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Large single crystals have been grown of the bcc In-Tl alloys which correspond to solid solutions of In in

the P (bcc) polymorph of Tl. The components of the elastic-stiffness tensor have been obtained for the alloy

compositions 76.5- and 81.5-at. % Tl from ultrasonic-wave velocity measurements made by the pulse-. ,

superposition technique. The shear-anisotropy factor A[= 2C«/(C|| —C,2)] is found to be large, in

agreement with Zeners prediction that (C„—C,2) should be small in comparison with C44 for a bcc
material comprised of closed ion shells. A linear extrapolation of the elastic constants of the alloys to
vanishing solute concentration has been used to estimate the elastic constants of P-Tl itself. Thus the elastic
constants are now available for all the three polymorphs [a(fcc), P(bcc), and e(hcp)] of Tl. Since the elastic
constants of the fcc and bcc polymorphs can only be obtained by exptrapolation of alloy data optimiied-
model-potential calculations have also been made for each polymorph to examine further the validity of the
results. Zener has suggested that the stability of the bcc structure found at high temperature for many
metals is due to a comparatively large vibrational entropy contribution. To put this hypothesis to the test,
the excess entropy hS of the bcc phase over the hcp phase has been calculated in the Debye approximation.
Results indicate that the stability of the bcc phase of Tl is due to the lower Debye temperature and
consequently greater entropy than that of the hcp form.

I. INTRODUCTION

Many metals, Tl among them, undergo a phase
transformation from a low-temperature close-
packed form to a high-temperature bcc structure.
Zener'~ has argued that at high temperatures the
bcc structure is stable relative to the low-tem-
perature structure because of the relatively large
vibrational entropy associated with the accompany-
ing small value of the shear modulus —,'(C» —C„).
When the bcc phase is stable only well above room
temperature (which is the usual case, the alkali
metals being exceptions) experimental evidence
for structure dependerice of the elastic constants
or of the lattice vibration spectrum is hard to ob-
tain; at present, sufficient data wit;h which to put
Zener's predictions fully to the test are not available
for any pure metal. Grimvall and Ebbsj4 have
-recently collected together the somewhat indirect
evidence that does exist for certain transition-
metal alloys and find it to be in accord with Zen-
er's ideas. Although it is not possible to quench
in the bcc form of Tl at room temperature, al-
loying with In does stabilize the bcc structure and
we have been able to grow single crystals of bcc,
Tl-rich In-Tl alloys. The elastic constants mea-
sured by ultrasonic techniques are used to ex-
amine Zener's predictions that —,'(C» —C») should
be small for a bcc material comprised of closed-
shell ions and that this polymorph is stabilized
by a large vibrational-entropy contribution from
1110)(110)modes to the free energy at high tem-
peratures.

Tl exhibits each of the three most common

structures of the elemental metals: hcp, fcc, and
bcc. Reference to the pressure-temperature dia-
gram' shows that the stability limits of these three
polymorphs can be listed as (i) hcp (&) phase —at-
mospheric pressure and up to 507 'K; (ii) bcc (p)
phase —atmospheric pressure and between 507 K
and the melting point 577 K; (iii) fcc (tr) phase-
at room temperature and above 37 kbar: this form
is stable only under high pressures. The bcc poly-
morph cannot be retained at room temperature
even using fast-quenching techniques. ' Yet com-
parison between the elastic constants is prere-
quisite for assessing the relative stability of each
of the three phases. To do this, recourse has to
be made to extrapolation of elastic-constant data-
obtained for Tl-rich alloys. Previously, esti-
mates of the elastic constants of fcc Tl have been
made by extrapolation of data both for fcc In-Tl
alloys' and for fcc Pb-Tl alloys. ' The present
work provides the first estimate of the elastic
constants of bcc Tl. The elastic constants of the
normally occurring hcp form have been reported
previously. ' To extend the comparison between
the behavior of the three polymorphs, optimized-
model-potential calculations have been made of
the elastic constants of each.

Alloys in the In- Tl system crystallize in the fcc,
bcc, and hcp, and the face-centred-tetragonal
(fct) indium structure Previou. sly, elastic-con-
stant measurements have been made on alloys
belonging to the fct and fcc phases in the composi-
tion range 0- to 39-at. /p Tl, r'c'» and it has been
shown that the fcc-fct martensitic phase trans-
ition is accompanied by softening of the (110)(1TO)

18 534Q



ELASTIC CONSTANTS AND STABILITY OF bcc In-Tl ALLOYS

acoustic-phonon mode close to the Brillouin-zone
center. ' The present work on the bcc alloys com-
pletes knowledge of the elastic constants of the
In-Tl alloys by providing single-crystal data for
the previously unstudied phase.

