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We analyze the early-time development of the spectral transfer of optical excitation in inhomogeneously

broadened systems. Previous models for the decay of the narrow-band fluorescence are generalized to include

systems with asymmetric energy-dependent transfer rates. It is assumed that the energy splittings of the ions

are uncorrelated. An analogous model for the early-time development of the background fluorescence is

outlined. Detailed results are presented for spectral transfer over a Gaussian line shape assuming a dipole-

dipole mechanism with rates that are inversely proportional to the square of the energy mismatch.

Comparison is made with. the treatment of Holstein et al.

I. INTRODUCTION

The development. of the techniques of time-re-
solved fluorescence line narrowing has facilitated
the study of the time dependence of the spectral
transfer of optical excitation in inhomogeneously
broadened systems. By fitting the measured de-
cay curves it has been possible to obtain informa-
tion about the range and energy dependence of the
microscopic transfer rates. ' Theories for the
time development of the spectral transfer have
been discussed in a number of recent papers. ' '
Most of the work in Refs. 2-5 has been based on
the coupled rate equations

=-g W„„,P„(f)+g W„.„P„,(f),
n n'

where P„(t) is the probability that ion n is excited
at time t and W„„. is the transfer rate from ion n
to ion n . It is assumed that the transfer rates
are both symmetric, i.e., 8'„„.= W„,„, and indepen-
dent of the energy mismatch between the excited
states of the two ions. As long as the ions excited
at t =0 have near-neighbor configurations which
are representative of the configurations for all of
the ions then in the single-excitation limit the ra-
tio of the narrow-band fluorescence to the total
fluorescence across the inhomogeneous line is ex-
pressed as the configurational average of the solu-
tion to (1) with the initial conditions P„(0)=6„o. In
Ref. 2 it was shown that this average, (P,(t))„
which is the probability that an ion excited at time
0 is still excited at time t, and hence character-
izes the decay of the narrow-band fluorescence,
can be written as the Laplace transform of the dis-
tribution of eigenvalues of the associated relaxa-
tion matrix whose elements are given by

I'„„,= 6„„,g W„„.,—(1-6„„,)W„,„. (2)

Most of the time-resolved fluorescence-line-nar-
rowing experiments have been done on systems

which have a lattice of sites occupied at random
by a fraction c of optically active ions. Since the
calculation of the eigenvalue spectrum of the re-
laxation matrix for a random system is a compli-
cated problem it is important to develop simple
approximations to (P,(t)), which can be used in the
analysis of the data. Three such approximations
were introduced in Ref. 2. They took the form

(P (f})=]Q (1+c[e ~ot'f (W»t) I]}, -
where the index l now refers to sites. The function
f(w»t) is given by

f(Wo, t)=1 (model 1),

f(W„t)=cosh(W»t) (model 2),

f(w»t)=1+e(w»t)s (model 3).

(4)

(6)

(6)

Equations (3)-(6) represent various versions of
the "pair approximation. " The repeated exchange
of excitation by pairs of ions which is incorporated
into model 2 will of course only be important when
the two ions are close together. If ions 0 and l are
widely separated transfer to a third ion closer to
l will be more important than backtransfer to ion 0.
However when ions 0 and l are widely separated
Wp ) ls so small that the three -ion process has a
negligible effect on (Po(t)), .

The accuracy of the models has been assessed
in Ref. 3. It was concluded that at low concentra-
tions, c&0.2, model 2 is a reasonable approxima-
tion for 1~(Po(t}),&0.05 whereas at high concentra-
tions, c & 0.5, model 3 is to be preferred. In the
intermediate range 0.2~c~0.5, neither model 2
nor model 3 work particularly well. In no case is
model 1, which neglects backtransfer altogether
(an thus is equivalent to an expression first obtain-
ed by Inokuti and Hirayamae), the preferred ap-
proximation.

In this paper, we gerieralize models 2 and 3 so
as to make them applicable to systems which have
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asymmetric, energy (-mismatch) dependent trans-
fer rates. In addition, we develop analogous ap-
proximations for the time development of the back-
ground Quorescence from ions which were not ex-
cited at t=0. In the latter study we make contact
with the recent work of Holstein et al. ' which is
based on the integral equation of Montegi and
Shionoya. o Our results for (Po(t)), are given in
Sec. II. The evolution of the background fluores-
cence is discussed in Sec. III. In Sec. IV, we re-
port the results of numerical calculations for a
system which has a Gaussian line shape and a di-
pole-dipole transfer rate which is inversely pro-
portional to the square of the energy mismatch.

