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It is shown that the terms in the cumulant expansion of the coherent potential for an uncorrelated
substitutional alloy can be combined by partial summation in such a way that the Herglotz property can be
studied directly. A consistency condition for the Herglotz property is found, which is satisfied by the single-
site coherent-potential approximation (CPA) but not by the n-site CPA for n & 2. A natural generalization
of the CPA [referred to as the "traveling-cluster approximation" (TCA)), satisfying the consistency
condition, is developed in which graphs involving arbitrarily many sites are involved, but in such a way that
overlaps of cumulant averages involve only limited sets of sites. A fixed-point theorem is developed that
guarahtees that iteration of the TCA equations for a broad range of physical systems converges to a unique
self-consistent solution that preserves the Herglotz property of the mean resolvent. Calculations of the
density of states using the nearest-neighbor TCA for a single-band tight-binding model are presented, and
show a distinctly better fit to exact numerical results thanthe CPA, including some of the structure due to
localized states.

I. INTRODUCTION

Qne of the standard methods for trying to under-
stand the physical properties of waves in a random
medium has been to study the mean resolvent [Eq.
(1.4), belowj for the system. For the case of elec-
tronic states and elastic modes in a random crys-
tal, ' the coherent-potential approximation (CPA) of
Soven and Taylor' has stood out~ as the most ef-
fective single-site approximation and as the base
for a large number of efforts to develop extensions
involving clusters.

The problem of analyticity of the mean resolvent
for a substitutional binary alloy has been raised by
Nickel and Butler, ' who found by direct computation
that two well-known extensions of the CPA fail to
satisfy this basic condition. We present here a
form for the perturbation expansion of the coherent
potential, for the case of statistically independent
scattering sites, that makes the study of analytic-
ity properties quite straightforward and allows us
to develop an approximation that correctly pre-
serves these properties. We first review the prob-
lem of finding an effective, or "coherent" potential
9, expressed as a sum of products of cumulant
averages, with each term of the sum corresponding
in the usual way to a Feynman-like graph. In Sec.
II we show for a binary alloy that a partial summa-
tion of graphs, expressed in what we call "modified
cumulant averages, " reduces the mathematical ex-
pression for each graph to a much simpler form
which permits (Sec. III) a term-by-term analysis
of the set of properties, known collectively as the
Herglotz property (HP), required for the coherent
potential. The logic of this analysis bears some
similarity to that of Schwartz and Bansil, who,
however, are tackling the problem within the

framework of multiple-scattering theory rather
than a partial summation of graphs, and come to
conclusions that are not related in an obvious way
to those obtained here. Certain sums of graphs
satisfying a consistency condition are found to pre-
serve the HP, so that it becomes possible to form-
ulate (in Sec. IV) a, class of approximations, the
"traveling-cluster approximations, " that preserve
analyticity, at least if self-consistency is not im-
posed. When self-consistency is introduced (Sec.
V), by the use of an appropriately modified mean
resolvent for internal lines in each graph, then the
resulting nonlinear equations no longer obviously
preserve the HP, but a modified fixed-point
theorem (proved in Appendix H and discussed
in Sec. VI) shows that the HP is indeed preserved
by the self-consistent equations and that iteration
of the equations at complex energy always con-
verges to a unique self-consistent solution of these
equations. The formalism is applied in Sec. VII to
the case of a separable potential, which includes
as special cases the single-band model and the
elastic-mode problem for a simple Bravais lattice
with random masses. Finally, the results of some
calculations of the nearest-neighbor TCA for elec-
tronic states in the single-band tight-binding ap-
proximation are shown and compared with the sin-
gle-site CPA and with the exact numerical results
of Alben et gE.' The paper concludes with a brief
discussion in Sec. VIII. The more mathematical
parts of the presentation appear in the single-band
formulation of Sec. VII and in Appendixes A and B.

In Appendix A, we set up a general formulation
of the problem for an arbitrary number of spec-
ies, ' which is nontrivially different in form from
the binary case and seems to provide a possible
starting place for analysis of the problem of cor-
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related systems, to which this approach has not
yet been successfully applied.

In Appendix 8, the fixed-point theorem is
proved, and a complete demonstration of conver-
gence and the HP is given.

We shall concentrate our attention in this paper
on the behavior of an electron in a binary sub-
stitional alloy of N sites, with a single-particle
Hamiltonian given by

II =FIo+ V

(1.2)

Here IIo is fixed and typically has the complete
crystalline symmetry of the Bravais lattice, whose
sites we label x, while V is random, the single-
site terms V„being statistically uncorrelated.
Each V„ is thus a random operator, locahzed near
the site x, 'and equal to V,", with probability pz,
or to V, , with probability F8=1 —g„. No assump-
tion is made here as to whether the potentials
overlap. In general, H, and V are linear operators
on a Hilbert space X, and in a single-band model
(see Sec. VII} they reduce to matrices with rows
and columns labeled by the sites x. We define the
"unperturbed resolvent" G, as the inverse of an
operator L„

Go =(E —Po} =Lo',
for a complex energy variable E, while the mean
resolvent G and the coherent potential Ware de-
fined by

(1.4)

(1.5)

where () denotesanaverage overall configurations
of the sample. For a more general class of sys-
tems, the necessary conditions on J.o and V for the
applicability of the fixed-point theorem are spelled
out in Appendix B.

The resolvent defined by Eq. (1.4) and the coher-
ent potential defined by Eq. (1.5) are well known to
possess the Herglotz property, which, for an oper-
ator function E(z} of a complex variable z, consists
of the fol'iowing three properties:

E(z) is an operator-valued analytic function of z
in the entire cut plane, Imz go;

is negative definite in the upper half plane 8, rather
than negative semidefinite as we have taken it. The
weaker inequality is sufficient for our purpose and
conveniently includes as a special case the situation
in which F(z) is a constant Hermitian operator.
These properties are roughly equivalent to the as-
sertion that F(z) is derivable from a positive semi-
definite Hermitian spectral function f(e},

E(z) = a - bz + d~,(~}
Z — (1.9)

so that a failure of the Herglotz property in some
approximation gives rise to unphysical behavior of
n(E). In the examples studied by Nickel and Butler, '
branch points were found in the complex plane,
giving rise to multiple valuedness of n(E).

H. MOMFIED CUMUI. ANT EXPANSION

As a starting point for the analysis of the prob-
lem, we use the standard cumulant expansion meth-
of of Kubo, "Yonezawa and Matsubara, ' Leath and
Goodman, "and others and then show that a partial
summation of terms yields an expansion formalism
that is particularly suited to this problem. Follow-
ing the discussion and notation of Mills, '4 we ex-
press the coherent potential g as a sum of combined
cumulant averages (CA's):

(2.1)

Here ( )P indicates a sum of proper graphs, in the
sense (Ref. 14) that all points on a given graph are
interconnected by overlapping CA's. The CA of a
product of n factors, which can be noncommuting
operators, is defined as the nth-order residue
when all combinations of CA's of lower order are
subtracted from the actual configuration average
of the product. Thus, using ( ) to denote a, simple
configuration average and ( )„acumulant aver-
age, we have

where g and b are Hermitian, and 5 is non-negative.
In particular, the spectral function for G(E) is re-
lated to the density of states (per site) for the phys-
ical system,

n(E) = (1lvcV) —Tr[lmG(E+ f0+ }) (EE (8}, (1.10)

E(z*)=E(z) for Imz x0;
ImF(z) ~0 for Imz &0(zCH, ).