II. EXPERIMENTAL PROCEDURE
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FIG. 1. The Tl-rich side
of the In-Tl phase diagram.
Dot-dash curve, Ref. 13;
solid curve, Ref. 14; and
dashed curve, Ref. 15.
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The Tl-rich end of the In-Tl phase diagram at
atmospheric pressure relevant to the present
work is illustrated in Fig. I. The bcc and hcp
solid solutions correspond to solutions of In in the
P and e polymorphs, respectively, of Tl. The bcc
phase is arrested at the eutectoid, which according
to Hansen and Anderko" has a composition of
V5.6-at. % Tl and a temperature of 19 C; more
recent studies locate the eutectoid somewhat dif-
ferently, see Meyerhoff and Smith'4: 82.5-at. /0 Tl
and 29.9 'C; Adler and Margolin": 80.6-at. '% Tl
and -12.5 'C. Inspection of Fig. I reveals that the
phase boundaries of the bcc phase determined by
Ad1.er and Margolin" are quite different from those
of the other investigators. "' The discrepancies
may be due to the sluggish nature of the solid-state
eutectoid reaction. Strictly speaking it should
not be possible to retain a bcc single-phase alloy
below the eutectoid under equilibrium conditions.
However, as part of a study of the superconducting
transition temperatures T, in the bcc phase of the
In-Tl system, Luo and Willens' showed that the
bcc phase can be retained at low temperatures by
fast quenching. They found that alloys containing
less than 60-at. % Tl or more than 83-at. % Tl
were always two-phase and that only alloys with a
composition between 75- and 83-at. '%%u~ Tl stayed
single-phase bcc after being kept at room temper-
ature for a day. The alloys studied here fall in
this composition range.

Large, homogenous single crystals suitable

for ultrasonic-wave velocity measurements, of
two compositions, V6.5- and 81.5-at. /0 Tl, were
grown by a modified Bridgman method from pre-
viously well homogenized melts contained in a
carbon-coated quartz tube sealed under a vacuum
of better than 10~ Torr. The cooling of the melt
was accomplished by lowering the temperature
profile in a vertical furnace at the rate of about
I e per hour by means of a preprogrammed ramp
generator; the growth tube containing the melt
was kept stationary. The starting materials —In
ingot and Tl rod —were both 99.999%%ug pure. The
temperature gradient at, the growth interface was
about 30'Ccm '. After the growth process, the
boules could be easily removed; there was no
tendency to stick to the walls of the quartz tube.
Etching the boules with I:1 HNO, revealed grain
boundaries, The grains were large enough to al-
low single crystal samples (-1.5 x 1 x 0.3 cm')
suitable for ultrasonic measurements to be readily
obtained from them. The homogeneity of the alloys
was ascertained by Debye-Scherrer powder photo-
graphs taken from different portions of the boule.
The powder photographs revealed well-defined
diffraction lines characteristic of a single-phase
bcc structure; the lattice parameter was repro-
ductible to within +0.0005 A along each boule. The
measured lattice parameter (a) and the x-ray and
floatation densities, respectively, were: for the
V6.5-at. /0 Tl, 3.8312 +0.0005 A, 10.824 +0.004 g
cm~ and 10.80 +0.02 g cm~; for the 81.5-at. % Tl,
3.8345 +0.0005 A, 11.060+0.004 g em ' and 11.04
+0.02 g cm '. The lattice parameters are in
agreement with those reported by Luo and Willens'
who estimated the actual compositions of their alloys
tobe within &.5%%uo of the reported nominal composi-
tions. Laue back-reflection photographs taken to
orient the crystals in [110]and [100]directions to
within ~~ revealed sharp undistorted spots charac-
teristic of a strain-free single crystal. After orien-
tation, samples for ultrasonic-wave velocity mea-
surements were preparedby spark cutting and plan-
ing. The spark-planed sample end faces normal to
[110]and [100]directions had aparallelism ofbetter
than 3 x 10"~rad. X-cut longitudinal and F-cut shear,
quartz transducers of 6-mm diameter operated at
their fundamental frequency (10MHz) were used to
generate and receive the ultrasound. Tranegucer
bonding to the sample face was accomplished with
"Nonaq" stop-cock grease. The pulse superposi-
tion method" was used to measure the ultrasonic-
wave velocities. Low-temperature measurements
were carried out in a standard cryostat with a
temperature control of better than +I K and the
high temperature ones in a thermostatically con-
trolled (+0.5 'C) oil bath. Further details of the
experimental techniques can be found elsewhere. "
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Ultras onic-wave velocities
v at 300'K

