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The charge-density-wave (CDW) linear-chain metal NbSe; shows striking non-Ohmic behavior when the
applied electric field exceeds ~ 0.1 V/cm. Hall effect, transverse magnetoresistance, conductivity anisotropy,
and Shubnikov—de Haas measurements using sufficiently low current densities to avoid Ohmic breakdown
have been published. We propose a simple two-band model to account for the temperature dependence of
these quantities as well as the (magnetic) field dependence of the Hall constant in the Ohmic regime below
58 K. The model has six unknowns (carrier concentrations and mobilities) that are fixed by six experimental
numbers at each temperature T. The solution shows that all the mobilities obey a power-law behavior versus
T, whereas the carrier concentrations are both T independent up to 40 K. Above 40 K the hole population
rises sharply, analogous to the theoretical predictions for an excitonic insulator. This implies that the CDW
gap occurs on the hole surface. Using the parameters of the model, we have recomputed the resistivities,
Hall constant, and magnetoresistance, and they have been shown to agree with all the available experimental
data. Thus the conventional single-particle picture with the additional hypothesis of a BCS-type gap on the
hole surface is adequate for understanding the transport properties of NbSe; in the zero-frequency-Ohmic
regime. We also interpret the SdH data in terms of the two-band model.

I. INTRODUCTION

Below the transition temperature 7', (~142 K)
the transport properties of the charge-density-
wave (CDW) metal' NbSe, are conveniently divided
into three regimes for the purpose of analysis.
These are, (i) the zero-frequency low-current
(Ohmic) regime; (ii) the zero-frequency high-cur-
rent (non-Ohmic) regime; (iii) the high-frequency
(above ~100 MHz) low-current regime. (There
clearly exists a fourth regime: the high-frequency
non-Ohmic regime, but no experimental data exist
in this regime.) Strong interest has been generated
by the study of regimes (ii) and (iii) because of the
possibility of studying experimentally the dynamics
of a sliding CDW in a real metal. Such studies will
shed light on (a) the nonlinear dynamics associated
with a drifting CDW,? (b) the nature of the pinning
forces impeding its motion, and (c) the feasibility
of realizing a system in which the sliding Frohlich
mode leads to superconductivity. With regard to
(b) the ease with which the pure compound is al-
loyed® or intercalated®:® with Li makes it an at-
tractive system in which to study the pinning ef-
fects of the CDW condensate due to impurities.
Such impurity studies are presently underway and
show® that the behavior in regimes (ii) and (iii) are
exceedingly sensitive to impurity concentrations.

Most of the galvanomagnetic!+® as well as Fermi-
ology”~? studies done to date have been in regime
(i) where the applied electric fields are sufficiently
low to avoid Ohmic breakdown. Although regime
(i) is of less interest as compared to (ii) and (iii)
it is essential to obtain a picture of the “normal”
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regime that is as complete as experimentally fea-
sible so that the intriguing additional effects (con-
ductivity enhancement) in regimes (ii) and (iii) can
be isolated and analyzed. In this paper we con-
struct a simple two-band model that will account
for the galvanomagnetic and conductivity aniso-
tropy data [regime (i)] presented in Refs. 1, 6,
and 8. Single crystals of NbSe, usually grow in
the shape of long ribbons with the long side along
the (chain) b axis and the wider transverse dimen-
sion along the ¢ axis. Low-magnetic-field Hall
measurements with H along a* have been reported
by Ong and Monceau (OM).® High-field-Hall mea-
surements in the same geometry have been pre-
sented by Fleming, Polo, and Coleman (FPC).®
Transverse magnetoresistance (H||a*) were pre-
sented in the preceding paper' as well as conduc-
tivity anisotropy measurements. In addition, ex-
tensive Shubnikov—de Haas (SdH) measurements
have been carried out by Monceau (M),” Fleming
et'al. (FPC)®, and Monceau and Briggs (MB).° It
will be seen that a two-band model can satisfactor-
ily account for much of the data in these studies
below the T, transition. Qut of this analysis we
obtain the temperature dependence of the four mo-
bilities in the b-c plane as well as the carrier
concentration in both bands. In support of the con-
ventional CDW model,'®!" our analysis shows that
the carrier concentrations are temperature inde-
pendent below ~40 K. Above 40 K the hole popula-
tion rises dramatically in analogy with the increase
in thermally excited quasiparticles across the
Fermi surface (FS) gap of an excitonic insulator.!?
In contrast the electron population remains con-
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stant up to 58 K. Persuasive evidence identifies
the electron pocket with the ellipsoidal pocket seen
in the SdH oscillations of M, FPC, and MB. The
evidence for a hole pocket is unclear at present.
This two-band analysis enables us to disentangle
the individual contributions of the four mobilities
to the conductivity anisotropy, the Hall signal and
the transverse magnetoresistance. It will be
shown for instance that the twelve-fold increase®
in |[R,(0)| at T, is compatible with the twofold rise
in the longitudinal resistivity and the still smaller
rise in the transverse resistivity. The zero
crossing of R ,(0) at ~15 K is due to the faster in-
crease of the hole mobilities relative to the elec-
tron mobilities as the temperature drops, and not
to any change in the carrier population. On the
-other hand, the giant anomaly in the resistivities
is due to the rapid change in hole concentration
between ~40 K and T,. No anomalous structure is
reflected in any of the mobilities. This is also
presumably the case at the upper transition, al-
though the lack of sufficient galvanomagnetic data
and theoretical considerations preclude the exten-
sion of our analysis beyond 58 K.