Here I' is the Hermitian adjoint of E, and ImE re-
fers to the anti-Hermitian part of I',

(A) =(A), ,

(AB) =(A),(B),+(AB)„
(ABC =(A),(B),(C),+(AB),(C)~+(A(B),C),

+(A),(BC),+(ABC)„

(2.2)

(2 3)

(2.4)

ImE = (E—F}/2f . (1.8)

In the usual definition of the Herglotz property ImE

etc. If any one factor or group of factors is uncor-
related with the remaining factors, the CA of the
product is equal to zero. The expression for the
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CA is rather complicated, which makes a term-by-
term analysis of the HP in 5' virtually impossible
using the above expansion. We find, however, that
there is a natural way of performing partial sum-
mations, at least in the absence of correlations,
that makes such analysis quite feasible. The pro-
cedure which is similar, but not identical, to the
"corrected cumulant average" procedure of Yon-
ezawa, "Leath, "etc. is to group the graphs ac-
cording to the overlap pattern of CA's involving
the same site and then to sum all the terms in each
group.

Consider, for example, the graph in Fig. 1(a),
in which x, y, and z represent three different
sites, and the CA's involving site x are empha-
sized. If the CA's involving sites y and z are dis-
regarded, we see that those involving g form two
"proper single-site subgraphs, "as we may call
them. That is, the first three x-site CA's over-
lap, forming one proper subgraph if all the other
CA's are removed, and the last two x-site CA's
form another. We characterize the graph of Fig.
1(a) by a sort of skeleton graph, in which those
vertices thatare linked by CA's into a proper sin-
gle-site subgraph are joined in a single linkage,
as in Fig. 1(b). We introduce a new graphical sym-
bol for this purpose, which we refer to as a "modi-
fied cumulant average (MCA) linkage, " and call the
graph of Fig. 1(b) the "characteristic graph" of
Fig. 1(a).

Now many CA graphs will have the same charac-
teristic graph, and we now sum all such graphs to
obtain a single expression corresponding to a given
characteristic graph. Since the statistical factors
associated with each CA, and hence with each

x y x yx x z z xz x x z x

(a)

FIG. 1. Cumulant averages (CA) and modified cumu-
1ant averages {NCA). (a) Graphical expression in terms
of CA's, with site x emphasized, for a typical term in
the coherent potential W. (b) The corresponding MCA

graph, in which overlapping CA's are summed to form
MCA's.

= c„(L —V") '+c (L, —V ) ',
from which it works out that

W'"= V+V'(Lo —V) 'V'

where

V = c~V" + c~V

V = c,v" + c„v',
V'=dc„c»(V" —V ).

(2.5)

(2 5)

(2.7)

(2.8)

(2.9)

(In V, the bar refers to an average rather than the
Hermitian adjoint. )

In the expansion for W'", the first-order term is
just V, while for g ~ 2 the pgth-order term is
V'(G, V)" 'G, V ', a simple sequence of factors whose
structure is independent of pg. The statistical fa-
tors characteristic of the nth-order MCA are com-
pletely represented by the combinations V, V, and
V'.

The connecting factors Q, are simply those con-
necting the factors V„before averaging and may
be replaced in the n-site problem by the appropri-
ate factors involving other sites, but not involving
site x. The MCA's involving other sites y, of
course, take exactly the same form. As an exam-
ple, the contribution to W of Fig. 1(b) is simply

W[1(b)] = V,'G OV„'GO V,GOV,'GOV„GOV„GOV, GO

V.'~0 V»OV. ~O V»GO V»CO V'~0 V» ~ (2.10)

MCA, are independent of the structure of the rest
of the graph, we obtain in this way an expression,
which we call, a "modified cumulant average", for
each MCA linkage. Out of these MCA's then, we
can construct the contribution of the whole charac-
teristic graph, just as one does with ordinary CA's.

In order to evaluate the nth-order MCA, we need
to sum all the proper single-site subgraphs involv-
ing the same ri vertices. To do this sum explicitly
is difficult, since the expression for the CA itself
is complicated, and the structure of the different
graphs is hard to tabulate. There is, however, an
easy way to get the answer without doing the work,
as follows. As mentioned above, the statistical
factors involved in a given proper single-site graph
are independent of the rest of the graph, and in
particular will be just the same if no other sites
appear in the graph at all. In this case, the prob-
lem reduces to summing a/l proper graphs of nth
order that involve just the one site in question.
However, this is just the gth-order term in the co-
herent potential for a system consisting of just
that one site, and this can be evaluated by using
the original definition, Eq. (1.5), of the coherent
potential. For the one-site problem,
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We can summarize the resulting MCA expansion
with the symbolic equation

w=(v(1- G, v) ')„„, (2.11)

(a)

Z Z

(b)
FIG. 2. Linear notation for MCA graphs. (a) Single

MCA involving site x. (b) Graph of Fig. 1 (b) in the
linear notation.

with the rule that all proper MCA graphs are to be
included in which no two MCA's involving the same
site are allowed to overlap. It will be noted that
only the bare propagator Go appears; it seems im-
possible to do partial summations, as in the CA
expansion, in such a way that G appears instead of
'Gp and a restricted class of graphs is sum med . It
turns out, nevertheless, that when the sum over
MCA graphs is restricted in order to construct an
approximate theory, it then becomes possible to
replace each factor G, by an appropriate self-con-
sistent propagator, so that many of the graphs
omitted in the approximation are restored and a
sort of effective medium is used for each succes-
sive virtual propagation.

In order to make clear the overlap patterns in-
volved in more complicated graphs, it is conven-
ient for the analysis that follows to introduce a
more streamlined graphical representation for the
MCA expansion. Since the electron line carries no
information, we eliminate it and replace the MCA
linkage by a horizontal line, labeled by the site in-
volved, with dots along the line to represent the
successive interactions at that site, as in Fig. 2(a).
This linear representation is appropriate to the
simple product character of an MCA, with the dots
representing the successive factors V,' (at either
end of an MCA line) and V„(not at an end). An iso-
lated dot represents the first-order MCA, i.e. , a
factor V„. Several horizontal lines or single dots,
as in Fig. 2(b) [corresponding exactly to Fig. 1(b)
and thus to Eq. (2.10)], represent overlapping
MCA's, with the order of factors being just the
same as the order of the dots from left to right.
The vertical location of an MCA line or dot can be
used to suggest the location in the sample of the
site involved, with neighboring lines representing
neighboring sites.

III. ANALYSIS OF Im V

%'e have seen that each term in the MCA expan-
sion for W(E) is directly expressible [as in Eq.
(2.10)] as a product of factors V„, V„', V„and G, .
The factors V are all Hermitian, and the depen-
dence on the complex energy E is entirely in the
factors Go(E). We now take the anti-Hermitian part
of W(E), following a procedure somewhat analogous
to that of Schwartz and Bansil, ' in order to find ap-
proximations that preserve the second Herglotz
property IEq. (1.6)]. We schematically represent
an gth-order term in &, corresponding to a graph,
y, by

W(y) = VIGOV2GO 'Gpv„, (3.1)

where P„p„.. . ,p„represent the appropriate fac-
tors V, V, V. The anti-Hermitian part of W(y) is

ImW(y) =(V,GDV2GD GOV„

—V„GO Go V2GO V, )/2i . (3.2)

The mirror image of the graph y, which we call -y,

gives rise to the same factors in reverse order,
and as we shall consider only approximations in
which mirror image graphs are always included,
we can make a trade between ImW(y) and ImW(y)
in order to have the same sequence of factors in
the two terms on the right-hand side of Eq. (3.2)

—[imW(y)+ImW(y)] =u (y)+w(y), (3.3)

+(y) = (V)GOV2GO .Gov„—V,GOV, GO . .Gov„)/2i

(3.4)
n-1

(V,GOV, V„GO)
r=

where

&& Y(GOV„„V„,GDV„), (3.5)

Y=lm(G, ')

=ImE,

(3.5)

(3.7)

in the case we are considering.
The bracketed portions of Eq. (3.5) can be thought

of, thanks to the factorizability of the MCA expan-
sion, as "half graphs, "obtained by cutting the orig-
inal graph for W(y) between each pair of successive
vertices. Thus, the simple 5 graph shown in Fig.
3(a) gives rise to the three cut graphs of Fig. 3(b).
Each half graph can be characterized by the set 9
of sites associated with those MCA's that are di-
vided by the cut. In Fig. 3(b), the three cut graphs
are characterized by the sets (x], (x, y), and Q),
respectively.

