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Uncorrelated-pairs approximation for the free energy of a crystal
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An approximation for estimating the anharmonic contributions to the Helmholtz free energy F is derived as
the lowest-order part of an expansion of F in powers of the harmonic pair-pair displacement correlation
function. Readily evaluated formulas that are applicable to a perfect monoatomic crystal with periodic
boundary conditions are given. When applied to the special case of a linear chain with nearest-neighbor

interactions, these formulas become exact. The relationship of the theory developed to the cumulant
expansion for F, to perturbation theory, and to self-consistent phonon theory is discussed.

I. INTRODUCTION

Z d3NP Nq e-gH

where P =1/hT. It will be assumed here that the
Hamiltonian can be written

H=Ho+Q Vs,

where H, is a harmonic Hamiltonian and K- H, is
a sum over all pairs of the anharmonic part of the
potential energies of interaction for different pairs
of particles. When H is of this form, the free en-
ergy can be written

E=E, —kTIn ~J
e e e

P 0
where

(1 4)

Fp =-&T lnZp

Zp is the partition function formed with H, and the
brackets indicate a harmonic average

Equation (1.4) is exact. The main interest here
will be with approximations to Eq. (1.4) where the
average of the product is approximated by the
product of averages:

F-F
kr

' =ln g (e eve) = Q ln(e e"s) .

Such approximations will be referred to as uncor-

The equilibrium thermodynamic properties of a
system can be determined from the Hamiltonian
describing its microscopic structure w'ith the aid
of the partition-function formula for the Helm-
holtz free energy

F =-kT lnZ.

Classically the partition function for a three-di-
mensional system of N particles is

related-pairs approximations (UPA).
To determine the validity of such approxima-

tions, two correlated-pairs expansions are de-
rived in Sec. II. When applied to Eq. (1.4), the
zeroth-order terms in these expansions give the
UPA. The relative sizes of successivetermsin
the expansions are determined by the sizes of the
harmonic pair-pair displacement correlation func-
tions A», . It is shown that in the case of a perfect-
monatomic lattice with periodic boundary condi-
tions there are no contributions to E that depend
linearly on the A~&, so that the UPA is accurate
through first order. The relatively simple form-
ulas for calculating the free energy in the UPA in
this case are summarized in Sec. III.

It is shown in Sec. IV that, when applied to a
linear chain with nearest-neighbor interactions
only, the UPA yields Takahashi's exact solution
for the free energy. ' The relationship of the UPA
to perturbation theory" and to self-consistent
phonon theory"' is discussed, and it is shown
how the cumulant expansion" through second
order can be obtained as an approximation to the
second type of correlated-pairs expansion.

The UPA includes contributions from V~, the
anharmonic part of the pair potential, to all
orders; it neglects the contribution of correlations
in the anharmonic part of F. For comparison,
self-consistent phonon theory in lowest order util-
izes an optimized choice for the harmonic Ham-
iltonian, but includes explicit contributions to F
through only first order in V&. Actually, only
contributions from "even" terms in the series re-
presentation of V~ are included. Perturbation
theory and the so-called improved self-consistent
phonon approximation" include explicit contri-
butions from the cubic terms in the series repre-
sentation of V~ through second order, and include
the contribution to E of the correlations associ-
ated with these particular anharmonic terms. The
Lennard- Jones Devonshire cell model" includes
contributions from V~ to all orders, but neglects
the contribution of correlations to the harmonic
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part of I, as well as to the anharmonic part.
The accuracy of the UPA can be expected to

depend on the temperatures and pressures being
considered, the materials being studied, and the
accuracy being sought. As a test of the UPA, it
has been used to predict values for the specific
heat, thermal expansion, bulk modulus, etc. , for
a simple model of solid Xe.' Temperatures near
melting and pressures near zero were considered.
The predictions obtained agree with the results
of the Monte Carlo calculations of Klein and Hoov-
er" to an amount that is of the order of (or less
than) the statistical uncertainty in the Monte Carlo
results. The agreement obtained with the Monte
Carlo results appears to be generally better than
that obtained with the improved self-consistent
phonon approximation. Although statistical in
nature, Monte Carlo results neglect neither cor-
relations nor higher-order anharmonicity.

