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A general formalism is presented for the calculation of geometrically induced structure in soft-x-ray

appearance potential spectroscopy and Auger-electron appearance potential spectroscopy spectra. Electronic
wave functions similar to those used in low-energy-electron diffraction theory are used to describe the
incident electron and the excited-final-state electrons. The problem of calculating the excitation matrix
element is discussed, arid its relevant symmetry properties displayed. Model. calculatioris assuming a constant
"bare" excitation matrix element, a spherically symmetric electronic density of states, and S-wave
scattering from the ion cores are performed for a cluster of nickel atoms and for a cluster that models

oxygen on a Ni(001) surface. These calculations exhibit the general features predicted by the formalism. In
the context of this study, it appears that multiple-scattering effects will be important in any analysis of
experimental data that requires a direct comparison with theoretical calculations.

I. INTRODUCTION

In recent years there has been considerable
interest in using atomic core-level excitation tech-
niques to obtain information about the local geo-
metrical structure in the neighborhood of given
atoms. Two such techniques are energy- and ang-
le-resolved photoemission from localized elec-
tronic states'~ and extended x-ray absorption
fine structure (EXARCH) measurements. '-" In
.the8e two techniques high-energy photons are
used to excite electrons from localized atomiclike
level. s and the scattering of the final-state elec-
trons from neighboring atoms produces interfer-
enee phenomena in the measured spectra from
which information about the local atomic geometry
can be obtained. Theoretical ealeulations of these
effects use the electronic wave functions developed
from low-energy-electron diffraction (I.EED)
work"" to describe the final-state electrons. In
the photoemission work the excited atom acts like
a localized source of electrons which are then
directly observed after scattering from the neigh-
boring atoms. In EXARCH one does not observe the
excited electrons directly but rather observes
oseillations in the x-ray absorption coefficient.
Hence, in effect one sees an angular average over
the allowed final-state wave functions. These
techniques are not restricted to ordered struc-
tures but can be used to probe the local atomic
geometries in disordered solids and in complex
biological proteins. One picks the site of inter-
est by the particular core level that is excited.
These probes thus complement I.RED and x-ray
scattering which require ordered systems. The
main disadvantage of these probes is that they re-
quire use of a synchrotron storage ring in order

to obtain a sufficiently high intensity continuum
photon source to make the experimental measure-
ments feasible.

Soft-x-ray appearance potential spectroscopy
(SXAPS)ts~e and Auger-electron appearance po-
tential spectroscopy (AEAPS), "'"on the other
hand, require only relatively simple and inexpen-
sive equipment for their undertaking and have the
potential for yielding the same sort of geometrical
information as obtained from EXAFS. In SXAPg
one monitors the total x-ray emission from an
electron-bombarded sample as a function of the
incident-beam energy. One finds distinct structure
corresponding to core-level excitations superim-
posed upon a bremsstrahlung background. This
structure can be enhanced by potential-modulation
techniques, i.e. , by differentiating with respect
to the incident-beam energy. In AEAPS one mon-
itors the total electron current to the sample as a
function of the incident-beam energy. Structure
corresponding to Auger processes as the core
level deexcites is superimposed upon a background
current and, as in the case of SXAPS, this struc-
ture can be enhanced by potential-modulation
techniques. Since the x rays or the emitted elec-
trons are not energy resolved, one essentially mea-
sures the probability of exciting the core-1.evel state.
In the past these techniques have been used pri-
marily to obtain information-about surface chem-
ical composition and about the unoccupied elec-
tronic states near the Fermi level. However,
away from threshold there should be structure
which is determined primarily by the atomic
geometry in the neighborhood of the excited
atom. " Although the experimental techniques are
fairly straightforward and do not require sophis-
ticated equipment, their theoretical interpretation
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is in at least three respects more complicated
than in the case of photoemission or E3GLFS: (i)
A high-energy electron rather than a photon is
used to excite the core level and so one must in-
clude scattering processes in the initial as well
as the final state. (ii}There are two final-state
electrons and so calculation of the core-level
excitation probability involves a sum over final-
state energies rather than the electron final-state
energy being determined simply by energy con-
servation. (iii) There is no definite selection rule
which relates the angular-momentum quantum
numbers of the final-state electrons to those of
the initial core state. 'This paper represents a
first step in addressing these problems.

In Sec. II, I describe the formalism used to
address the problem and present a general ex-
pression for the transition rate in terms of the
scattering phase shifts of the individual atoms.
In Sec. IG, I specialize to the case of S-wave scat-
ters and present the results of model calculations
for systems having other parameters appropriate
to bulk nickel and to the 0-Ni(001) system. In
the context of these model calculations, it appears
that multiple-scattering effects make significant
changes in the calculated spectra. Finally, I
summarize my results in Sec. IV.