To our knowledge, there are as yet no systems
which have been studied using time-resolved fluo-
rescence-line-narrowing techniques where the
dominant transfer processes are energy depen-
dent. However with the growing interest in spec-
tral transfer it seems likely that such systems
will be found.

H. GENERALIZED MODELS FOR &P0 {t)&

The extension of Eg. (3) to systems where the
transfer rates are symmetric but depend on the
energy mismatch between the ions as well as on
their relative separation is straightforward pro-
vided it can be assumed that the excited-state en-
ergies of the various ions are uncorrelated. By
this we mean that in an arbitrarily chosen region
of the crystal containing N ions if +(E„.. .,E„)
dE, -"dE~ is the probability that ion 1 has an en-
ergy level between E, andE, +dE„etc., then we
have

e eo'V W„= e eA 'W„. (9)

A reasonable approximation to (P,(t)), can be ob-
tained by considering the mutual exchange of ex-
citation by an isolated pair of ions at sites 0 and l.
The corresponding rate equations are

dlo l l
dt

= —WMS'o+Wroar (10a)

d8'r r

dt WroSr+ Wor8o (10b)

The solution to (9a) a,nd (9b) with initial conditions

g,'(0)= 1, gf(0)= 0 is given by

g,'(t) = 1-g'(t),
%'or t

l 0+ Ol

(12)

(14)

As in the derivation of (3) and (8) we approximate
(P,(t)), by a protluct of pair terms for the form
[I-c+cg',(t)]. Our final result is

~wor t
(P,(t)),= [ dE, p(E, ) 1+c (W„e~o&'

l
l l W +W lo

~I

+ W„e-'io'}-I,

(13)

where it is understood that Wor and Wro are func-
tions of ~Eor.

In the limit Wor=0, all l, there is no transfer
from the initially excited sites so that (Po(t)), =1.
In the opposite case, W«=0, there is no backtrans-
fer and (P,(t)), takes the form

It should emphasized that Eq. (7) represents the
extreme limit of microscopic strain broadening.
Provided (7) is valid, then each of the factors in
(3) can be averaged separately and we obtain the
result

(P,(t)),= ]7 dE, P (E,pl+ c[e

xf (W„(AE„)t)-I]}.(S)

Here ~Eor=Eo Er where Eo is the energy of the
ions excited at t=0. Note that since we have as-
sumed the same distribution for all of the sites
P(E) is to be identified with the inhomogeneous
line shape.

The case of asymmetric transfer is slightly
more complicated. Such a situation will occur
whenever the inhornogeneous linewidth is much
less than k~T since Wor and Wro are related by
the detailed balance condition

which is essentially the result of Inokuti and Hara-
yama. ' Finally, when W«= W» Eq. (13) reduces
to an appropriately averaged model 2.

We are unable to put precise limits on the accur-
acy of the approximations. However from our
analysis of the symmetric, energy-independent
transfer problem' we expect (13}to be a reason-
able approximation at low concentrations (c&0.2)
over the interval 1&(Po(t)),~0.05. At higher con-
centrations an approximation equivalent to model
3 is obtained by expanding the factor in paren-
theses. We have

(P,(t)),= Q dE, P(E,)
&&{I+c[e~&»'(1+—,

'
Wo W t')-I]]'

(15)

which should be fairly accurate out to (P,(t)),=0.05
for c&0.5.

Equations (13) and (15) are the extensions of
models 2 and 3, respectively, to the general case
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of asymmetric, energy-dependent transfer rates.
When the microscopic transfer rates are depen-
dent on the energy mismatch, the background fluo-
rescence will have a time dependence which re-
flects both the inhomogeneous line shape and the
variation in transfer rates across the line. This
aspect of the problem is discussed in the following
section.

independent of these parameters and depends im-
plicitly on the fraction of occupied sites, the in-
homogeneous line shape, and the microscopic
transfer rates.