(units: 10 cm sec )
In-76. 5-at. % In—81.5-at. % Tl

Elastic-constant
relationships

Polarization
direction

Propagation
direction

2

pv 2 C44
2

[100] [100] 1.834

0.947

1.878

0.957,

2.051

0.952

0.434

[10O] In (001) plane

[110] pv3 = Cz ——
2 ( &&

+ C &2+ 2C44)1

pv4 = C442=

pv52= C'= ~(C)f C f2)

[110]

[110]

[110]

2.02

[001]

[110]

0.946

0.399

III. ELASTIC BEHAVIOR OF THE bcc In-Tl ALLOYS directions of a cubic crystal are given in Table I.
Although all the three elastic constants can be ob-
tained from ultrasonic measurements in a [110]
sample, agreement found with the results of [100]
samples has proved a useful cross-check.

The temperature dependences of C~, C4~, and
C' of the 76.5 and 81.5 at% Tl alloys have been
plotted in Figs. 2 and 3, respectively. In com-
puting the temperature dependences of the elastic
constants, corrections for sample length and den-
sity changes have been made using the thermal-
expansion coefficient of 29 X 10~ per K for bcc
alloys between 77 and 300 K.' All the elastic con-
stants show normal behavior with temperature:
the temperature dependences of C,-z designated by
the ratio hC, z/C, &

= [C;&(280 'K) —C,&(320 'K)]/
C,z(300'K) are all positive, the values for the
two alloys being: (i) In-76.5-at. % Tl, 4C JC~
=0.014, hC~/C~=0. 043, and hC'/C'=0. 058; (ii)

For a specified crystallographic direction, de-
fined by direction cosines n„n„n„ three bulk
elastic waves can be propagated. in a crystal with
velocities z and the polarizations determined by
the Christoffel equations

(L,,—pv'6 „)u,~ = 0 (i, 0 = 1, 2, 3) .
Here I,» u»p QQ3 are the direction cosines of the
particle displacement vectors and the L,~ are the
Christoffel coefficients. For a cubic crystal there
are three independent elastic constants Czz Cz2,
and C«. The eigenvalues and eigenvectors of the
Christoffel equation for velocities of the modes
which can be propagated in the [110]and [100]

I
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116- FIG. 2. Temperature
dependences of the elastic
constants of In-76.5-at. %-
Tl alloy.
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FIG. 3. Temperature
dependences of the elastic
constants of In-81.5-at. %-
Tl alloy.
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TABLE I. Relationships between measured ultrasonic-wave velocities and elastic-stiffness constants.
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In-81.5-at. % Tl, hC~/C~=0. 019, hC~/C~=0. 041,
and hC'/C' = 0.06. The temperature variations of
the elastic constants are remarkably linear and
there are no discontinuities which would have arisen
if the eutectoid reaction was taking place as the
temperature was lowered. Irrespective of the
rate of cooling (-O.V5-2 'K min '), the ultrasonic
wave velocities were all reproducible to three sig-
nificant figures after a temperature run. Further
evidence that the crystals did not change phase
even after cooling down to as low as 80 'K was
obtained from x-ray studies before and after each
temperature run: Laue photographs established
that after each cycle the single crystals had not

- altered and Debye-Scherrer powder photographs
showed that the alloys retained the bcc single-
phase structure. Apparently, there was not eutec-
toidal decomposition in these alloys at the rates
of cooling employed. There is every reason to be-
lieve that the elastic constant data given in Figs.
2 and 3 correspond to those of single-phase bcc
alloy crystals right down to 80 'K.