The theory presented is based on classical sta-
tistical mechanics, so that strictly speaking its
validity is limited to high temperatures. However,
by evaluating I'0 quantum mechanically and using
the (classical) UPA to determine F —Ep, one should
also be able to predict the low- and intermediate-
temperature properties of the many crystals in
which quantum effects are insignificant at the
temperatures at which anharmonic effects are im-
portant.

II. CORRELATED-PAIRS EXPANSIONS

A. Notation

Let q„- designate the displacement of particle
X relative to its reference position, and let the
vector X both identify the particles and specify
their reference positions relative to the origin of
the, coordinate system. Let the pair-displacement
Q be the difference between the particle displace-
ments QX and Qx, of the pair of particles labeled
byP; that is,

4 4~ ~A' (2.1)

Consider a system with N particles so that there
are I=-,'N(N- 1) (2.2)

different pairs. Sums (or products) over the sets
g), (X'), etc., are sums (or products) of N quan-
tities, while sums (or products) over the sets (Pj,
(P'), etc., are sums (orproducts) ofM quantities.

B. A useful result

Consider harmonic averages of products of func-
tions of the individual pair displacments Q. By
using the properties of the Dirac 6 function and
the representation for it that arises from the theo-
ry of Fourier transforms, one can show that

p p +~@~ p yp p yp

d'y, 2m
-' d's, e"~'~'~-"~', y,

0

d' 8 e' ~'D 2w ' d'p&e ' ~'~~
~ y~

0 P
(2.3)

where the fact that only the pair displacements
Q~ are affected by the averaging has been used.
Note that the symbols II indicate products of only
those subscripted quantities that are contained
within the same brackets.

The exponential averaging theorem, which is
crucial to the theory of the Debye-%aller factor,
states that"

e"&'& = exp i %~ ~
~

1
Xp pp spy

Ops

p ~= exp —— sq' qu
' ~p2 p

T $ e"ll/2)spg. p sp (2.5)
(&gLy 8 O./2)(L &P- (2.4)

where L is any real linear function of the normal
coordinates of the harmonic Hamiltonian II0. Since
the pair displacements Q are linear functions of
the particle displacements Qx, which are linearly
related to the normal coordinates, it follows that

where the prime on the sum indicates that terms
with P =P' are excluded. The harmonic pair-pair
displacement correlation function for pairs p and
p' is given by the second rank tensor

(2.6)
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The harmonic pair-displacement autocorrelation
function 18

By using Eq. (2.5) in Eq. (2.3) and

s = five" "I-
j x~O& (2.8)

cY~ = E~, = (q~q~), . (2.7) one obtains the following useful result:

(2 9)

Here, the dependence of f on the variables affected by the averaging is not explicitly indicated. The op-
erator 8'», is

g», —-Vp ~ +»eo Vpe, (2.10)

(f). =(2 )-')(e f d's, )" ))") '~e '-~")-*""y(y,)

where ~ indicates a differentiation with respect to x(p) and similarly for vz. The x=0 at the end of Eq.
(2.Q) indicates that the variables %(p) for all pairs are to be set to zero after the indicated differentiations
have been carried out. x(p) is the independent variable of the function

d'y~I'0 y&
—x P ~ y~

p p+X P (2.11)

(2.12)

~ ((Ii ) is the harmonic probability density for the pair displacement Q~

g ($ ) = (Sv' detAq) ' exp( 2g~ ~ +—~' f1~).

g-' is the matrix inverse of Z „and detA~~, is the determinant of Z &.
Note that (f )„)reduces to the equilibrium average (f~)0 when x(p) =0, as is sugges«d by the notation.

Both the operator g and the smeared functions (f~)-» have been used by Choquard, ' who also discusses
expansions that are similar in some aspects to those derived below (see his Sec. 4.4).