In the course of taking the anti-Hermitian part of
g, we see that all possible right-half graphs and
all possible left-half graphs are generated and
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FIG. 3. Analysis of Im 8'. Fig. 3(b) shows the differ-
ent ways the graph of Fig. 3(a) must be cut in calcul-
ating the anti-Hermitian part.

Y.
X X

v
W W
X X

combined in all possible ways. If the sum of all
right-half graphs characterized by the set S, as de-
scribed above, is denoted by I ~, then the corres-
ponding set of left-half graphs is I'~, and we see
that

(b)
FIG. 4. Graphs generated by the consistency require-

ment. (a) Cut graphs that must be added to those'of Fig.
3(b) to assure Im $™0.(b) Graphs that must be added
to Fig. 3(a) in order to obtain the cut graphs of Fig. 4(a).

ImW =-
S

(3.8)

where the negative definite character of ImW (ImE
&0 will be assumed throughout) is plainly revealed.

We now have a way of constructing possible ap-
proximation schemes and testing at least for the
second Herglotz property [Eq. (1.6)]. If we take as
an approximation to ~ a subset of all the MCA dia-
grams, we can perform the same sort of analysis
as above and see whether the cut graphs of ImS'
combine to give a negative definite form like Eq.
(3.8). The second Herglotz property does not, of
course, guarantee analyticity, but it is a necessary
condition, and with luck the analyticity property
will fall out, too. The third Herglotz property is
automatic, since W is in any case a real functional
of Go, which has this property.

It is not hard to see that any graph or set of
graphs included in g will tend to generate more
graphs that also must be included if a negative def-
inite form, like Eq. (3.8), is to be retained. In
forming Img, each way of cutting a given 8 graph
gives a right- and a left-half graph. Then for each
such term of the form I', FI'„additional combina-
tions must be included to complete the square, so
to speak, into the form (I', +1,)Y(1,+I', ). These
additional combinations, in this case I', yr„
F,Yl „and I"~VI'„must come from new W
graphs, and the process must be repeated until it
closes. Thus the W graph of Fig. 3(a) generates
the cut graphs of Fig. 3(b), and in order to achieve
the negative definite form, the nine additional cut
graphs shown in Fig. 4(a) must be included, togeth-
er with those of Fig. 3(b), giving rise to three neg-
ative definite expressions of similar form to Eq.
(3.8). However, in order that these nine additional

cut graphs form part of ImW, it is necessary that
g itself include additional terms of the form shown
in Fig. 4(b), which in turn will generate a second
generation of cut graphs. Except in the case of the
first- and second-order graphs, this process gen-
erates an infinite number of 5' graphs which must
be included to preserve the negative definite form
for ImlV. The associated sets S, though, arb just
those of the first generation of cut graphs; the
process does not generate new ways for the MCA
lines to overlap. Thus a consistent approximation
can be achieved, typically, by including all graphs
involving some limited number of overlap sets.

IV. NON-SELF-CONSISTENT TRAVELING CLUSTER

Now let us consider some of the approximations
that can be generated in this way, but still without
regard for self-consistency, i.e. , without the use
of a self-consistent propagator in place of Go The
simplest such approximation is achieved by using
for g the single term V„ for some chosen site x,
represented graphically by a single dot [Fig. 5(a)].
This is, of course, Hermitian and independent of
E, and trivially preserves the Herglotz property
of G. This is not a translation-invariant approxi-
mation, and as we shall normally want our approx-
imations to preserve the symmetries of the under-
lying Bravais lattice, we can extend the approxima-
tion by including all such terms:

(4.1)

which is simply the virtual-crystal approximation"
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X X

(o) (b)
X X X

W 'W

X

FIG. 5. . Approximations to the coherent potential S'.
(a) First order: the virtual-crystal approximation. (b)
Second order: satisfies the consistency requirement.
(c) Third order: consistency requires the inclusion of
all higher-order single-site terms and yieMs the aver
age t-matrix approximation. (d) Typical graph involv-
ing just two sites.

in its simplest form.
The next stage is to include the second-order

terms in 5, represented by graphs of the form of
Fig. 5(b). If we include also the first-order terms
of Eq. (4.1) (reasonable, but not necessary for the
Herglotz property), we have

Z

Z

v

X

FIG. 6. Consistency in a two-site approximation. If
both graphs of (a) are included, the half-graphs of (b)
(among others) are generated, requiring for consistency
the three-site term (c).

W = Q (V, + V„'Go V„') . (4.2)
others, the new IV graphs in Fig. 6(c).

Thus we see a basic source of difficulty with the
yg-site CPA, which in the nearest-neighbor version,
includes just such graphs as Fig. 6(a), without in-
cluding the corresponding terms in Fig. 6(c). The
same thing happens in every case except n =1, con-
sistent with the observed fact that the single-site
CPA displays the Herglotz property. 'The above ex-
amples do not constitute aproof that the second Her-
glotz property is violated since negative definite
parts of ImW may still dominate if the parameter s of
the problemfall inthe right domain, but indicate
clearly the nature of the difficulty that is in fact
observed. It should also be noted that we can avoid
the difficulty by using only pairs without common
members, that is, by including in 5 all terms in-
volving sites one and two, all terms involving sites
three and four, and so on. This corresponds ex-
actly (when self-consistency is included) to the
cluster CPA, considered by Tsukada, ~ Ducastelle, "
and others, which is in logical structure equivalent
to a single-site CPA on a sublattice of the original
sample.

Let us go back now to the additional terms gen-
erated when overlapping pairs of sites are in-
cluded. If the original S' graphs involve only near-
est-neighbor (nn) pairs, for example, then although
the new graphs generated can involve many sites,
the overlaps of successive MCA's involve only nn

pairs, as in Fig. 6(c) [here, (x, y) and (y, z) are
taken to be nn pairs]. As mentioned previously,
no new overlap sets are generated by this process,
where an "overlap set" is the set of sites whose
MCA lines are divided when a W graph is cut. [We
include also in the definition of "overlap set" the
set that results from adding a single-site MCA

(V„).] This suggests an approximation to W con-

(4.3)lV= V„+ V„' Io —V, V,'

just as in Eq. (2.6), and corresponds exactly to the
average-t-matrix approximation (ATA) of Kor-
ringa' and Beeby. '

We next turn to two-site terms, such as those
generated from Fig. 3(a). These include all graphs
involving as factors only the two expressions V„'

and V„', a somewhat unnatural generalization of the
one-site approximation represented by Eq. (4.2)
(unsummed and without the first-order terms V„
however). We can immediately generalize this by
simply including all graphs involving two given
sites z and y, of which a typical term is displayed
in Fig. 5(d). This clearly obeys the negative defin-
iteness condition, since the process of cutting
yields all possible left- and right-half graphs in-
volving these two sites. This gives, in fact, the
exact expression for ~ for a system consisting)
only of two sites, just as Eq. (4.3) is exact for the
one- site system.

A difficulty arises if we now try to take a sum of
two-site terms after the manner of the two-site
CPA. If a term involving ~ and y and a term in-
volving y and z are both included, we immediately
find that three-site terms are also generated. This
is illustrated in Fig. 6, where the 5 graphs shown
in Fig. 6(a) generate, among others, the half
graphs in Fig. 6(b), which in turn generate, among

Thus the perturbative expansion of W preserves the
Herglotz property up to second order.