The elastic-stiffness constants C», C», and C~
and the compliance constants S», 8», and S~ of
the alloys have been calculated from the experi-
mental results plotted in Figs. 2 and 3 and are
given at selected temperatures in Table II. Each

elastic constant C,~ of the 81.5-at. % Tl alloy is
stiffer at ali the temperatures than the correspon-
ding constant of the V6.5-at. % Tl alloy. This com-
positional dependence affects the value of C' 'much

more than the other elastic constants. For ex-
ample, at 300 'K for the 81.5-at. /p Tl alloy, C' is
21% stiffer than that of the V6.5-at. % Tl alloy,
whereas for C~ this difference is only 3.5/p. Des-
pite this increased stiffening, C' remains small
compared to the other principal shear modulus

The elastic-constant results have been used
to calculate the adiabatic compressibility P,
[=-V '(&V/8P} =3/(C„+2C»)]; the values obtained
are given in Table II at selected temperatures.
P, values at 300 'K for the different phase fields
in the In-Tl illoy system have been plotted as a
function of the composition in Fig. 4. Included in
this plot are the isothermal compressibilities
Pz [=-V '(&V/&P)r] for bcc alloys of comparable
composition calculated from Bridgman's high-
pressure data"; the difference Pr- Pa is TVc.'/C~
and is approximately O.V% only. Thus the present
results for the compressibility of bcc alloys are
in reasonable agreement with those of Bridgman. "
The variation of the compressibility over the whole
composition range from pure fct In through the

TABLE Q. The elastic properties of bcc In-Tl alloys.

Composition (at. % Tl)

Temperature (' K) 100 300 350 100

81.5
300 350

Elastic stiffness constants
(in units of 10~~ dyn cm 2)

Cgg

«u
«44
C'= —,'(C«- C~&)

Debye temperature (' K)
Q~
0~

ebs
'2Mean-square atomic displacement (at) (At)

Anisotropy factor 4 = C44/C'

3.836
3.414
1.184
0.211

79.6
200.7
93.0
60.2

0.038

5.611

3.611
3.267
0.967
0.172

722
192.5
84.0
54.6

0.135

5.622

3.555
3.231
0.914
0.162

70.2
190.5
81.7
53.1

0.168

5.642

4.147
3.625
1.206
0.261

82.9
204.5
93.3
63.4

0.034

4.621

3.853
3.437
1.001
0.208

75.3
195.8
85.3
57.4

0.121

4.812

3.786
3.408
0.948
0.189

72.5
193.5
82.5
55.1

0.153

5.016

Elastic compliance constants
{in units of 10 cm dyn )

~u
S44

Bulk modulus J3 (in units of 10~2 dyn cm 2)

[= —,
' (««+ 2«„)]

Compressibility P~ (in units of 10 2 cm2dyn ~)

( &')

0.161
-0.076

0.084

0.355

2.81

0.197
-0.094

0.103

0.338

2.96

0.209
-0.099

0.109

0.334

2.99

0.380 0.357

2.63 2.80

0.131 0.163
-0.061. -0.077

, 0.083 0.099

0,179
-0.085

0.105

0.353

2.83
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FIG. 4. Volume compressibilities of In-Tl alloys.
, Ref. 11;o, Ref. 7;+; Ref. 19; and , Ref. 9.

fcc and bcc alloys to hcp Tl is surprisingly small:
alloying behveen these two group-IGB metals has
only a small effect on the interatomic cohesive
energy throughout the alloy system.

Resistance to shear of a cubic crystal is best
characterized by the two moduli C' = 2(C» -C»)
and C«. In these alloys the former modulus is
much smaller than the latter and also exhibits
stronger temperature dependence. Theref ore,
the anisotropy factor A(=C~/C') has large values
and is sensitive to temperature and composition.
Since the magnitude of C' in metallic bcc crystals
relates to the occurrence of displaeive phase tran-
sitions, the anisotropy factor A is a useful guide
to the relative stability of these materials. The
elastic behavior can be displayed with advantage
on a plot of the reduced elastic stiffnesses C»/C»
against C4~/C», here A can be represented by a
fan of lines originating at the point (C»/C» = 1,
C~/C» = 0), and the Cauchy relation C» = C~ for
central-force crystals is a diagonal. The data
for bcc metals and alloys plotted in this way (Fig.
5) can be compared with those for fcc materials
collected together by Ledbetter and Moment. "
The bcc metals and alloys separate into two dis-
tinct groups the members of which cluster into
two different areas on this reduced elastic-stiff-
ness diagram; the marked difference between sta-
bility of crystals in these two groups can be under-
stood qualitatively on the basis of the elastic an-
isotropy of the shear moduli. (i) The bcc tran-
sition metals V, Cr, Nb, Mo, Ta, and W, which
tend to be elastically isotropic, are rendered
stable at all temperatures by long-range interac-
tions between electrons in the unfilled d shells;
the comparitively large magnitude of C' in these
elements is related to the number of electrons per
atom in the unfilled d bands. " (ii) The second
group comprises those metals and alloys which
crystallize in the bcc structure but transform to
a close-packed structure on cooling. This latter