II. FORMALISM

The Hamiltonian describing the system can be
written as

H=H +H +H (2.1)

where H, is the Hamiltonian describing the inter-
action of the initial- and final-state electrons
with the background conduction electrons and the
other elementary excitations of the solid;

H~o=g V„(r —R„) (2.2)

describes the interaction between the incident
electron and the unexcited system;

Ho'=Q V„(r —R„) (2.3)

describes the interaction between the final-state
electrons and the system containing the core hole;
and

(2.4)

is the electron-electron interaction term which
describes the excitation of the core electron.
Following previous LEED work&i. ' .' . I will
describe H', phenomenologically in terms of the
one-electron Green's function which describes
the propogation of the electron between successive
collisions with the ion cores, i.e. ,

(2.5)

In Eq. (2.5), q is a positive infinitesimal and Z(E)
is a complex proper self-energy,

(2.6)

In Eq. (2.6)

(2.'1 }

describes the damping of the electronic wave func-
tion as it propogates in terms of the mean-free-
path parameter ~A, In Eqs. (2.2) and (2.3) V„(r
—R„) and V„(r -R„)describe the interaction be- '

tween the propagating electron and the nth ion
core, respectively, for the unexcited and the ex-
cited system. For simplicity, I will not consider
explicitly the effects of the lattice vibrations. To
lowest order these will simply renormalize the
individual electron-atom scattering amplitudes
that enter the LEED wave functions used to des-
cribe the initial and final electronic states. ' '"
In addition, there are many-body effects related
to the sudden excitation of the core electron22~4
but these should not be important far from thres-
hold where the geometrical effects appear. Here
I will follow the approach used in photoemission4 .

and EXAFS' and consider the potential of the ex-
cited atom to be specified by removing one elec-
tron from the core level in question and distribut-
ing it over the muffin-tin sphere to simulate the
effects of screening. Thus, the potentials V and
V are specifiable in terms of atomic charge den-
sities obtained from calculations utilizing a sta-
tistical exchange approximation"'" which are
overlapped to form muffin-tin potentials. From
these effective one-electron potentials, scattering
phase shifts specifying the electron-ion-core
scattering amplitudes can be determined as in the
LEED problem. However, these phase shifts can
be different in the initial and final states as, in
principle, can be the parameters that enter the
definition of Z(E).

My starting point is the following expression for
the spin-averaged transition rate for exciting a
core electron from a closed atomic shelP"":

where ( ), indicates an average over the spin of
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the incident electron, N, is the number of elec-
trons in the atomic shell under consideration,
E,(Tc,) is the energy (momentum) of the incident
electron, Ef(icf) and Ef, (Tcf, ) are the energy (mo-
menta) of the two excited-final-state electrons,
4 is the binding energy of the core electron, and

M~ ~ and M~ &
are the respective matrix elements

for the two final-state electrons emerging in a
parallel or antiparallel spin state. The summation
is over all final states with momenta greater than
the Fermi momentum I'z. This is a simple gen-
eralization of the usual atomic physics expres-
sion"'" for electron ionization of helium for the
case where the term describing the capture of the
incident electron by the atom is neglected. How-
ever, instead of using either plarie waves or
Coulomb wave functions I use LEED-like wave
functions to describe both the incident electron
and the excited-final-state electrons. The ma-
trix elements M

~ & ~ &
are thus related to the

"bare" excitation matrix elements of atomic phys-
ics W~~ ~& through

M)) ))((CeK)TKp)

(yf~
~

Tc„)c,)&,)8 ) ) ) )(Tc; Tc„)c,)()c
~
p, ) . (2. )

In Ecl. (2.9) (Tc~ g,) is the momentum-space repre-
sentation of the one-electron LEED wave function'9

P(r)= —
) t +fd'r, d'rIG(r-r)

egg 7'2

x T(r„r,)
( ),f, , (2.10)

where T(r„r,) is the T matrix that describes all
possible multiple-scattering paths that begin at
point r, and end at point r, . The evaluation of the
momentum transform of T(r„rm) is the object of
LEED theory and it is not my intention to repeat
here the substantial body of work that has gone
into this. However, some modifications of the
formalism are advantageous in performing the sum
over final states and these willbe briefly described.