A simple approximation for f(E,EO, t) is suggest-
ed by writing Eq. (13) in the form

(Po(t)),=exp[-cU(t)],

III. BACKGROUND FLUORESCENCE which is valid as long as c«i. Here we have

Is(E, Eo, t)=y~Noe y&'f (Z, zo, t) {1'6)

Here y~ is the radiative lifetime of the upper state
(we assume the only decay mode involves fluores-
cence to the ground state) and N, is the number of
ions initially excited by the laser pulse at frequen-
cy Eo/h. The dimensionless function f(E,EO, t) is

In this section, we outline an approximate theory
for the background fluorescence coming from ions
which were not excited at t=0. The theory is ap-
plicable to the early-time behavior in dilute sys-
tems and has approximately the same range of ap-
plicability as Eq. (13). We write the intensity of
the background fluorescence at frequency E/h,

Is(E,E~ t), in the form

where g', (t) is given by Eq. (12). For times such
that cU(t) &0. 5 we can approximate (Po(t)), by 1
-cU(t). Since apart from ra, diative losses the num-
ber of excited ions remains constant, we identify
NocU(t) with the number of excited ions at time t
whichwerenot excitedat t = 0. Also, we see that the
number of excited ions with ener gy levels between E
andz+dz is proportional to the integrand in (18).
Thus, we can obtain an approximate expression
for f(E,E~ t) by multiplying the integrand by an ap-
propriate time-dependent normalization factor. In
this way we obtain the expression

~os&

f(z E t)=(1-e'"")U(t) 'P(z) 1- [W («)e" ' "+W («)e '"""),
07 w„(«)+w„(«)'

where ~E=ED-E. Our approximation conserves
the number of excited ions in the sense

g e ~+'sinh(W«t)=C, (mt),

.where

(23)

dEf (E,z„t)=1-exp[-cU(t)]

=1-(PO(t)&. , (20)

xp(E)g e~o&~s" sinh[WO, («)t] .
(21)

In situations where W»(«) depends on the separa-
tion between site 0 and site l through an equation
of the form

W„(~z)= (R../r„)' u («),
where R is the nearest-neighbor distance, the
sum in (21) becomes a function of the variable gvt,

l.e.)

and is expected to be reasonably accurate out to
times such that (PD(t));-0.05, i.e., cU(t)=3.

Equation (19) simplifies considerably when the
transition rates are symmetric. In this case, we
have

f(z, z„f)=(l.-e '&'&)U(f)-'
C, (x) srpR' . 2' ' 'I'(l-3/s)x' ' (25)

where p is the number of lattice sites per unit vol-
ume and I'(x) denotes the gamma function.

In Sec. IV we apply the equations developed here
to the case of a fcc lattice with dipole-dipole (r ')
transfer rates which vary inversely as the square
of the energy mismatch.

IV. NUMERICAL RESULTS

In this section, we report the results of numeri-
cal calculations of the time development of the
background fluorescence in a fcc lattice with di-
pole-dipole (r ') transfer. We assume a Gaussian

C,(x)= g exp[-(R /r„)'x] sinh[(R . /r„)'x] .

(24)

For x«1, C,(x) varies linearly with x. To obtain
an asymptotic (x»1) expression for C, we convert
the sum to an integral obtaining the result'



18 GENERALIZED MODELS FOR SPECTRAL. TRANSFER IN. . .

line shape6

p(E)=s 'i'e (26)

450.

400.-
and a transfer rate which varies inversely as the
square of the energy mismatch'

(27)
350.—

rI

(c)

We take y=0.1 and measure time in units of the re-
ciprocal of the nearest-neighbor transfer rate for
hg =l.

From Eq. (21), we see that f(E,Eo, t) can be writ-
ten in the form

f(E,E„t)= (I-e '~&")U(t) 'p(E) C,(t(AE'+0. 1') '),

(28)

withP(E) given by Eq. (26) andCeby Eq. (24). In
Fig. 1, we plot C,(x) vs x. It is seen that C,(x) is a
linear function of x for 0&x~0.2. Beyond 0.2 there
is a crossover to the asymptotic form given by Eq.
(25), C,(x)= —,v'+x' '