Cn

FIG. 5. Anisotropy factor A(= C44/C') of bcc metals
and alloys. Unless otherwise indicated the results are
at 300'K. Elastic-constant data have been obtained from
Bef. 22 for Rb, Ref. 23 for Cs, and Bef. 24 for all the
others.

group, into which the bcc In-Tl alloys fall, in-
cludes the alkali metals and P brass. Zener"
first pointed out that a bcc crystal comprised of
rigid spheres (or of ions containing only closed
shells) would show no resistance to a (110), [110]
shear and would tend to shear spontaneously on the
(110)plane in a [110]direction. He concluded that
the corresponding shear modulus —,'(C„—C») should
be abnormally small in those bcc crystals in which
the interatomic repulsive forces are qualitatively
similar to those between contacting rigid spheres;
such materials should be inherently mechanically
unstable. For bcc Tl (ionic radius, 1.05 A; a,
8.879 A) like bcc Na (ionic radius, 0.98 A; a,
4.225 A), the ions are too small to overlap ap-
preciably. The small values of -', (C» —C») found
here for the bcc In-Tl alloys (Table II) conform to
Zener's original prediction and establish that these
alloys are not far from being mechanically un-
stable to a (110), [110)shear. The large deviation
from the Cauchy relation (C» = C«) shown in Fig.
5 indicates appreciable non-central-force contri-
butions to the elastic constants.

The anisotropy of elastic behavi. or can be illus-
trated by polar plots of Young's modulus E. For a
cubic crystal

1/z = S",,= S„—2[(S„—S„)——,'S~](P, P~+ P2P, + l~2l', ),

where l&(i=1, 2, 8) are the direction cosines of the
applied stress direction. Thus when A = 1(i.e.,
2(S» —S»)/S~= 1), the condition for elastic iso-
tropy, the polar plot is a sphere; the more A. dif-
fers from unity, the more the cross sections de-
viate from circles. The (100) and (110) plane
cross sections of the Young's modulus surface
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FIG. 6. The (a) (100) and (b) (110)ylane cross sections
of the Young's-Inodulus surface of In-76.5-at. % Tl at
300'K. Units: 10f0 dyne c~

f 001]

FIG. 7. The (a) (100) and (b) (110) plane cross sections
of the velocity surface of In —76.5-at. % Tl at 300'K.
Units: 105 cm sec ~.

shown in Fig. 6 for the In-76. 5-at. %-TI alloy at
300 K emphasize the marked anisotropy of these
alloys.

The Debye temperature O~ has been calculated
from the ultrasonic-wave velocity measurements
using the relation

where X/V is the molar volume and v, are the
eigenvalues of the Christoffel equation (1). The
integral over the solid angle has been approxi-
mated by a sum taken over 10 288 points each sub-
tending an equal solid angle (= 1.218 x 10~ Sr). To

obtain the velocities of the three modes which cor-
respond to the propagation direction cosines
n„n„n, the eigenvalues of the Christoffel equation
(1) have been computed. (100) and (110) plane
cross sections of the surfaces are shown in Fig. V.
The marked anisotropy of these velocity surfaces
demonstrates the necessity for using a fine mesh
grid of points in velocity space for the solution
of the integral in Eq. (3) if an accurate Debye tem-
perature is to be calculated. Using the elastic-
constant-set obtained at a given temperature, one
obtains 8~(T) as distinct from 00 the low-temper-
ature limit. The calculated Debye temperatures
are given in TaMe H. There is no specific-heat
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TABLE III. Elastic properties of bcc P polymorph of Tl based on the alloy composition
extrapolated elastic stiffnesses of bcc In-Tl alloys. The elastic constants at 507 and 577 K
are the temperature extrapolated values.