If we go to third-order single-site terms, as in
Fig. 5(c), we find we must include the single-site
graphs of all orders. This gives a geometric ser-
ies for each site, which sums to
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iently be written by expressing ~ as a sum of
terms characterized by the initial and final scat-
tering site:

FIG. 7. Typical graph, in high order, of the nearest-
neighbor traveling cluster approximation. where

~X/ p g + yl pXpy/
X XP X

(4 4)

(4.6)

sisting of all graphs whose ovet'lap sets are re-
stricted to nn pairs, as exemplified, in a high or-
der, by Fig. 7. The character of the NCA as a
simple product of factors causes such an approxi-
mation to take the form of a geometric series,
summable by straightforward algebra, as we shall
see. While these graphs by no means depict liter-
ally the virtual processes actually taken into ac-
count, and the direct physical interpretation is ra-
ther lost in the formalism, it is still true that an
MCA line roughly represents a memory of the
identity of a scatterer as the electron progresses
through the sample. In this approximation then,
the spotlight of exact treatment, instead of remain-
ing fixed on one cluster of sites as in the n-site
CPA or the cluster CPA, is allowed to move across
the sample, even to macroscopic distances. This-
approximation, which we therefore refer to as a
"traveling cluster approximation" (TCA), is seen
to be the completion of the g-site ATA, in the sense
that we include all graphs generated from the g-
site ATA by the requirement of negative definite-
ness of ImR'.

A particular TCA, referred to as the T approxi-
mation, is defined by a family T of allowed overlap
sets $, the approximation consisting of the sum of
all graphs consistent with this restriction. In the
above example, T includes all single sites and all
nn pairs. We would normally want T to have the
symmetry of the lattice, though as we have seen
this is not necessary for the negative definiteness
condition. The TCA's are not the only approxima-
tions that can be constructed to satisfy this condi-
tion, but they seem the only natural ones. Since
we construct a graph, moving from left to right,
by successively adding or taking away single
sites, we see that the family T, to be related to
real graphs, must consist of sets that can be built
up one site at a time from single-site sets without

going outside the family T. A natural way to do
this is to require that all the subsets of any set in

T also belong to T, but this is not essential. For
example, in a linear chain, T could include nn

pairs and clusters of three, without including next-
nearest-neighbor pairs. The calculations are suf-
ficiently complicated that such options could prove
useful.

The equations expressing the TCA can conven-

and I'"" is one part of a generalized matrix propa-
gator X', representing all subgraphs that start
on the left with a factor G, and the overlap set S
and that end on the right with a factor G, and the
overlap set S'. The superscripts ~, y in this case
represent the single-site sets (g} and jy}. This
matrix propagator satisfies a Dyson-type equation,

1 s'=Go ~ss' 4), ss"I s"s' S S'HT, 4.6
s "&r

4 =I!,
~~ Q V, +Q V,)kxCS xCf

+ Q V,'+ V„',
x&S x S'

x US=S' xUS'=S

(4.7) .

where the T approximation expresses itself in a
restriction of sets S to the family T. The set S
consists of those sites not in S which do not take S
outside the family T:

s=(xfx+s, ~usher} . (4.8)

Combined with S, it constitutes what we may call
the "neighborhood" S' of S:

s' =s vs=&xiguser} . (4.9)

r=(r, '-c) '

where
ss'I o =Go~ss'.

(4.10)

(4.11)

Since I'o is Herglotz, it follows that I' is also, and

from Eqs. (4.6) and (4.4), the Herglotz property of
9' follows directly.

What we have developed in this section is a gen-
eralization, or completion, of the g-site average
ATA, satisfying the condition, at least in terms of
the graphs included, that ImW be negative definite
whenImE &0. In fact, the entire Herglotz property
is readily demonstrated since Eq. (4.6) allows r~~

to be expressed as the inverse of a simple opera-
tor. The vectors whose components are labeled by
the sets S belonging to the family T constitute a
vector space S~, and the operator-valued matrices

ss' and 4,ss' can be regarded as linear operators
I' and 4 on the product space S~ X, where X is
the Hilbert space of the original problem. Clearly
4 is Hermitian in S~K, and I' can be written
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V. SELF-CONSISTENCY W

G =(I —W ) (5.1)

We' now turn to the question of self-consistency,
i.e., of replacing Go in the equations developed
above by a propagator that best represents the en-
vironment in which the virtual processes take place
that are described by these equations. In graphical
terms, this means including in this propagator as
many as possible of the graphs not already included
in the summation of overlapping MCA's within the
approximation defined by the family 7'. In the con-
ventional cumulant expansion (see Ref. 14) this
self-consistency appears almost automatically
through the summing of internal self-energy sub-
graphs and an associated reduction to irreducible
self-energy graphs involving the true mean resol-
vent Q. In the MCA expansion this does not happen,
because certain internal self-energy subgraphs
were needed in the formation of the MCA's, and the
distinction between reducible and irreducible
graphs cannot be made in a natural way in this
case.

Nevertheless, there is a reasonably natural way
of introducing self-consistency, by replacing each
factor G, in Eq. (4.6) by a propagator Gs whose
form depends on the overlap set $ at the location of
this propagator in the graph. The self-consistent
propagator t" is defined by

Z Z Z Z

(f1) (b)
FIG. 8. Illustrating that use of the self-consistent

propagation G does not produce overcounting. (a)
Possible term in W, for S =(x,y), in the nn approxi-
mation, showing overlap of MCA's involving site y.
(b) MCA graph with which (a) would be redundant, but
which is not included in the nn approximation.

sistent nn approximation, the ones represented by
Fig. 8(a) being those in which the two intermediate
site-y interactions are not coupled by CA's to the
initial and final ones. This reasoning applies quite
generally to the graphs generated by use of the
self-consistent Gs of Eqs. (5.1) and (5.2).

Vfe must now see what this modification of the
theory does to the analysis of ImR' of Sec. III. Our
new W graphs differ from the one-self-consistent
ones by having factors G instead of Qo between
successive interaction vertices. As we review the
procedure of Sec. III for analyzing ImW, we find
that all the steps go through trivially as before,
except that ImG, ' [Eq. (3.6)] is replaced by
Im(Gs) ' when the cut is associated with the over-
lap set S. From Eqs. (5.1) and (5.2), we see that

where g s is the sum of all 5 graphs that begin and
end outside the family T. That is, Im(G') ' =-Im(I., —W')

=—(ImE —ImWs ) .
(5 4)

(5.5)
(5.2)Ws = W",

x,y&f

where S is the set of sites for which xUS lies out-
side of g:

S={x~xgS~T) . (5.3)

It is the complement of S' [Eq. (4.9)]. This defin-
ition of 5s is taken, of course, to avoid overcount-
ing of graphs. There might seem to be a difficulty
from the fact that internal portions of 5's are al-
lowed to involve MCA's for sites belonging to the
set S, as illustrated in Fig. 8(a), for a nn approx-
imation. %e see that two site-y MCA's overlap, in
violation of the rules for the MCA expansion of
Sec. II. However, the graph with which this would
be redundant, shown in Fig. 8(b), is not included
in the approximation, and so no overcounting has
taken place. The original derivation of the MCA
by summation of overlapping cumulant averages
involving a single site y, in fact, remains valid
even if iterations at site y are interspersed, so
long as they are not involved in any of the CA's
being summed. Not all of the CA graphs repre-
sented by Fig. 8(b) are included in the self-con-

I' =G 5 O' I' S, S'~T .
s'& r

(5.6)

Thus iflmWs is negative definite, then im(Gs) ',
and hence ImR', are also. However, Imp s is sub-
ject to the same form of analysis as lmW itself,
and its nt:gative definiteness for all S is thus seen
at least to be self-consistent; after any finite num-
ber of iterations (starting with Ws Herglotz for
each S), the negative definite property is retained.