II. TWO-BAND MODEL

The single-particle picture with a semiclassical
treatment of the transport properties’® has been
remarkably successful when applied to ordinary
metals and semiconductors. To make the analysis
manageable we have assumed the simplest Boltz-
mann equation-relaxation time approach in com-
puting the galvanomagnetic response. Since the
details are found in many text books' we will pre-
sent results only. The assumptions intrinsic to the
model are as follows. (a) At low-temperatures
there exist two closed FS pockets containing elec-
trons and holes, respectively. (b) These pockets
are ellipsoids with their principal axes along a*,
b, and ¢. (c) The relaxation time is assumed iso-
tropic and independent of magnetic field and com-
plications such as intense scattering from “hot
spots” on the FS will be disregarded. Assump-
tions (a) and (b) are indicated by the SdH data
which show two branches. The prominent branch
is consistent with an ellipsoid of moderate aniso-
tropy with principal axes along a*, b, and ¢. Less
conclusive evidence is available for the other poc-
ket which we take to be ellipsoidal as well. The
third assumption will be discussed together with
the computed magnetoresistance. No further
justification of the assumptions will be discussed
except to appeal to the comparison of the compu-
tations with the experiments.

In the Boltzmann equation approach the current
is given by
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- where V¢ = h‘laer/aﬁ is the velocity of the carrier

at k, fis the Fermi-dirac distribution, T the iso-
tropic relaxation time, m; the effective mass a-
long the ¢ axis and the integral in (1) is over the
FS. In general the relaxation time may be aniso-
tropic as well, aspecially if the system is highly
anisotropic. However, the galvanomagnetic mea-
surements analyzed here cannot distinguish be-
tween mass and relaxation time anisotropy. In the
spirit of the model we will describe all the ob-
served anisotropy in terms of the mobilities. As-
suming a quadratic dispersion it is straightforward
to reduce Eq. (1) to the familiar conductivity ma-
trix for electrons (with H along the three axis)
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O =T————"T57 3
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where the mobility y;=e7/m,; has been introduced
and » the carrier concentration is given by
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Calling the hole concentration p and the hole mo-
bilities v; we have for the total conductivity matrix

*6,_ n M; -“1U'ZH
1+ 2
[ (IJ'J.JJ'ZH) ] ulqu “2

b v, +uwH
T O] ( ) ®

v\ V,H v,

For convenience we have absorbed e into z and p.
All quantities in Eq. (5) are assumed positive.

The sign difference in the off-diagonal elements
has been shown explicitly. In the experimental
situation’®*!® it is actually the resistivity matrix
p=0"! which is measured. Explicitly, if the con-
stant current is along the two-axis (b axis) and

the magnetic field along the three-axis (a* axis)
the electric field along the one and two axes is
given by E=p-J where J=(0,J,). The Hall voltage
is proportional to E, =p,,J, whereas the transverse
magnetoresistance is measured by E, = p,,J,. In-
verting the matrix in Eq. (5) we may show that the
Hall constant R,=E,/(HJ,) is given by

R (H)=-A(H)/(B, B, +A*H’) (6)
where

AH) =np,p,/[1+ (k110 H)?] —pv,/[1+(vyv, H)?]