Temperature (' K) 100 300 350 507

Elastic stiffness constants
(units: 10~ dyncm 2)

Cgg

C44
C'= —,(Cgg- C„)1

Anisotropy ratio A = C44/C'

Bulk modulus 8 = &(C&&+ 2C~2)
(units: 10 dyncm )

Compressibility P~—-B ~

(units: 10 2 cm2 dyn )

Debye temperature O~ ( K)

5.3
4.41
1.29
0.44

2.93

0.47

2.1

91.3

4.74
4.05
1.12
0.34.

3.29

0.43

2.3

83.2

4.63
4.06
1.07
0.28

3.82

0.43

2.3

79.2

4.21
3.78
0.94
0.21

4.48

0.39

2.5

71.6

4.02
3.67
0.88
0.17

5.18

0.38

.2.6

67.3

data for the bcc In-Tl alloys available at the pres-
ent for comparison.

Debye temperatures for hcp Tl of 75 'K, ' and
83.2 'K,"have been obtained from ultrasonic mea-
surements made at 300 and 4.2 K, respectively,
and 85 K from specific-heat data at low tempera-
tures. " On the basis of these numbers, it is dif-
ficult to establish a, precise value for the Debye
temperature of hcp Tl. However, 80+3 K would
seem to be an acceptable value for 8~(T) for T) 8~.

Although a large number of metals exhibit poly-
morphism, elastic-constant data for different forms
of the same metal are sparse. The elastic con-
stants of the bcc form of Tl itself have been ob-
tained by linear extrapolation of the bcc alloy data
back to the pure-Tl limit. Results are presented
in Table III. The elastic constants for all the
polymorphs of Tl are compared in Table IV. The
two cubic forms show very similar elastic be-
havior.

IV. OPTIMIZED-MODEL-POTENTIAL CALCULATIONS

Thallium is a nontransition element and for each
of its polymorphs the ionic radii are small com-
pared to the interionic distances; the small core
approximation holds, and theoretical estimates
of the lattice dynamics can be made for the fcc,
bcc, and hcp forms using pseudopotential methods.
To make such calculations, the real potential of
each ion has been replaced by an optimized-model
potential for Tl constructed following Shaw's mod-
ification of the model potentj. al using the spec-
troscopic-term values of the free ion to determine
the optimized-model parameters. The optimized-
model parameters in atomic units evaluated at the
estimated Fermi energy E~ (= -0.75 a.u.) were
(in the nomenclature of Shaw): A, (E~)=1.38,
A, (E~) = 1.63, A2(E~) = 1.10, (BA/BE)J; = -0.508,
(BA~/BE)z = -0.468, (BA2/BE)z„= -0.128.29 The
screened form factor and the energy wave number

TABLE IV. The elastic-stiffness constants of the Tl polymorphs.

C(hcp)

Elastic-stiffness Measured
constants (300 K)

(units: 10~~ dynem 2) (Ref. 9) Theoretical

& (fcc)
Extrapolated fr om
exper. alloy data

(300 K)
(Ref. 8) Theoretical

P (bcc)

Extrapolated from
exper. alloy data

(300 K) Theoretical

Cu
Cu
C~3

C33
C44

&(C«- C,2)

4.08
3.54
2.9
5.28
0.726
0.270

6.1

6.4
0.55

4.08
3.40

1.10
0.34

3.7
3.0

0.93
0.35

4.74
4.05

1.12
0.34

5.1
3.7

1.6
0.7
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M'«~ = 5Ef,+ 5E~+ 5E (4)

characteristic E(q) for Tl were then evaluated
from a Fortran program based on a somewhat
modified version of Shaw's original PL/I pro-
gram. The effective valency Z~ [=Z(1 —p)] can
be taken as 3 for Tl so that the depletion hole p
is zero. Using the local exchange-correlation po-
tential, ~ exchange and correlation effects of the
conduction electrons have been included. Knowl-
edge of E(q) allows calculation of the band-struc-
ture contribution to the energy of an electron in a
state lk), that is E~[=Z S*(q)S(q)EQ, where
the sum over q can readily be replaced by an in-
tegral]. .