It is tempting to try to extend &s to include
graphs that might begin or end (or both) inside the
family T [i.e. , at a, site x for which x US~T), but
which go outside of T in internal MCA lines. The
difficulty here is that the analysis of Im5's gives
rise to half graphs lying entirely in 7, which re-
quire for consistency duplicate graphs to those al-
ready included explicitly (i.e. , apart from the in-
troduction of Gs). Thus the negative definite prop-
erty is lost in such a scheme unless some graphs
are overcounted.

The self-consistent TCA, which is the only ap-
proximation we shall seriously consider, is given
then by Eqs. (4.4), (4.5), (4.7), together with
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and Eqs. (5.1},(5.2), defining G~.
This is the natural completion of the g-site CPA

and reduces exactly to the regular CPA for the
single-site case, where the equations take the fol-
lowing form:

(5 'I)

G=(I., -W) ',
W*=V,+V„'(G '- V +W") 'V'

(5 6)

(5.9)

To see that this is the CPA, look first at Eqs. (2.5)
and (2.6), with Io replaced by

(Gx) 1 G 1 +Wx

and W"& identified as g ". It follows that

(5.10)

VI. PROPERTIES OF THE TRAVELING-CLUSTER

APPROXIMATION

In the appendi'ces the TCA is cast in a quite gen-
eral form suitable for a broad range of problems,
and a theorem is proved that shows quite generally
that the TCA is a good self-consistent approxirga-
tion, namely that, starting with any set of Herglotz
operator functions g, iteration of the TCA equa-
tions for complex E converges to a unique, Her-
glotz solution of the self-consistent equations. This
incidentally provides a proof for the conventional
CPA that is somewhat more rigorous and more
general in its application than that of Ducastelle '
for the Cluster (or Molecular} CPA, whichin turn
is a generalization of the original proof of Muller-
Hartmann~' for the single-band case.

The method, and the theorem, are applicable to
the locator formalism of Matsubara and Toyo-
zawa' "and others, to the elastic modes of a
quasicrystalline solid with random masses, to the
Blackman-E sterling-Berk'6 formalism for dealing
with off-diagonal disorder, and to a variety of other
problems with the same logical structure. The
generalization to more than two species goes
through, but is nontrivial, since the basic summa-
tion of cumulant averages, as in Eqs. (2.5) and

(2.6), gives a quite different form in general, and
an additional matrix structure must be introduced
to deal with it. This formalism, which is developed
in Appendix A and provides the necessary frame-

[(G ) '-W"] '-=G=&[(G*) '- V.] '& (511)
=((G '+W'- V ) ') (5.12)

a standard form for the CPA. In fact, Eqs. (5.7)-
(5.9}are exactly (though not transparently) equiva-
lent to the "iterated average t-matrix approxima-
tion" introduced by Chen, ~2 and found previously '
to converge to a unique self-consistent analytic sol-
ution.

work for proving the theorem in the case of non-
Hermitian random terms in H, may also provide a
somewhat better basis than the formalism devel-
oped above for the binary system for consideration
of the difficult problem of correlated systems.

An important property that the TCA shares with
the CPA is invariance with respect to choice of 80.
That is, if a nonrandom term,

~V=+ ~V„ (6.1)

is added to V and also to I, (i.e., subtracted from
H~), then G is unaltered in any given approxima-
tion. This can be seen by inspection of the equa-
tions [(4.4), (4.5},(4.V), (5.1), (5.2), (5.6)] which de-
fine the self-consistent approximation and Eqs.
(2.7}-(2.9}, which define V„, V„, and V,'. We find
that gV, is added to V„and V„, V„' is unaltered, and
4 ~~ is augmented by 5z, Q~+aV„. If we assume

is unaltered, then ~V„5„„is added to 5 "",
gy AV„ is added to W~, and b, V to W. Then (G~) '
is augmented by p,+ aV„with the result that I'~~

is unaltered, consistent with the assumption. Since
the self-consistent solution is unique, the assump-
tion is thus necessarily true, in fact, and L, —W,
and hence G, are unaltered. (It is interesting to note
that it is not necessary for ~V to be translation in-
variant. ) The TCA, then, like the CPA is symme-
tric between host and impurity and is exact in both
of the limits c„=I and c~ =1. H, can be chosen for
convenience in any way; for example, it can be
chosen to correspond to the virtual-crystal approx-
imation, so that V, =O, thereby reducing (almost
imperceptibly) the complexity of the calculations.
It does not appear, incidentally, that the TCA is
invariant, as is the CPA in many cases,"under the
propagator- locator inversion.

VII. SINGLE-BAND MODEL-CALCULATIONS

There is a considerable variety of different cases
which can be handled within the framework of a
single-band model, including the elastic modes of
a Bravais lattice with random masses, the elec-
tronic problem with separable potentials of random
strengths and uniform shape, as well as the stan-
dard tight-binding model which we consider here by
way of example.

Perhaps the most significant point in this calcula-
tion is the way in which the infinite family of sets
S included in T is related by translation to a finite
number of representative sets Z, so that Fourier
inversion reduces the equations to a finite set of
linear equations for each value k of the crystal mo-
mentum.

The operators of the theory become N & N ma-
trices (N is the number of sites in the sample),
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C „"=6,„{5„,[~e(x&S)+~e(x~S)]

+ ~'[6(S', S, x)+5(S;S', x)]),
w„'„=w„„e(xEs)e(y e s) .

(V.2}

(7.3)

In these equations we have introduced the logical
functions e ("statement"), which equals 1 if "state-
ment" is true and equals 0 otherwise, and
5(s', S, x), given by

with rows and columns labeled by &, V„has only
one nonzero element, equal to e„or e~, at the gth
diagonal location, while V„, V„, and V„' have cor-
responding elements e, e, and &', at that location.
The matrix 5"', also, has just one nonzero ele-
ment, at the (x, y) location, equal to W„, the cor-
responding element of the matrix 5', given by

(7 1)

Equations (5.1) and (5.6) do not simplify particular-
ly, while Eqs. (4.7) and (5.2) can be rewritten to
advantage as

and hence,

w Gm' =I.OG1.0- I.o —~ ~

Equation (7.7) then takes the form

G =(LOGG 'GL0 —L()GL o+Lo) ',

(7.10)

(7.11)

where the unprojected matrix products involve only
a finite neighborhood of S'.

We now make use of the assumed translation in-
variance of the family of sets T which defines the
particular approximation being considered to go to
a Fourier-transformed representation. The crucial
equation is Eq. (5.6), and we need to express the
combination (S, x), where xe S', in terms of an
overall translation —a sort of center-of-mass co-
ordinate —and a relative configuration of local
character. To do this, we group the sets S into
equivalence classes, where two sets are "equiva-
lent" if they are related by a translation. Letting
S+r represent the set obtained from S by transla-
tion through r, i.e.,

6(S', S, x) = e(xES)e(xUS =S'). (7.4) s+r ={x~x re-S], (7.12)

We shall be able to use the translation invariance
of the problem (as N-~} to handle sums over the
whole sample by means of Fourier transform, so
that only finite-matrix manipulations are .left. To
this end the matrix WB [Eq. (V.3)] can be related
to the translation-invariant matrix p" by mean of a
projection operator A~,

W„'„=5„„e(x~S')
so that

w' =(1-w')w(1 —a').

(7 5)

(7.6)

In fact, the only components of I'„, that are needed
[Eqs. (5.6), (7.1)] are those for which x&s and y
RS", so that only the portion of G within the sub-
space S' need be evaluated. We denote this sub-
matrix by GB, and use the single underline in gen-
eral to indicate a submatrix with row and column
labels restricted to S'. With the substitution (7.6},
the inverse (5.1) works out to give

G~ =[(1+WG)G '(1+GW) —WGW-W] ', (7.7)

where G is the mean resolvent [Eq. (1.5)], and G '
is the inverse of the submatrix G. The N & N ma-
trix products, gG, Gg, and WGg, appearing here
involve only translation-invariant matrices and can
be done by Fourier inve'rsions.