M
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and
B;=nu /(1 + (u,0,H?]+pv/[1 + (v,v,HY]. (8)

In the limits of zero field and infinite field Eq.
(6) reduces to

R,=R,4(0) = = (ni 1, = pV1v2)/ (nik, +DV,) (0l +DV,)
)

and
Ro=R(©)=-1/(n-p). (10)

We have adopted the convention that R x 1s negative
if there are no holes present (p=0). From Egs.
(9) and (10) it is clear that whereas the sign of
R is determined by the more populous carrier
type the sign of R, at low fields is also influenced
by the relative sizes of the mobilities and the
anisotropy in each band. The longitudinal resis-
tance in the presence of a weak magnetic field be-
haves as p(H) =p,(1 + 5 H?) where L. is the effec-
tive magnetoresistance mobility. From the diag-
onal element of the resistivity matrix we calculate

e :Pzz(m - P2»(0) - 1P Y, (K +,)° 1)
“ H (nqu +pV1) (n“’z +pvy) ’

We note that 4, vanishes if either » or p is zero.
This is the expected result in a single band where
the relaxation time is energy independent. The
Hall field prevents any deflection of the carriers
and the measured longitudinal resistance is unaf-
fected by a transverse magnetic field. Further-
more [, vanishes if u,=~v,, i.e., if the two bands
have the same sign of charge and the same longi-
tudinal mobility. The longitudinal mobility is re-
sponsible for this cancellation because the longi-
tudinal velocity sets up the Lorentz force. As
mentioned above the mobilities themselves are
assumed to be field independent. In principle the
relaxation time can have a field dependence such
as 7"'=7;%+&’H?. However, since the observed
magnetoresistance at low temperatures is very
large we shall assume that the dominant effect is
due to the deflection of carrier trajectories arising
from mutual (partial) cancellation of the Hall field
of the holes and electrons. The existance of hot
spots on the FS where electron-phonon interaction
is enhanced can also affect the magnetoresistance.
But in the low-field limit where the carriers sam-
ple only a limited portion of the FS before being
scattered we may neglect such complications.

In the model described by Eq. (5) there are six
unknowns, %, p, K,, V;, H,, and v,. At each tem-
perature there are four measured quantities: the
Hall constant R,(0), the transverse magnetoresis-
tance, and the zero-field resistivities

pi= (i +pvy) 7t (12)

The Hall constant at infinite field R« which can be
measured only at very low temperatures provides
a constraint through Eq. (10). Finally, the field
dependence of R, at each temperature provides the
sixth equation to determine the six unknowns,
leaving no adjustable parameters. Although the
analytical inversion of the six equations is rather
difficult the numerical solution may be readily ac-
complished by first forming the dimensionless
constants

CIE“M(plpz)l/z/(Rw—RO) ’ (13)
C,= ‘J'M(plpz)l/z/Rw . (14)

(It turns out that C, and C, may be measured very
accurately even if the sample dimensions are un-
known. This is because (p,0,)'’? (determined by
Montgomery’s'” technique) is independent’ of b and
¢, and is linear in a (the dimension along ﬁ). This
is also true of Ry(H). u, is independent of sample
dimensions. Thus C, and C, are the ratio of volt-
meter readings). A closed subset of three equa-
tions can be formed which expresses C,, C,, and
R (H)/R~ in terms of the three dimensionless pa-
rameters

1’=n/p, 7)=Ill/V1, and £=IJ'2/V2' (15)

Finally, these three equations can be solved nu-
merically for 7, &, and n. Details of the solution
are presented in the appendix. We note that inso-
far as C,, C,, and R /R~ do not depend on sam-
ple dimensions the values 7, 7, and £ will not be
influenced by uncertainties in sample dimensions.
However, to compute u,, v,, U,, and v, separately
we need to use the anisotropy p,/p, which, of
course, depends on the ratio b/c.