The phonon dispersion curves have been calcu-
lated for the pure-mode directions for each of
the three polymorphs; to expedite this, we first
determine for a distortion of wave number Q. the
change 6E«, in the total energy

The change 5E„in the free-electron energy is a
second-order' effect and can be neglected. For a
crystal such as bcc or fcc containing only one
atom per unit cell, the change 5E~ in the band-
structure energy can be obtained using":

6E,.= g [l(q, +Q) &l z(q, +Q)
CO

+ l(qo-Q) el'&(qo-Q) -2lq. &I'&(q.)]
(6)

where the az are normal coordinates representing
propagating waves of wave number Q in the crys-
tal and q, is a lattice wave number. The change
in the Ewald electrostatic energy of point ions in
a uniform sea of negative charge for a single ion
per unit cell for a distortion of wave number Q
propagating along a pure-mode direction is given
by30

2vZ +2so i I 1

"o - "
o, (q."+Q)'+ q o" (q." —Q)'+ qo'

oo u (lqo a.l'-qo'l~ol'
00 +O'O (6)

Here q0" and q', are the components of q0 parallel
and perpendicular to Q; similarly a„and a~ ar' e
the components of a.

Using Eqs. (5) and (6), 6E~ and 5E have been
obtained for the three displacement vectors cor-
responding to one longitudinal and two transverse
waves propagated along the [001] and [110]direc-
tions in bcc and fcc Tl. Then the potential energy
change per ion due to the distortion can be ob-
tained as

For an ion of mass I the kinetic energy per ion
is MZ....a', and the frequencies for the given
distortion can be obtained from.

&uo) =Eq/M .
The propagation velocity of @n ultrasonic wave can
then be found from the slope 8&v/8Q close to the
Brillouin zone center Q=O and thus the elastic-
stiffness constants from pv'= C,z. The elastic
constants calculated in this way for the bcc and
fcc modifications of Tl are compared with the
'experimental" values, (i.e., extrapolated from

aHoy data) in Table IV. The changes in the elec-
trostatic and band-structure energies have an
opposite sign; from this cancellation between these
two contributing terms to 5E«, and thus eventually

to the calculated elastic constants derives a ma-
jor source of inaccuracy. In terms of the overall
accuracy expected of lattice dynamical calculations
by pseudopotential methods, the agreement be-
tween the calculated and "experimental" values
is acceptable and provides some basis for confi-
dence in the extrapolation procedure used to find
"experimental" values of the bcc and fcc poly-
morphs of Tl. The phonon dispersion curves for
Q along the 7, Z, and b. directions in the wave-
number lattice were computed for hcp Tl by cal-
culating 5E~, and 5E~ following the methods des-
cribed by Harrison" and extended by Pindor and
Py»." C» C33p and CQQ have been calculated
from (8&v/@)o o and results are given in Table
IV, Since the lattice dynamical calculations have
been made only for pure-mode directions, C»
has not been obtained because this tensor compon-
ent only occurs (in combination with other moduli)
for wave propagation along directions which are
not pure. A more important feature is that —,'(C»
—C,o) is very sensitive to variations of the input
model parameters for Tl including the Fermi lev-
el E~; in~ fact, the corresponding calculated phonon
dispersion curve (in the Z direction) can be made
to take a negative value near the zone center, cor-
responding to a negative —,'(C„-C»), which would
violate a Born stability criterion. This finding
emphasises the incipient instability of hcp Tl.
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V. HIGH-TEMPERATURE STABILITY OF bcc Tl

G,„-3NkT 1n(O/T), (10)

where N is the number of atoms.
In general the difference 68 [= (8, —0,)] between

the characteristic temperatures of the two poly-
morphs will be small and to a reasonable approx-
imation the phonon spectrum can be replaced ei-

The existence of the bcc to hcp structural trans-
formation in Tl requires that the Gibbs free en-
ergy G(T, P) (equal to U+PV —TS) curves for the
two phases intersect. Thus the stability of the
phases is determined by two factors: (i) the bind-
ing energy at absolute zero and (ii) the entropy.
The internal energy of close-packed structures
should be lower than that of the bcc structure and
hence the close-packed structure is expected to
be stable at lee temperatures. '~ However, in
general, the looser the packing of a structure, the
greater will be the entropy of vibration. Due to
the abnormally small value of —,'(C» —C»), as the
temperature is raised, there is a large amplitude
of vibration of the (110), [170] shear strain co-
ordinate; this produces a large vibrational en-
tropy contribution and thus a more rapid decrease
of free energy with temperature for the bcc than
for the close-packed structures. Thus the bcc
structure is thermodynamically favored at high
temperatures. Zener's old argument has recently
been examined by detailed analysis by Grimvall
and Ebbsjo~ who point out that there are no mea-
surements of elastic constants or of neutron or
x-ray scattering experiments that can be used to
put the idea to a firm experimental test.