A form involving fewer Fourier inversions can be
obtained in the case that the off-diagonal elements
of Lo are restricted to finite range, since Eq. (1.5)
allows us to write

we say that

S'= S

if and only if

S'=S+r for some r. (7.13}

A choice of T involving only localized clusters
would then comprise only a finite number of equiv-
alence classes. Each equivalence class S can be
characterized by one representative Z of the class,
and every member of the class ean be expressed
uniquely as a translation of the representative set
Z e

S=Zs+rs ~ (V.14)

or

S~ „=Z+r. (7.15)

In like fashion, the combination (S, x} can be ex-
pressed as a translation of a basic pair (Z, $), con-
sisting of the representative set Z associated with
S and the corresponding lattice point $:

S=Z+r,
x=g+r,
(HZ'.

(7.16)

(7.18)

The translation invariance of the theory now ex-
presses itself in the fact that we can write

(7.19)

lVG =JOG —1,
GW = GLD —1,

(7.8)

(7.9) (V.20)
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so that

rss' rzE (r rs)

Letting

(7.21)

(7.22}

(independent of k),

w(k) = e+ e"r (k), .

4 ~«", (k) = 6«,6 «, [~e(g ez)+ ~e(( e z)]
+e"&' '&~'[6(Z'- t', Z- g, 0)

(7.30)

we can introduce a full matrix notation and write

r (r r-') = I'0(r —r ')

+ g ro(r- r~)C (r, —r, )r(r, —r'), (7.23)

C'(r) = 6„~G', (7.25)

where G ~, which is independent of r, is given by
Eq. (V.V) or (V.11). The coherent-potential matrix
W„„,, from Eq. (V.1), now becomes a function only
of x- x'.

W„., =W(x- x') = ~6, „,+ ~ "r'„'(x- x'), (7.26)

where the representative single-site set is taken as
the site x = 0. %e can now perform the Fourier in-
version, using, for any F(y},

F(k)=g F(y)e "", (7.27)

E(y) = — dkF(k)e&~ ".0 (7.28)

Here k is restricted to the first Brillouin zone,
whose volume is taken as Q. The equations of the
T approximation now become

r,"'(k) =- r,"'= 6„,c' (7.29)

where the bar indicates a matrix of finite order,
with rows and columns labeled by the pair (Z, $)
and with the restriction fez'. The reduced ma-
trix 4 takes the form:

4~))~i (r) = 6Er.6(r6„'o[ee($&z)+78($ EZ)]

+6„, , ~'[6(Z'-r; Z, g)+6(Z+r; Z', g')],
(7.24)

and G~(r) is given simply by

(7.31)

VIH. CONCLUSIONS

By means of partial sums of overlapping cumu-
lant averages, we have developed an expansion pro-

+6(z —4;z'- 0' o}]
[note that 6(S;S, x) is translation invariant, i.e.,
6(S';S,x)=6(S'-x; S-x, O)],

r(k)=[r, '-C(k)] '. (7.32)

In fact, only the single element f'0«0(k) is needed to
calculate W(k}, so that only the ratio of two deter-
minants is needed in a calculation, rather than the
entire matrix inverse. The size of the matrix
burgeons rather rapidly as the size of clusters in-
cluded in T increases. A few-cases are tabulated
in Table I.

Computer calculations have been carried out on
the IBM 361 facility at The Ohio State University,
to test the nearest-neighbor TCA for the single-
band tight-binding model on simple square and cu-
bic lattices with site-diagonal disorder. For real
g, of course, the theorem does'not guarantee con-
vergence, and, as might be expected, minor con-
vergence problems were encountered close to band

edges, but not elsewhere. In Figs. 9 and 10 the fit
of the TCA to the numerically calculated density of
states of Alben et a/. ' is shown for two choices of
the parameters and compared with that of the CPA.
Characteristically, the TCA does what a nearest-
neighbor cluster approximation ought to do and does
it reasonably well. The band edges are fit notice-
ably better than by the CPA, the overall fit is
somewhat closer, and the structure due to local-
ized states begins to appear. In Fig. 10 the satel-
lite peaks in the minority band due to bonding and
antibonding levels of a nearest-neighbor impurity
pair show up in addition to the central peak due to
isolated impurities.

TABLE I. Order of F for various choices of T in one dimension {1D), two dimensions (2D)
(square lattice), and three dimensions (3D) (simple cubic lattice). n is the maximum clustex
size; d is the maximum diameter of cluster.

d
vZ

9 13
15 31

39
1D

9 17 25
41 85
49 133
2D

37 53 65
157 317 491
261 853 1579

3D
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0

FIG. 9. Density of states for a three-dimensional
alloy with Eg=- Eg=0.4, c~=0.1.6. Solid curve: exact
numerical calculation of Alben et al. (Ref. 8). (a)
Broken curve: TCA(nn). (b) Broken curve: C PA.

cedure for the coherent potential g involving in
each term only sequences of single factors,
grouped into "modified cumulant averages, "with
an associated graphical representation. This meth-
od permits a straightforward term-by-term analy-
sis of the Herglotz property of g and leads natural-
ly to an approximation scheme, the "traveling-
cluster approximation, " that generalizes the CPA
and correctly preserves the Herglotz property in
a wide range of cases, as well as the translation
symmetry (in the mean) of the original problem.
The nearest-neighbor TCA gives a markedly im-
proved fit to the density of states, over the CPA,
for the simple systems studied numerically, but
the complexity of calculation increases drastically
with the order of approximation, as is true also of
other self-consistent cluster approximations.

This approach has as yet shed no light on the
problem of amorphous systems or of correlated
substitutional systems, though the formalism de-
veloped here may we11 prove fruitful for further
investigation of such problems.
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APPENDIX A

General formulation

We here present a formalism' adapted to a more

general class of systems and suited, in particular,
to substitutional systems with more than two spec-
ies, where the crucial simplification of Eq. (2.6)
does not occur. The configurations of the system
will be specified by a set n of parameters, which

we take to be denumerable and shall shortly allow

to be the assignment of species at the sites of a
Bravais lattice. The probability of the configura-
tion o! is P(a). We suppose that the generalized
resolvent for the system is [I."—(E)] ', where the

complex variable E may correspond to energy,
squared frequency, or some other real physical
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parameter, and I,"(E—), a linear operator on the
Hilbert space of the physical system, is ex-
pressible as

L-"(E)= L.(E) —V-"(E) .
Here -Lo(E) is Herglotz, and V (E},—the random

part of L—,is either Herglotz, or Hermitian and

independent of E. It is necessary for the applica-
tion of our fixed-point theorem that V"(E) be-a
uniformly bounded linear transformation in any
closed bounded domain in 8,.

The mean resolvent

(A.1)

~(E)=&(L-") '& (A.2)

u = [P(o)]'~',

so that the mean resolvent can be written as

(A.s)

G=Q lu I'(L"-) ' (A.4)

=u(I., -'U) 'u, (A.5)

where V is a linear operator on the product space
S,

(A.6)S=S,X,
.I

and can be defined as an operator-valued matrix,

'Uae' = ~ &an' ~ (A.7)

In what follows, for any operator on one of the
spaces S, or X, we let the same symbol represent
the corresponding operator on S. Thus the symbol

L, in Eq. (A.5) represents the operator L,, I„
where I, is the unit operator on S,.

We note that uu is a projector on the "configura-
tion space" S„and define the complementary pro-
jector Q,

@=I —uu'.
(A.6)

can also be written as a scalar product in an aug-
mented space, after the manner of Haydock et gl. ,

"
Mookerjee, "and others. " Let u be a unit vector
in a Hilbert space S, whose basis vectors are la-
beled by the configurations ~. The components u

are taken as

G=u(L, -g) 'u=L, '+Gum(L, - qu) 'u (A.11)

Here

=[L,—uu(l —G,qg} 'u] '. (A.12)

u(L0 —Qg) 'u = uI., 'u

=La 1

since I,o and Q commute and

ug =0.