C. Expansions

Thefirst type of co~related pairs expansion is a cumulant type of expansion. It can be obtained by ex-
panding the exact result, Eq. (2.9), in powers of an artificially introduced parameter X as follows:

].n, p ln 'exp X W»e q 0)) )

= ln g ) + a„() — ~»' p, p)+
Xno

=g ln( f&)o+ —P (V& ln( f~)„-&») A, ~ ())'&,ln( fz)„&~, )) j „.,+ ~ ~ (2.13)

The primes on the sums indicate that terms with P =P' are excluded.
Another way to proceed is to expand in powers of (e~-1), a procedure that is suggested by the Ursell-

Mayer cluster expansion. " It is convenient to first replace the sum over all pairs of pairs with a sum
over all distinct pairs of pairs. If one lets the pair index p take on all integer values from 1 through M,
one has

exp — 8'~& =exp W», —— e~».
PP'- p& pe

(2.14)

By using this and expanding in powers of an artificially introduced parameter X, one obtains the second
tyPe of correlated Pairs exPansion-
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ln f& =ln [&(e sn' -1)+1] (f&) &&&

0 - P&P
x~0

(2 .15)=gin(f&), + g ((f~)o(f&, )o) '(e &&-1)(f~)y&&&(fz)x&&~~,".o+''' ~

P &P&

Here, alj factors of (f ), that are common to both the numerator and denominator have been cancelled.

&.= |Ia= ~IX,s —&X. (3.1)

With this notation, a sum over the set (P) is such
that

1 gl
AB (B~&O) AB

(3 2)

and similarly for a product. The restriction
B„&0suggests one way to avoid a double counting
of the pairs, the factor of —,

' is to correct for a
double counting, and the prime indicates that
5 =0 is excluded from the sum (or product).

Consider Hamiltonians of the form

III. UNCORRELATED-PAIRS APPROXIMATION

A. Hafni1tonian

Consider a perfect monatomic lattice with peri-
odic boundary conditions, so that the mass m is
the same for all particles (i.e., is independent of
X) and the vectors X can be considered to be lat-
tice, translation vectors. One can then specify a
pair of particles P by giving two vectors X, B,
where the first vector identifies one of the parti-
cles and the second vector gives the lattice trans-
lation vector from it to the other particle. That
is, let

dent of the constant vectors T's, and the exact
average of the g~ formed with the exact distri-
bution function Z ' exp[- pH(1')] is zero

(|I—) =o. (3.6)

'I; q—= g F; gg„-;=0,
B (80) A

(3 6)

so that H(I') is indeed independent of the Fs. Equa-
tion (3.6) follows from Eq. (3.V) and the transla-
tional invariance of the lattice which causes the
averages (Q~) to be independent of X.

A definition is needed for the average ( tips)
when an approximate expression for E is used.
When H has the form given in Eq. (3.3), it follows
from Eqs. (1.1) and (1.2) that

However, in the UPA the value of E does depend
on the. fs and the value of (|I~)does not neces-
sarily equal zero. This suggests that the T'g be
chosen so that the UPA value for (Qgs) vanishes.

It follows from Eq. (3.1) and the translational
invariance of the lattice that

Qq„-=o. (3.7
A A A

From this it follows that for all choices of the Ps
one has

I
H=H(r)=H, +- g V„-;(I),0

AB

where

AB

(3.3)

(3.4)

(3.9)1 eE

A

pince (g~) is independent of X (even in the UPA),
one can define the approximate (|1~)as the value
given by Eq. (3.9) when the approximate expres-
sion for E is used. This leads to the following
criterion for choosing the T's: Choose the T's so
that

—-' |I""~ Q- |I—+I"- g— (3 5)

Here, &f&(r) is the potential energy of interaction
of a pair of particles a distance x apart. The
force constants Qs determine the quadratic con-
tribution to the potential energy, which is sub-
tracted from the pair potentials to form the har-
monic Hamiltonian IIO.

. B. Constants I'8

As is shown below, the Hamiltonian H(I') and
the exact value for E predicted by it are indepen-

(3.10)
8T's

where E is evaluated in the approximation being
considered.