The present experimental results can be used
to examine the hypothesis that the stability of the
bcc structure at high temperatures is due to its
larger vibrational entropy. In the first place, of
course, the finding that —,(C„—C») is small in
the bcc aOoys provides direct confirmatory evi-
dence. Previously, measurements of the latent
heats of phase transition between the low-temper-
ature close-packed and the bcc phases have shown
that the excess entropy of the bcc phase is equiv-
alent to a sizable proportion of the entropy of
melting. In the harmonic approximation, the free
energy of phonons having a frequency spectrum
f(v) is given by

hvG»=kT ln 2sinh
2kT f(v)d~.

Grimvall and Ebbsjo proceed by defining a char-
acteristic temperature that corresponds to a geo-
metrical average of the phonon frequencies and
find that at high temperatures where T is greater
than 8,

ther by the Einstein or Debye model. Then the
Helmholtz free energy and entropy at a tempera-
ture T can be written as:

Einstein m odel.

E = C o+ ,'Nk—8e+ 3NkT ln(1 —e-oe g r)

S= — =3Nk[(8, /T)(e 'e~' 1)-'
ej'

v
—ln(1 —e ~&~r)];

Debye model.

(12)

1 3 eD/T
Z = C, +9m —.'N3, + kT Pln(1 —e ~) dg

0

(13)

nS= S'- S'= 3Nkln(8;/8', ), (15)

and for the Debye model of vibration spectrum by

1S= 3Nk In(8~/8~~) . (16)

From these expressions it is possible to calculate
the excess entropy and the difference -T(S —S')
in the vibrational entropy contribution to the free
energy between the two polymorphs once the Debye
or the Einstein temperatures are known.

Using 71.6 K (Table III) and 80+3 'K for
8~(507 K) ofhce and hcp Tl, respectively, the
excess entropy of the bcc structure calculated us-
ing Eq. (16) is (0.35+0.15)k per atom. The value
obtained from latent heat (Ths) measurements
was (0.18 +0.02)k per atom. "

Friedel" has suggested that the high-tempera-
ture stability of the bcc phase may be related to
the fact that it is an alternate structure (i.e., a
closed circuit of interatomic jumps between suc-
cessive nearest neighbors requires an even num-
ber of jumps) while the hcp and fcc structures
are not. The expression found by Friedel for the
excess entropy of the bcc phase (P) over the hcp
phase (e), written in the same terminology used
here for Eqs. (15) and (16), is for the Einstein
model

bs= S' —S' = 3Nk(1n(~e/&uQ

—k' 2/4' k'T[((o )' —((o')']] (17)

(where &oe is the Einstein frequency) or in terms

Q /zy TS=3Nk —ln(1 —e &~r)+4, dK
0

(14)

where 4, is the static crystal potential and the
other notations take their usual significance. "
It can be shown that the excess entropy S of the
bcc (p) phase over that of the hcp(e) phase when
T&e is given for the Einstein model by
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of the number of nearest neighbors p

m= Wrkf .' ln-(p'/p') —(p'- p')(+~,')'/24p'k'r'].

(18)

The Einstein temperature e~ is approximately
~~0~ (and so is -54 K for bcc Tl and -60'K for
hcp Tl). For T&e~ which is true at the polymor-
phic transition temperature 507 K, the second
term in Eq. (18) is negligible (it is 0.002% of the
first term). The excess entropy of the bcc phase
is then

nS = —,'Nk ln(12/8) =0.6Nk .
Thus in the case of the bcc to hcp transformation
in Tl the excess entropy calculated on the basis
of number of nearest neighbors and the consequent
reduction in the Einstein frequency of the more
open bcc structure is three times greater than
that obtained from latent-heat measurements and

twice that obtained from the elastic-constant data.
The discrepancy may arise from a strong contri-
bution to the elastic constants from the higher-
order neighbors which the Friedel model does
riot take into account.

It can be concluded that in agreement with Zen-
er's predictions (i) the shear stiffness constant
r~(C» -C») of bcc In-TI alloys is small and (ii)
the stability of the bcc phase at high temperatures
is due to the lower Debye temperature and excess
vibrational entropy relative to the hcp structure.
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