In the foregoing analysis we have assumed that
the carrier concentrations are temperature de-
pendent. This enables us to use the value of R
measured at 2 K to fix the value of (p—n). (It is
not possible to measure R= at elevated tempera-
tures with currently available magnetic fields.)
This assumption is justified in a self-consistent
fashion by the solutions below 36 K which show
that 7 in Eq. (15) is temperature independent.
However, this assumption is invalid at tempera-
tures above ~40 K where a previous analysis'® of
the non-Ohmic conductivity data shows that sub-
stantial thermal excitation of quasiparticles
across the CDW gap occurs. This is also clearly
demonstrated by Hall data in Figs. 3 and 4 of the
previous paper.' In addition the field dependence
of R ,(H) has not been measured for temperatures
above 36 K. Thus we are deprived of two pieces
of experimental information. To continue the
analysis to higher temperatures we need to intro-
duce a fourth assumption: (d) the electron con-



centration » remains temperature independent
from 36 to 58 K. This implies that the electron
mobility u, decreases with the same power law.
The remaining four unknowns u,, v,, v,, and p
are then computed from the measured p,, p,,
R,(0), and p,. With this fourth assumption we
find that (Fig. 1) the computed 1, (and v,) deviates
only very slightly from its previous behavior; and
p rises dramatically to four times its value at 36
K. The computed behavior of i, provides justifi-
cation for assumption (d) (that the electron pocket
is not affected by the T, transition) while the ex-
ponential rise in p agrees with the gap analysis of
Ref. 18. It is easy to see from the measured tem-
perature behavior of R,/p,p, that, as the temper-
ature approaches T, from below, either p rises
rapidly or » decreases rapidly. Since the conduc-
tivity in both directions is also rising in this tem-
perature range the first case is the obvious choice.
(We have repeated the computation with the differ-
ent assumption that p is held constant between 36
and 58 K and found that all the mobilities turn
around and increase with temperature as T, is ap-
proached. This picture is certainly harder to
justify.) Thus assumption (d) is the simplest one
that provides physically reasonable behavior for
the mobilities and carrier concentrations, under
the four constraints provided by R4(0), p,, p.,

and W,,.

III. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependence be-
low T, of the four mobilities obtained by the solu-
tion of Egs. (6)—(12). (For compactness the trans-
verse hole mobility v, has been multiplied by 100.)
All four mobilities show power-law behavior in
this range before saturating at low temperatures.
The longitudinal mobilities are surprisingly large
at liquid-helium temperatures (270000 cm?® /V sec).
However, we note that at 40 K where the non-Ohmic
effects are the most dramatic'® '® u, and v, are
only of the order of 3000 cm?/V sec. At 4 K the
electron pocket anisotropy is 15 compared to 23.8
for the hole pocket. The carrier concentration n
and p obtained from this analysis is shown in Fig.
2. As mentioned above both » and p are tempera-
ture independent below 40 K. Above 40 K, p rises
rapidly, reflecting the thermal excitation of quasi-
particles across a diminishing CDW gap on the
hole surface. The solid line is the least-squares
fit which provides the values of p used in all sub-
sequent computations." The broken line indicates
the assumed temperature-independent value of n
above 40 K.

To check the validity of the solution we have
made a least-squares fit to the calculated values
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in Fig. 1 and then used these values to recompute
P, Ps, Ry, and p,. The electron concentration is
taken to be fixed at 1.088 X 10'® cm™ and p is taken
from Fig. 2. Figure 3 shows the comparison of
the computed p,, p,, and R,(0) with the experi-
mental data while Fig. 4 shows the comparison for
Ky The largest discrepancy occurs for R ,(0),
especially at temperatures below 12 K. This is to
be expected for two reasons. Whereas p,, p,, and
Iy measure the additive effect of the two pockets
the Hall constant measures the competition be-
tween the mobilities of the two pockets. Also R,
cannot be measured with the same precision as
that of p, and p,. At low temperatures where all
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FIG. 1. Temperature dependence of the electron (solid
circles) and hole (open circles) mobilities below 58 K.
The data points are calculated from the experimental
data using Eqs. (6)—(12). The lines are a least-squares
fit to the data. In all cases the mobilities obey a power-
law behavior except at low temperatures where they sat-
urate. At 4 K the electron mobility ratio p/u, equals 15,
and the hole mobility ratio is 23.8. Note that the trans-
verse hole mobility v, has been multiplied by 100.
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FIG. 2. Temperature dependence of the electron (solid
circles) and hole (open circles) concentration. The data
points below 40 K are computed from Eqgs. (6)—(12) of
text, and the error bars reflect the uncertainty in the
measurements. Above 40 K the broken line indicates the
assumed temperature-independent value of the electron
concentration (1.09x10!® cm™3). The open circles above
40 K are the computed values of p using this assumption.
The solid line is the least-squares fit to the computed
data on p.