C. Free energy

The UPA for E is obtained by setting

fq = exp[—PV~ (I')] (3.11)

in the correlated-pairs expansion (2.13)or (2.15),
keeping only the zeroth-order terms, using property
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(3.2), and substituting into Eq. (1.4}. One obtains

F —F, =-—,'kT g in(exp[-PV~(I")]},

'NA—T—Q 1n (8r'detA~)'~' 1 rPq
B ($0)

x exp &T-, 3.12

d'q exp =0. (3.14)

Because of the translational invariance of the
lattice, the pair autocorrelation functions Z~
depends on only the relative positions of the parti-
cles in the pair. Thus, only a single subscript
is needed. It can be shown that"

kTv, ,
' e~5~(1 —cosk B)c d3p Rn lm

n=l

(3.15}
where oP. and e~ are the eigenvalues and eigen-

lm
vectors of the dynamical matrix'4

/

D(k) = —g Ps(1 —cosk B).
8 po&

The different normal modes are labeled by the
wave vector k, the polarization index n, and v,
is the volume of a unit cell. The classical (quasi)
harmonic contribution to F is

(3.16)

Fo =3%A'T -ln 2mkT

+ + d k — ln(d@ (3.17)

D. Discussion

The anharmonic contributions to the free energy
in the UPA are determined by harmonic averages
of Boltzmann factors that are formed with the an-
harmonic pair potentials. Contributions only exist
for those types of pairs for which there is an an-
harmonic contribution to the total potential energy.
For the ease of a face-centered cubic lattice with
nearest-neighbor interactions only, there are
only 12 such types of pairs, i.e., only 12 vectors
B in the sum in Eq. (3.12). Because of the sym-
metry of the lattice, all 12 types contribute equal-
ly, so that only one integration over g space and

where

&s(4) = e(l B+tll)+ 2|i' (k&Q' —js) 'Q+&s |I
(3.13)

It follows from this and the above criterion that the
T'- are determined by

one integration over k space is required to deter-
mine the anharmonic contribution to F.

The validity of the UPA does not require that
the harmonic part of the potential energy be a
sum of contributions from different pairs as in
Eq. (3.4). For example, to include contributions
to the harmonic Hamiltonian from a three-body
potential would only require that the formula for
calculating the dynamical matrix be appropriately
generalized.

The UPA for F is accurate through first order
in the pair-pair displacement correlation func-
tion A&&„since the terms in the correlated-pairs
expansion (2.13) that are of first order in A, all
vanish. To see this note that

& ln(e ~"&)x(~) l-„.,= (e ~ &) 'E ' ~ (Q~e ~"&} =0 (3.18)

where the first equality follows from Eqs. (2.11)
and (2.12) and the last equality follows from Eq.
(3.14), which in turn follows from the criterion
for choosing the constants T's.

The constants Is determine the size of the linear
term in the anharmonic pair potential Vga(I').
These linear terms are of great importance in
the UPA, even though they make no contribution
in the exact expression for F. As can be seen
from Eq. (3.12), the UPA relates the anharmonic
part of F to a sum of contributions from different
pairs. Each contribution has the form of the con-
figurational contribution to the free energy of
a diatomic molecule (plus a harmonic correc-
tion term proportional to 1n8w'detA-}. In the
UPA the presence of other atoms in the lat-
tice is accounted for by the modifications to
the linear and the harmonic terms in the poten-
tial energy function for the hypothetical di-
atomic molecule. For a diatomic molecule with
an asymmetric potential the mean distance between
the atoms is a function of temperature. The direc-
tion of the vector connecting the two atoms is ran-
dom. For. a lattice the mean displacement vector
connecting a pair of atoms is fixed by the boundary
conditions and the lattice symmetry independent of
the form of the potential. The forces that keep
the mean displacement fixed result from the inter-
actions of the pair of atoms with the other atoms
in the lattice. In the UPA these forces are ac-
counted for by the linear term in V~(I').

The important consequences of criterion Eq.
(3.10) for choosing the constants ls are the
following: It causes the mean displacement vector
connecting a pair of atoms to be consistent with
the boundary conditions and the lattice symmetry.
It causes the terms of first order in the A & in
the correlated-pairs expansion for F to vanish. It
causes F to have the correct dependence on the
strength of the external forces for a linear chain
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(as is shown in Sec.IV), and it causes there to
be no terms in the second-order perturb'bation-
theory expansion of the UPA for E that are not
also in the complete perturbation-theory expan-
sion for F.