(A. ls)

(A.14)

(A.15)

From Eq. (A.12) and the definition of the coherent
potential [Eq. (1.5)], we see that

g =us(1 —G,Q'U) 'u

n=o
u'Q G 'Q "Q

(A.16)

(A.17)

(A.18)

and whose configuration is specified by the assign-
ment of a species e„=1,2, . . . , v to each site x.
We also keep to the case of an uncorrelated sys-
tem, for which

P(&) = P(&„), (A.19)

(A.20)

In this case S, can be regarded as a product of
"site spaces" S„:

s, =' [es„, (A.21)

This expression represents g as a sum of products
of operators, in a form that permits in general an

analysis of the negative definiteness property [Eq.
(1.7)]. The trick is to find a workable approxima-
tion to Q.

We now specialize to the substitutional alloy,
whose random term V' is a sum over sites of a
Bravais lattice,

Starting with the separation

Lo-'U =La —Q'U- uuU, (A.9)

we perform some manipulations to obtain an ex-
plicit expression for the coherent potential g, as
follows. First we multiply (A.9) on the left by

(LD —V) ' and on the right by (I.o —Q'U) ' and rear-
range to get

and

I = I„,

u= ] NIu„,

I„=u„u„+Q, .

(A.22}

(A.ss}

(A.24)

ln these terms the operator Q can be analyzed,

(I —'U) '=(L —Q'U) '+(L —'U) 'uu'. U(L —Q'U) ',
(A.10)

so that

Q=] I 8(u, u„+Q,)-]j][u„u„ (A.25)

(A.26)
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where the projector P$ associated with each possi-
ble overlap set S is given by

"-'- = -~Zv-„-;II --'5- 2 ..i(xES xES xES

P$= 8 „(su u„ (A. 27)

9 being. ,the complement of S. The projectors P$
are orthogonal, and a product Pp)P$ vanishes un-
less S and S' differ at most by the site x.

We can now see, by using Eq. (A.26), how the
expansion (A. 17) duplicates the structure of the
MCA expansion of Sec. II. A single term, corres-
ponding to a product of factors of the form V„and
P$, is represented by a single MCA graph. Here
V„ is an operator on S„SX,

(~„).„.=5.„..vp, (A.28}

uV„u =V„, (A.29)

while V„and V„' are generalized to vectors and ma-
trices as follows:

(u,g, Q„) = V„' (row vector),

(Q,V„u„)„=V," (column vector),

(Q„g„Q„),= V„„, (square matrix) .

(A.30)

(A.31)

(A.32)

or may also represent the corresponding operator
on S. The factor P$ at any stage of the graph cor-
responds to an overlap set S, and the exclusion of
S= (p, the null set, in Eq. (A.26) corresponds to
the restriction to pzopez self-energy type graphs.
From one factor P$ to the next, S must remain the
same or vary by the addition or removal of one
site. In a, product g, Ps'0„, the factors u, u, and Q,
for sites other than ~ and g' are passive because
of their character as projection operators and can
be dropped, since for each site y the same factor
must appear also to left and right. A factor Q,
represents a continuing MCA line, and a factor
u, u„represents the absence of such a line. An iso-
lated dot still represents the same factor as be-
fore, namely,

+5(s;s, x)v- I",[5... . (A.35)

Here e is the set of parameters n„associated with.
sites g~S.

In the case of a binary alloy, v=2, and Q„be-
comes a matrix of rank one which can be written as

Q„=u„' u„',

Q~ —(C )42

BxS (CA)

(A.36)

(A.37}

(A.38)

The matrix elements of Vi„between the appropriate
combinations of u„and u„ then give rise to the orig-
inal forms V, and V,' of Eqs. (2.8) and (2.9), and
the remaining vectors u„' and u„' appearing in Eqs.
(A 30) (A.32) disappear as scalar products equal
to one w'hen all the factors of a full MCA graph are
assembled. The simpler prescription of Sec. V is
then recovered.

APPENDIX B

Fixed-point theorem and proof of analyticity

~,=ZP, . (B.l)

We now recast the equations of the TCA into a
form suitable for analysis rather than calculation.
We start with the formulation of Appendix A, where
the basic expression (A.16) for W involves the
projection operator Q, which is expanded [Eq.
(A.26)] in terms of projectors Ps involving the
different possible overlap sets S. The T approxi-
mation consists first of restricting the sum in Eq.
(A.26) to the family T, i.e. , replacing Q by Qr,
giv'en by

It is clear now that the traveling-cluster approx-
imation is constructed, exactly as before, by re-
stricting the overlap sets S to a family T, and in-
cluding all graphs consistent with that constraint.
Self-consistency is introduced as before, and the
approximation is defined by Eqs. (4.4), (5.1), and

(5.2), which are unaltered, together with the fol-
lowing:

w"" = v,5„+v,'„„r".„„,v,~,

Qr = P GsPs
SET

= IG'),

(B.2)

(B.3)

where we introduce the notation (As), defined for
a family of operators A. on X by

Next, in Eq. (A.17), we replace Go by the self-
consistent propagator G associated with each given
overlap set S. Thus GO@ in this equation is to be
replaced by an operator 8 ~ on 8, given by

(A'} = g A'P, . (B.4)

n" fez ] With this notation, Eq. (A.16) can be written as
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W = u'D(1 —9 Pi) 'u

=u U(1+ 9'0)u,

(8.5)

(8.5)

9 q g

where

(B.V)

where 9 is the inverse, in the subspace defined by
the projector Qr, of 9„'—'U. Because of the ortho-
gonality of the subspaces defined by the projectors
&~ and the definition [Eqs. (8.3), (5.1)] of Qr, we
can write this as

y= inf [$(ImLO)g]/yy)0. (8.15)

This property is trivial for the electronic problem
[Eq. (1.3)] and for the elastic-mode problem and is
in fact true in general if G0 (=—I,o') has a spectral
representation of the form

G (E)=f de, . (B.16}

with p, (v) a positive semidefinite operator satisfy-
ing

1'. = I,o-'N —Qr'0gr,

and [Eq. (8.4)]

~= jw'}.

(8.5)

(8.9)

(8.17)

This follows readily from the positive definiteness
of the expression

The individual terms g "' needed to calculate S'
can be written as

—1)p, (co)t
' —1

t
des

W""= u'V„(5„+O'U, }u,

and W~ [Eq. (5.2}] takes the form

W' =ug; (1+9&&)u,

where

'U"= '9 ='Q -g +.s, x s
x&5

(8.10)

(8.11)

(8.12)

1
E (lmI.,)- 1. (8.18)

Restricting our attention to the case E&DC 5„
we define g) to be the set of bounded linear trans-
formations on 3 of the form (8.4) with negative
semidefinite anti-Hermitian part:

Equations (B.Q) (8.11) define the approximation,
which can be expressed as the solution of a fixed-
point equation,

5.(W) =m,

for a functional 5('vV) given by

p(&) = fug~ (1+
AU& ) u},

(a.13)

(8.14)

with 9 given in terms of && by Eqs. (8.~) and
(8.8).

In this appendix we prove that, for any nonreal E
and any appropriately restricted initial choice of
'VP, iteration of Eq. (8.13}converges to a unique
fixed point%'(E) which is a Herglotz function of E.
Furthermore, the coherent potential W(E) deter-
mined by this %7(E) through Eq. (8.6) is also
Herglotz.

We need to assume the following. (i) Each ~„ is
a Herglotz operator function of E as defined in Sec.
I. This includes the standard cases of electronic
states in both the propagator form, where U, is
Hermitian, and the locator form, where the
(Herglotz) locator g„plays the role of V„, and also
the elastic-mode problem, where V„~E. (ii) Each
g, (E), together with all the necessary derived
quantities like s and &, is a uniformly bounded
operator on 5 in any closed finite domain DC, g, in
the variable E. (iii} -I.,(E) is a Herglotz operator
function of E on SC, which need not be bounded. (iv)
ImI.O

has a uniform lowest bound y &0 in D.

ll& Il
= su( ~lt&lit/tie ti.

