q„(T).
Further, for a quantitative analysis of the tem-
perature dependence of q„, we have shown that it
is necessary to apply proper antishielding factors"
to the local and distant contributions to the field
gradient which make these two contributions com-
parable. If the sizable antishielding effect for
the distant contribution had not been incorporated,
the latter would have been much smaller than the
local contribution and the net 5q„(T) would have
been seriously underestimated.

The other two recent theoretical approaches to
the field gradient relate the temperature depen-
dence of q„ to the temperature dependence of q„«.
In the earlier of these, ' 6q„was taken to have
the form

6q„=q"(5Z') (27)

with (&Z') obtained from the Debye approximation
and q" being adjusted to fit experimental data.
From our Eq. (10) it appears that Eg. (27) is
equivalent to assuming that ~q„ is proportional
to (&q„«)~, . Our work ha, s shown that
( q„«)„derives its major contribution from
anisotropic phonon effects while 6q„derives its
main contribution from isotropic phonon effects.
It is therefore difficult to ascribe a physical
meaning to the assumed proportionality between
electronic and lattice contributions to the changes
in field gradient.

The authors of the other parametric-type in-
vestigation' for &q„do not consider the electronic
wave functions explicitly. Instead, the conduction
electrons are regarded as providing a dielectric
screening of the lattice potential, whose second
derivative (q„« in the absence of screening) is
enhanced by an empirical factor to obtain &q„(T).
The screening of the lattice potential is essential
for their work since they employ an isotropic pho-
non approximation and the unscreened q„«(T)
would have led to a vanishing result [in view of our
Eq. (8)]. The empirical enhancement factor needed
by these authors is unusually large, namely y, ff= 6y„. Since the maximum enhancement factor
due to antishielding effects can never exceed y„,
other factors have to be considered to explain this
large enhancement effect. We feel that the major
source of this enhancement effect is the need to.
incorporate the influence of the Pauli repulsion
effect of the core electrons at the site containing
the nucleus of interest. This effect on the con-
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duction electrons is included in the orthogonaliza-
tion procedure [Eqs. (15)-(1V)] used in construct-
ing the OP% wave functions employed in the pres-
ent work, and leads to substantial enhancement of
the conduction electron density near the nucleus.
Another possible contribution to the empirical en-
hancement factor is the necessity in quantitative
investigations to use a dielectric constant appro-
priate for Block electrons, a rather difficult task.

V. CONCLUSION

Summarizing, we have shown that a first-prin-
ciples calculation of q„and q,~«at 0'K, incor-
porating antishielding effects appropriately, does
provide a proper quantitative explanation of the
nuclear quadrupole coupling energies in zinc and
cadmium. Further, our work has also demon-
strated that an ab initio calculation of the various
contributions from the lattice and conduction
electrons to the temperature dependence of the
field gradient through a proper consideration of
antishielding effects and lattice-phonon spectra
does give reasonably good agreement with ex-
periment' for the pure metals zinc and cadmium

and clarifies the roles of different phonon contri-
butions to the field gradients in these metals. In
attempting to further the improvement between
theoretical and experimental results for the tem-
perature dependence of the field gradients, addi-
tional refinements in the calculations would be
desirable in the future. Among these are first,
the examination of the contribution to the field
gradients from bands associated with the d elec-
trons which have been handled here, and in earlier
band-structure studies" as core electrons, sec-
ondly, the temperature dependence of the pseudo-
potential form factors and a more detailed analysis
of phonon effects through use of experimental
phonon-dispersion curves (including their anisot-
rophy) to obtain the Debye-Wailer factor. Finally,
we note that the relative importance of the various
mechanism responsible for the temperature varia-
tion of the field gradient in other systems"" may
not be the same as in the two metals considered
here and one should include the contributions of
all these mechanisms in attempting to understand
the temperature dependence of the field gradient
in any metallic system.
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