the mobilities are large R, becomes very sensi-
tive to the values of 7, 1, and £. At the same time,
the zero-field value of R, cannot be measured ac-
curately due to the narrow range of fields over
which R, is field independent. Thus the computed
values of 7, 1, and £ below 12 K are accurate to
only 20%. We have found also that the values of
‘R,(0) and R~ at 2 K have a slight variation from
sample to sample.?°

The computed field dependence of R is shown
in Figs. 5 (low fields) and 6 (high fields). (The
experimental data in Fig. 6 are from FPC.) While
the agreement in Fig. 5 is excellent except at very
low temperatures, in Fig. 6 we have had to adjust
the temperature of the sample to improve the fit
at high fields. At low fields (~20 kG) the disagree-
ment is larger. The value of R,4(0) (the slope in
Fig. 6) at 30 K is approximately equal and opposite
in sign to R~ at 4.2 K in FPC’s data whereas in
the data used for this analysis the same quantity
is only 40%. This accounts for the large discre-
pancy in Fig. 6 at low fields. The disagreement
may be sample dependent.

We now turn to the SdH data and see to what ex-
tent the model described here is supported by the
FS mapping obtained by means of the Shubnikov

w
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FIG. 3. Comparison of the experimental data for the
resistivities p, and p, (circles), and the zero-field Hall
constant Ry (0) (triangles) with the two-band model cal-
culation. The lines represent the values of Ry(0), and
pp and p, calculated using Eqs. (9) and (12). The values
of the mobilities used are given by the full lines in Fig.
1. The electron concentration is assumed fixed at
1.09 x10'® em™3 and the hole concentration is given by the
full line in Fig. 2. Values of Ry(0) at low temperatures
appear to be sample dependent. (The open and solid tri-
angles are data from two samples normalized to the same
value at infinite field.)

oscillations. The most extensive measurements
on NbSe, are those of MB whose measurements in-
dicate the presence of two branches and possibly

a third. Along directions of the magnetic field
where the oscillations are strong the data of MB
agree with the preliminary data of M and FPC.
The first branch which is the most well defined in
MB’s data corresponds to an approximately ellip-
soidal surface with its principal axes along a*, b,
and ¢. The shortest dimension is along & and the
longest is along c¢. If the semiaxis dimensions are
kqx, Ry, and k, the volume of the ellipsoid is
V=3S,X (S,/A1€)'? where S,=4nk,k,, S,=4mk by,
and € =k,/k.. From the SdH data of M, FPC, and
MB, S.=0.3 MG (2.86x 10" ¢cm™?), S,=1.05 MG
(1.00x 10 ¢m™2). The carrier density within this
FS pocket is thus equal to #=2.17x 10'"/Ve ecm™3.
FPC find that € =~ § gives the best fit to the angular
dependence of the frequency as the magnetic field
is rotated towards the b axis. MB’s data favor a
smaller €. In any case the carrier concentration
is of the order of 6 X 10’cm™® which is in order-
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FIG. 4. Comparison of the experimental data for the
magnetoresistance mobility with the two-band model cal-
culation. The full line is calculated from Eq. (11) with
the model parameters given by the full lines in Figs. 1
and 2. Data from three samples (Ref. 1) are displayed.