If one makes the usual assumption that the pair
potential Q(r) vanishes as r-~, the convergence
of the integral in Eq. (3.12) requires that

r ~ (kTA='- Qs} ~ r) 0 (3.19)

for all vectors r It f.ollows from Eq. (3.15) that
this requirement is actually independent of T.
Essentially, Eq. (3.19) is a restriction on the
force constants Q-, since they determine the
autocorrelation function A-, and thus its inverse

2

x dq exp k, 4.7

where k'TA &' cancels with P, in the integral, and

1 /2

kT (m
= Min(2mkT) —Nln

i

——,'N N ' ln2 1-coska
a(& 0)

(4.8)

The term in the second set of large parentheses
in Eq. (4.8) becomes an integral that vanishes in

. the limit N . When applied to a linear chain Eq.
(3.10} reduces to

IV. RELATIONSHIP TO OTHER THEORIES dqq exp — ~+q +Fq =0. (4 9)

A. Lineax chain

When applied to a linear chain with nearest-
neighbor interactions only, the UPA for the free
energy is exact in the limit of large ¹ The ap-
proxi'mations based on the cumulant expansion, on
perturbation theory, and on self-consistent phonon
theory do not possess this property.

For this problem the Hamiltonian is

H(1') =H, + Q &)(I'), (4.1)

It can be shown that if I' satisfies condition (4.9),
then all terms in the correlated-pairs expansion
of F that are of first or higher order in the A&, van-
ish in the limit N-, so that the UPA becomes
exact.

In order to compare the above results with Taka-
hashi's exact solution, an expression is needed for
the force f, exerted on the ends of the chain which
is the analog of pressure. The analog of volume is
the length E = Na, so that

where

(4 2)
-[p(a+q }+I'q] (

dq exp

I (I') = p(a+q() —-'4,q g + I'q(. (4.3)

Here, q; =q~„-q; is the pair displacement for
neighboring particles, and q~ and p~ are the parti-
cle displacement and momentum of the ith parti-
cle. The distance between the reference positions
of neighboring particles is a, and periodic bounda-
ry conditions are obtained by letting q+ y qy The
normal, mode frequencies of H, are"

(u, =(2P /m)' '(1-coska)' '. (4.4)

The correlation functions are

x [y'(a+q) +I'].
These two results combine to give

(4.11)

(4.12)

x dq exp p'(a +q ), (4.10)
a+q +I"q

where the prime indicates a derivative. Note that
for reasonable potentials P (r) and I'& 0 one has

de-[g(a+ q )+1"q ] /k2'
0= dq

dq

-( . -[((a+i')+Fq]
)kT dq P kT

A; =&q', ), =(kT/y, )(l —N '),
and for i ~j

A„=(q,q), = -kT/Xy„

(4.5)

(4.6)

By combining and simplifying Eqs. (4.V) and (4.8),
by introducing the Gibbs free energy G=F+fl with
E = Na, and by changing to the variable ~ = a+q, one
can show that

which is independent of the values of i and j.
By substituting the above results into Eqs. (3.12)

and (3.1'I) after they have been altered to apply to
a linear chain, one obtains

= —,
' Nln(2wmkT)

„f „„,„(-(('(")'f"I
kP (4.13)
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This is Takahashi's exact solution for the linear-
chain problem. '

B. Cumulant expansion of F

The cumulant expansion for E through second or-
der in the anharmonicity can be obtained as an ap-
proximation to the second type of correlated-pairs
expansion, which has the form

~- gVP + -BVP -BV P -1
P P)PI

x (e»' —1)&e-st)-

(PTA) and vice versa. To obtain the PTA for
I', let

Vp =(A.V(~3) +)('V(~~))Iq, , (4.18)

wh~~e ~~P" and V'p" are cubic and quartic functions
of the pair displacements, respectively. By sub-
stituting this into Eq. (4.11), expanding in powers
of A, keeping terms through order ~', and using
& V~~')&, =0, one obtains

P-kT

(4.14)

By expanding the Boltzmann factors e 8 P in pow-
ers of (-PV),}and keeping terms through second or-
der, one obtains

+P' (e "'-
I)&Vp&x(p)&Vp & x(p ) I-„,+ ~

p P'

(4.15)
This is the cumulant expansion for I' through sec-
ond order. It can also be obtained by using the
techniques in Sec. II to expand In&exp(-)(P+~V), )),
in power of A. Note that a,ny nonintegrable infini-
ties in ~P, such as can occur when the positions of
the two particles in a pair coincide, cause conver-
gence difficulties in the cumulant expansion but not
in the correlated-pairs expansions, since e 8 P 0
as Vp-~.