In Figs. 2-4 we plot the product P(E)C,(t(&E'
+0.12) ') vs E at different values of the time for
Eo 0 1 and 2, re spec tive ly. The value s of t and
the corresponding values of U(t), Eq. (18}, are giv-
en in the captions. We emphasize that these
curves characterize the initial development of the
fluorescence and are appropriate only when cU(t)
s3. Moreover the values of U(t) are sensitive to
the value of y in Eq. (27). In the case of Fig. 2

(ED=0) the spectrum is dominated by transfer to
ions with energies near the center of the line. The
corresponding profile is more sharply peaked than
p(E}. When E;-1 (Fig. 3) the background comes up
more slowly. There is also a pronounced asymme-
try in the profile reflecting the competition be-
tween the rapid transfer associated with small
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= 216,
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FIG. 1. C6 (x) vsxfora fcc lattice. The straight line
indicates the linear behavior at small x. The broken
curve is Eq. (25).

FIQ. 3. p(E)C&(t((E-Eo)~+ 0.1~] ~) vs E for ED—-1. (a)
t= 5, U(t) =28; (b) t=50, U(t) =87; (c) t= 500, U(t) =261,



D. L. HUBER AND W. Y. CHING 18
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result when lV, p 0 %'hen the approximation of an
average transfer rate is made the corresponding
expression for (P,(t)), takes the form where
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=c g f dE, tt(E)W, (,EE,). (30)

(31)

whereas (29}becomes

The approximate expression has the same initial
slope as the exact expression but differs signifi-
cantly at finite times. This is evident in the case
where W» is independent of &E». In this limit, we
have the exact result

0.
-2.0 -l.5 -I.O -.5 .0 .5 I.O l.5 2.0 2.5

(P (t)),=cttp (-c t W t)t, t (32)

FIG. 4. p(E)C6(t[(E Eo)'+ 0,1-'] ') vs E for ED=2. (a)
t=10, U(t)=14; (b) t=100, U(t)=45; (c) t=1000, U(t)
= 140.

values of (4E)' and the peaking of p(E) at E=0. In
the case where ED=2 (Fig. 4) the line-shape factor
dominates so that the profile approximates p(E}.
However there is still some structure near E=2
arising from transfers between quasidegenerate
ions. Although not obvious from the figure the
peak in the curve shifts slightly toward the origin
with increasing values of the time.

The results displayed in Figs. 2-4 are qualita-
tively similar to the intensity profiles character-
izing the initial development of the fluorescence
that were given in Ref. 7. As noted in the Introduc-
tion the calculations outlined in Ref. 7 were based
on the integral equation of Montegi and Shionoya. '
However as emphasized in Ref. 5 in the derivation
of the Motegi-Shionoya equation the various micro-
scopic transfer rates are replaced by an average
transfer rate, V(E-E ), . which depends on the
concentration and the energy mismatch, From
Eq. (22) it is evident that the microscopic trans-
fer rates are functions of the relative separation
between the ions. The dependence on separation
leads to a distribution in transfer rates. By using
an average transfer rate, one is neglecting signifi-
cant fluctuation effects. The importance of fluctua-
tions can be seen in the time development of (Po(t)),
in the case where there is no backtransfer. Pro-
vided E(I. (7} is applicable E(I. (14) gives the exact

which agrees with (31) only when c=1. On the
basis of this analysis, we conclude that since it
neglects fluctuations in the transfer rates the Mon-
tegi-Shionoya approach is incapable of providing
a quantitative characterization of the early-time
development of the fluorescence. In contrast, the
theory outlined in this paper does take into account
those fluctuations which are most important at
early times. Examination of the relevant equa-
tions, (13) and (19), shows that the use of an aver. -
age transfer rate is appropriate only at very short
times (i.e., on the order of the reciprocal of the
nearest-neighbor transfer rate) where (P,(t)), and
f(E,EO, t) are linear functions of t.

V. SUMMARY

In this paper, we have extended the analysis of
spectral transfer that was begun in Ref. 2 to the
general case of energy-dependent, asymmetric
transfer rates. Approximate theories are present-
ed for the early-time development of the narrow-
band and background fluorescence which are appli-
cable as long as the energy levels of the various
ions are uncorrelated in the sense of Etl. (7}.
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~Recent experimental studies of time-resolved Auores-
cence line narrowing have been reviewed by W. M. Yen
P. Lumin. (to be published)]
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