of-magnitude agreement with the electron concen-
tration computed here (1.09 X 10'® cm™%). Hence
the ellipsoidal surface measured in the SdH data
is probably the electron pocket. However, there
are several difficulties in a careful comparison of
the detailed SdH measurements of MB and FPC
with our conclusions. First, the value of § for €
would imply a mobility ratio of 64 (assuming a
parabolic band) in the electron pocket. This is
four times larger than the computed anisotropy in
Fig. 1. This disagreement is probably due to the
fact that this FS pocket resembles more a brief-
case than an ellipsoid. MB’s data agree with a cy-
lindrical trajectory (e =20) with the magnetic filed
tilted up to an angle of 70° from the a*c plane.
Secondly, MB’s data show other branches of the
same order of magnitude in frequency which merge
abruptly with the main branch. Over a certain
angular range when the magnetic field is in the
a*c plane the main branch fades dramatically,
leaving a ghost image of its original sec 6 trajec-
tory, while continuing with undiminished. intensity
into the new branch. These complications suggest
that a simply connected ellipsoidal pocket is prob-

24
22
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18

>0

R, x 107 (m>/C)
S ™

HALL CONSTANT

FIG. 5. Field dependence below 14 kG of the Hall con-
stant at various temperatures below 40 K. The full lines
are the experimental curves from Ref. 6 and the broken
lines are calculated from Eqs. (6)—(8) using model para-
meters given by the full lines in Figs. 1 and 2. The com-
puted Ry has been adjusted by a scale factor for com-~
parison with the measurements (see Ref. 20). Agreement
is excellent except at low temperatures where Ry is very
sensitive to model parameters. )

Q)

(

HALL RESISTANCE

FIG. 6. Field dependence at high fields of the Hall re-
sistance at various temperatures. The full lines are
from Fleming, Polo, and Coleman (Ref. 8). The broken
'lines are calculated from the two-band model using para-
meters given by the solid lines in Figs. 1 and 2. The
calculated Hall resistance has been normalized to agree
with the experimental data at 4.2 K. The temperature of
the sample has also been adjusted to give a better fit at
high fields. There is a disagreement in the measured
Hall polarity between Ref. 6 and Fleming et al. However,
for the purpose of comparison we have changed the sign
of the carriers in this figure.
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ably too naive a picture. A possible explanation of
these intriguing patterns is the intersection of the
original pocket by higher-order superlattice Bragg
planes. Indeed it may be shown®! that several se-
cond-order images of the T,-CDW Bragg plane
oriented at 45° to the b-axis intersect the center
of the Brillouin zone where the electron pocket
would presumably be located. The faint ghost
spots may be the result of magnetic breakdown®
across these small gaps in analogy with the case®
in Cr, while the abrupt appearance of a new branch
may be the deflection of the electron trajectory in-
to a new external orbit by the second-order gap.
The separation of the contributions of the two
bands to the transport properties enables us to
justify the argument used in the preceding paper
with respect to R,(p,p.)"'. There it was argued
that the quantity A =R ,(0)/(p,0.) had a temperature
dependence which was dominated by the lifetime
of the carriers. Dividing out the power-law be-
havior of the lifetimes enables us to observe the
relative change in carrier concentration. From
Fig. 1 the temperature dependence of the mobilities
above 20 K is T7'%(u,), T72:%(u,), T7%°(v,), and
T™2+°(v,). Thus the quantity A(T) = - (np, 1, - pv,v;)
has the temperature dependence —(nT ™**° - cpT ~%+5)
where ¢ is a constant. Within the calculated pa-
rameters of the model the second term is 21% of
the first at 50 K and increases to 61% at 58 K.
Thus the first term dominates the behavior of A
in this temperature range. We would then expect
the quantity '

A(T/TI)S-B’?S o T-O.l(n - CPT—l.‘i) ,

to measure the relative change in carrier concen-
trations. The residual power law dependence
T~*+* multiplying p unfortunately distorts the actu-
al temperature dependence of p. However this is
not serious near the transition because of the ex-
ponential increase in p. (A comparison of the data
in Fig. 3 of the preceding paper with that in Fig.

2 here shows the slight difference between the
temperature behavior of A(T/7T,)**®" and p.)