To bring Eq. (4.15) into closer correspondence
with the results of Choquard, ' one needs the identity

&V, V), =e '"' ~&U,) -„(,)(V,)„-,(„I, (4.16)

where V~ operates on x'(P). This can be proved by
setting f{,= Il), V), for one pair and f~ = 1 for all other
pairs in Eq. (2.9), making a change of integration
variable, etc. By setting UP = Vp, substituting Eq.
(4.16) into Eq. (4.15), and using Eqs. (2.'t) and
(2.10), the cumulant expansion for Ii becomes

x(V,)-„(,)&V, &-„.(, )I;=,+ ~ ~ ~,

(4.17)
where the double sum is over all values of both
P and P' without restriction.

C. Perturbation theory

The UPA for E contains contributions that are
omitted in the perturbation theory approximation

p Q V(s)
ay'

+ ~p2+ VnsyVa, '()'y'

ppy 3e P P'

PP PP PP
na' gg' yy' (4.22)

where the last term comes from the n =3 term in
Eq. (4.19}and were Eqs. (2.6) and (2.7) and the in-
dependence of the constants V ~~ from the order of
the superscripts has been used. The contribution
of the n =1 term from Eq. (4.19) vanishes for mon-
atomic lattices. Equation (4.22) is equivalent to
the classical PTA for E, provided that the anhar-
monic forces are derivable from pair potentials.
Qf course, since the usual PTA for F is obtained
by making normal-mode transformations of the
full cubic and quartic anharmonic potentials, it is
not restricted by this provision. '

To obtain a result based on the UPA with which
to compare the above PTA result, one needs an
expansion for the constants I'p in powers of ~. Sub-
stitute

V))(F) = [(AV{p') + )(2V(p~)) +(I'pa+ Xfp + ~ ~ ~ ) ~
q~ j I), ,

(4.23)

(4.19)
where tne exponential operator has been expanded
in a power series. Assume that

V(~3) (]/8()VO'8yqaq8 qy (4.20)

where the superscripts indicate the components
of vectors and repeated superscripts are to be
summed over. It follows from Eqs. (2.11) and
(2.12) that

v,&f,)-„(,) I-„,= &vy&„ (4.21)

where V'f~ indicates the gradient of f~(q~). By using
Eqs. (4.18) and (4.21) in Eq. (4.19) and the fact
that harmonic averages of odd powers of qp vanish,
one obtains
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into the criterion for choosing F&, which is
(e s"&~"~Qo=O. By expanding in powers of A., one
finds that 1 ~=0 and that

~ra x @~A'A Sy (4.24)

When Eqs. (4.22) and (4.24) are substituted into
the UPA for I", the results are expanded in powers
of X, and terms through order ~' are kept, one ob-
tains

p(p y())

+-'P 2~ —V"»V""&'A ""'A88'A»'

(4.2 5)

This is the same as Eq. (4.22} except that there
are no terms with P Cp'.

Equations (4.22) and (4.25) follow from the pTA
and the UPA, respectively. Thus, it follows that
the two approximations differ: (a) by the existance

of terms in the PTA that involve the coupling of
the cubic anharmonic coefficients associated with
different pairs; and (b) by the existance of terms
in the UPA that are of higher order than A' in the
sense of Eq. (4.18).

D. Self-consistent phonon theory

Self-consistent phonon theory in its simplest
form is a harmonic approximation in which the
force constants Q& in H, are chosen with the aid of
a variational principle so as to minimize the error
made in the estimate for I'. The resulting formula
for the force constants is'

(4.26)

The averaging depends on the values of the Q~, so
that the + must be determined self-consistently.
There is nothing to prevent the above choice for
the Q B from being used in the UPA.
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