1We find

(8.20)

tt&(~)tl= Q I', u;u(1 9m+, )u
'

''S+F
= sup ttutly(1+9gy)utt

sc p

- sup llult' tt'0 y tl (1+ it 9 ft ttVs ft),
S&T

(8.21)

(8.22)

(8.23}

where u, being a vector in 8, is to be regarded as
a linear transformation from 3C into S. Equation
(8.22) follows from the fact that the p~'s define
orthogonal subspaces of 8,. Now

ituit' =p I'(o') =1, (8.24)

(8.25)

(8.25)

(8.27)

(8.19)
and look for a solution ~ within this set.

Now supposing that'NHQ, let us find a bound
for the norm of P('W), using the conventional op-
erator norm:
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from Eqs. (8.8) and (8.15), and the fact that
Imp

' and I~ are negative semidefinite. If we de-
fine

P= sup Il~gli,
seT

(8.28)

then Eqs. (8.23), {8.27) give

x, =(I+QU;)u,

X~
= (1 + O'Ug ) u,

we have, after some manipulation,

~9 = Z(~, ) —8:(m, )

+Usxs2)
—(ups, Q, mQ, Vg, u)+ (uzg, Q, azyu)

—(xsi Usxs2]' —("'UsxQi~&s' 2'Us2u)

where

(8.31)

(B.s2)

(8.33)

(8.34)

(829)

say, and we see that p('VP) is uniformly bounded
for ~7~5) and EH@.

Now we consider the difference b, 8' in P(%'} for
two different values of 'N, say %, and W„and al-
so, to deal with several cases of interest, for two
different sets of values of 'U„. Letting

(8.40)

(8.41)

(8.42)

from Eqs. (8.34) and (8.36). It does not appear
to follow from this that [l a%'„[[ is necessarily less
than [l b,~„,[[, so we have to modify the problem
somewhat in order to see convergence. We make
use of the similarity between (8.42) and the sec-
ond term on the right-hand side of Eq. (8.37),
which is limited by Im F(%'). We write

is„=Imps+ „~y,

f,„=uv;Q„l,„Q„V;u & 0,
f„= tf~„t~-Img(%„}=-Im&'„„.

We can express f~„ in the form

(8.43)

(8.44)

(8.45)

(8.46)

where tlt is a transformation from K to 8 (like u},
given by

q=(l, „)'"9t0- (8.4'l )

where the operator square root (l,„)'/' is taken as
positive definite. Furthermore, we can relate p to
a "unit vector" t~„by taking out a factor (f~„)'/'

&
= 4.(&s.}'" (8.48)

&s =&+@r'Us@r

=Lo-'W- @r&s'@r

(8.35)

(8.36)
ts„tsn I (8.49)

[cf. Eq. (B.'8)]. In particular, we can obtain Im9
as a special case of Eq. (8.34):

Ims'{%)= {X~1m'UgX~) —(u~~Q(Imgz )Q+gg ]u
(8.37)

If f~„has zero eigenvalues, t~„becomes somewhat
arbitrary, but can always be cho~~n to satisfy these
equations. It follows from Eq. (8.49) that

(8.50)

& 0, (8,38) In similar fashion we define f~„and t~„by

m„„=8'(m„), m=0, 1, 2, . . . . (8.39)

Then

where Xs, becomes ys because 8, =8 and/s, ='Us. „

We see, then, that 5 maps into itself the closed
subset of Q corresponding to norm & y. It is thus
clear already that p has at least one fixed point in
that region and no fixed points in outside of it.

We now consider the iteration of 8'(~). Let~
be the initial choice of VP, and let

t,'„(f,'„)"' =(I,„)"QP;u,
/

(8.51)

(8.52)

ts. tsn=I ~

ll t,'.ll =1.
(8.53)
(8.54)

We now make these substitutions in Eq. (8.42),
and get

I

u2 X/2
n (fs )4nn l 1/2 + n-1 172 4,n-l(fs, n1}-

Sn is.n-x
(8.55)

(fn~ sn (I )1/2 n I (I )&/2 t& n & (f„,)Sn s,n" 1
(8.56)
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(f ()1/2/1 (f )1/2 ) 1 (B.SV)

We find that the operators A, „do converge nicely to zero. We have, for ~ ~ 2,

1 i ~/2 Z/2A. = (,,'(„(,~, (/„'. ,) A„.,(f„-,( „g(,4„,I, , -
S,n j.

(8.58)

and find that

I

II 8'(~) -'uf.. II
=

II
8'('vv}- &(~.) II (B.v3)

&/2(f."1}
(f )1/2

Sn
c sup, lf ups 9(N —'VI('„)9„'Us& II

(B.V4)

where

(— 1 1
=sup. ly( }1/2 f~-1

( }1/2 y I/y&
I, . l~„" LS„

1 1~ supel(/' (f )1/2 2S2
( )1/2 (/1 IA'(l1

Sn Es )

(I'lS „(I'

(T(w „g' yA+4~. P

(8.61}

(8.62}

(8.63)

(P'/&')Ifm-m„ll-0 (22- ),

(a.ve)

making use of (8.24), (8.2V) and (8.28). Thus

P('N) =lim~„„='vv, (B.V6)

as desired.
To see that this solution is unique we imagine

%, and W~ to be distinct solutions, and obtain, fol-
lowing the same pattern as above,

x =y/(y+ y) ( 1.

Here

(8.64) (f1} Sl 1/2 +
f 1/2 tS2 (f2}I 1/2 1 Z/2

~S1 S2

(B.'7"t)

gg „=-Im%'„, (8.65)

and Eq. (8.60) follows from Eq. (8.45). We use
also the fact [Eq. (8.30)] that

with

(f ()1/2~ (f )1/2 (B.ve)

e~„y/Ke II&, lf--y n 1. - (8.66)
~1~2 1 + ? I

E
~~/f2 tS

and

(8.68)

(8.69)

Now for any m and g&m,

(A2.VO)

(B.V1)

g -1 gn-1 -o (m, s- ),

(B.v2)

so that QJ is a Cauchy sequence in the domain
However, ~ is complete, so that the sequence

has a strong limit'N in K) .
To show that%' is in fact a solution of Eq.

(8.13), we observe that

The same result holds, of course, for f„'.
From Eqs. (8.50), (8.54), and (8.63), we now

see immediately that

(B.ev)

so that

ll& II - & If& If . (8.80)

Since A, & 1, IIXII, and hence a'vv, must be zero,
contrary to the assumed distinctness of the solu-
tions.

Since y and X are fixed for the given closed do-
main DC@, of the variable E, we see that the se-
quence of functions (~„(E)J converges uniformly to
'VV(E) over D, provided only that%0(E) is uniformly
bounded in D. Furthermore, if 'Vt(0(E) is an opera-
tor-valued holomorphic function in D, then each
element VV„(E) is also, and it follows by a standard
theorem of functional analysis22 that the limit%'(E)
is also analytic in D.

Now the arbitrariness of the domain D, the fact
thatW(E)E-a) for any EeS„and the symmetry
of the entire argument under E -E* ensure that all
of the requirements of Herglotzicity are satisfied
by the solution'W(E). The pattern of argument
leading to Eq. (8.38) can be applied almost ex-
actly to Eq. (8.6) for the coherent potential W

itself, so that
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ImW =X(1m')y —uQSIm(Le —'W)~u

(0,
where

(B.81)

(8.82)

y =(1+SO)u, (B.88)

thus assuring that tP(E) is Hsrglotz if &(E) is.
This completes the proof.
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