IV. CONCLUSION

The galvanomagnetic, conductivity and Shubnikov
data obtained to date on NbSe; provide a rather
complete picture of the low-temperature phase.
To sort out the different components which contri-
bute to the observed quantities we have adopted
the simplest two-band model and used the experi-
mental data to calculate the six unknowns in the
model. Enough parameters are fixed by the mea-
surements to leave no free parameters below 40
K. Above 40 K we have had to assume that the
electron concentration remains temperature inde-

pendent and shown that this is borne out self-con-
sistently by the results. The picture that we ob-
tain is that just below T, a CDW gap occurs on the
hole surface. As the hole carriers are frozen out
across the developing CDW gap, the total hole con-
centration decreases by a factor of 4. This re-
sults in only a factor of 2 rise in the longitudinal
resistivity and an even smaller increase in the
transverse resistivity because the electron mobili-
ties are higher at this temperature. Below 40 K
the carrier freeze out is complete, leaving 6.0
x10'® ecm ™ holes and 1.09 X 10*® ¢m ™ electrons.
The remaining holes are from portions of the
same FS which are not destroyed by the gap or
may possibly belong to an entirely separate poc-
ket. Below 36 K the Hall constant at zero field in-
creases to more positive values and changes sign
at 15 K because of the rapidly increasing hole
mobilities. At very low temperatures the longi-
tudinal mobilities become so large (~250000 cm®/
V sec) that the Hall signal is rapidly driven to its
infinite field value with the relatively modest field
of 10 kG. In contrast to the Hall and resistivity
data which show peak structures the transverse
magnetoresistance obeys a smooth power-law be-
havior. This model also accounts for the strong
field dependence of R, (Fig. 6). The presence of
the electron pocket is strongly indicated by the
SdH data although the possibility of superlattice
Bragg planes intersecting the electron FS may
complicate the full interpretation of the SdH data.
Evidence for the hole pocket is not apparent in the
SdH data. Based on the parameters of this model,
the resistivities, Hall constant, and magnetore-
sistance are calculated and good agreement is ob-
tained with the experimental data.

The number of carriers participating in the T,
transition is approximately 2 X 10 cm™ (16 times
the electron concentration). This number, based
on Fig. 2 is not meaningful if the gapping portion
of the hole surface is not closed [since Eq. (5) is
then no longer valid]. In fact the value of the
transverse components of the spanning vector at
T, (0.5a*,0.5¢c*)** suggests that the FS that nests
may be a cosine band’® which intersects the Bril-
louin zone face. In this case Eq. (5) is clearly in-
adequate to describe contributions from all three
sources. A third matrix obtained from a current
term such as

= 2 2e*T dsp - >
Jy = (eBA+1) (2".)3 fgap . KVk

(where the integral is over the gapped portion of

the FS) should be included. In spite of this quali-
fication it is remarkable that the temperature de-
pendence of p computed from Eq. (5) shows expli-
citly the exponential rise in quasiparticles as the



T, transition is approached. The number 2 x 10*°
cm™ should serve adequately as an order-of-
magnitude estimate of the FS destroyed by the gap
at T,.
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APPENDIX

Equations (6) and (9)-(12) may be reduced to a
single equation involving only 7 as the unknown as
follows. First, five of the equations are rewritten
in terms of the dimensionless parameters [see Eq.
(15)] 7, &, and n, as

1/91 =PV1(7"0+1) B l/pz =pV2(r§+,1) , Rwo= 1/1)(1 -7) s

(A1)
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bw/ (P1p2)* 2 =pV1V2‘/'r_'rl(§ +1), (A2)
(R ~Ro)/pip=[rpv,v,/ (L=7))(E+D(n+1).  (A3)

By forming the dimensionless constants C, and C,
we eliminate p, v,, and v,. Thus we have

_by(pp)'? (1-m Vq

CfRe-Ry TV dim (A4)
c, = ulepd'”® Vru@ -7)(+1) (45)

Ro " (rE+1)(rn+1) °

With 7 as the independent variable 1 and £ can be
expressed in terms of 7 through Eqs. (A4) and
(A5). The mobilities v, and v, can then be found
from Eq. (Al) in terms of 7. Finally R, (H)/R»
can be computed as a function of H by Eq. (6) with
7 as an adjustable parameter. The value of 7
which provides the best fit of R, /R« to the experi-
mental data (Fig. 5) is taken to be the correct so-
lution.
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