I

(Tc2r Tc)
~
off )(p), ~2 ((Tcm~ yf )(K)

~
yf)

(2.11)

is an antisymmetric (symmetric} combination of
one-electron LEED wave functions and the "bare"
excitation matrix elements are simple generaliza-
tions of those describing the electron-impact ion-
ization of hydrogen using a plane-wave -basis. The
form of these bare matrix elements and their rel-
evant symmetry properties will be displayed in the
appendix.

In terms of the single-atom elastic-scattering
amplitudes, t„(Tc„ic,), the momentum transform
of Eq. (2.10) can be written as

(r
~
p ) = de .„,+ G(Ttdt) Q exp( t,Tt tt„)(exp(-tptt R )t (Ttpt,)'„, .

n( 40)

+g g t„()c, Tc,) exp[iTc, (R„—R„,)]G(Tc, E)}exp(iTc, R„.)t„,(Tc„Tc,)
n'(n'~&)

+ g g t„(Tc,Tc,)exp[iTc, (R„—R„")]
ll ( tl ~ll)
n'(n'An" )

xG ()c„E,)t„„(Tc„ic,) exp [iTc, ~ (R„" —R„.)]

x G(Tt„xt) exp(ITt, ' tt„.)t„.(Tt, Tt )+ ' '
)

=t')-„,g,.+G((c,E, ) Q exp( iic R„)a—'„„,(ic, ic, ),
ny n'(nPO)

(2.12)

where 6„„,(Tc, Tc, ) satisfies the integral ecluation

cp„„,(Tc, ic, ) = exp(iTc, R„)t (K Tc))5„„,

+ g g t„(ic,Tc,}exp[iic, (R„—R„„)]n" (n"~n) 1

x G()c„E))cP„,.„.(Tc„)cc).
(2.18)

In Ecl. (2.12), I have taken the excited atom to lie
at the origin of my coordinate system and have
labeled it by the index n=0. 'The restriction on

the sum over n comes about because the LEED
wave function for the incident electron includes
all multiple-scattering processes prior to the
excitation of the core -level electron. The Green's
function G(Tc, E, ) describes the propagation of the
incident electron between its final elastic scatter-
ing event at the nth atom and the origin where it
excites the given core level. cp, (Tc, Tc, ) then rep-
resents the sum of all elastic multiple-scattering
processes for which the initial event, is an electron
of momentum Tc, scattering from the n'th atom and

the final scattering event occurs at the nth atom
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with the final momentum being lc. In Eq. (2.12),
the momentum 5 function accounts for the process
where the incoming electron excites the core elec-
tron without any preceding elastic scattering
event. The notation of Eqs. (2.10) and (2.12) is
that of Duke and Laramore' ""' and the reader
is referred there for a more detailed explanation.
The advantage of using the cp„„,(ic, ic, ) matrix as
defined by Eq. (2.13) is that the structural Green's
functions which enter the calculation of its par-
tial-wave expansion do not explicitly contain the
momentum Tc, . 'The importance of this will be-
come clearer later on in the calculation. I will

(~~&,.)=6-„q.+G(ic, E,) Q S„(Tc,Tc,),
n( n&0)

where

(2.14)

S„(ic,Tc,)=g exp( iic -R„)a„„,(ic, cc,).
Substituting Eqs. (2.11) and (2.14) into Eq. (2.9)
the excitation matrix element becomes

consider first the matrix element for the case
where the final-state electrons emerge in a trip-
let state. As a notational convenience, I will re-
write Eq. (2.12) as

II( ) (Kg Kg, KI ) = M2 (W ( ( ( Kg
'

K~, K~, ) + W ( ( ( IC' it~ jr~, )G(j( E ) $ (if Il() +
K

(2.16)

I
+Q S~(lc„ccl}G*(cc„&q)W)((cc; cc„'Tcq, )G(ic, E, )S„(cc,Tc, )+ ~ ~

Ky k) tlffj

I
+ 2 s„,(ir„vq)G(ir„Eq)S (Tc„iq)G„i(ir„Z~)IP(((Tr;ic„ir )G(ir, E, ii (Tric,)),

K, k„k, «,&, .

W ) i (K; ic~, Tc2) = —W t i (ic; K2, K~) (2.17}

has been utilized in obtaining Eq. (2.16). The

In Eq. (2.16), S„ indicates that the atomic poten-
tials of the excited final state are to be used in
evaluating the final-state wave functions and

Q„means that the sum is restricted to n 0 0.
The symmetry property [see Eq. (Al) in the. Ap-
pendix]

d K

(2 ii)'
(2.18)

and to perform the momentum integrals via a
partial-wave expansion. 'To illustrate this, con-
sider the second term in Eq. (2.16)

next step is to pass to the continuum representa-
tion

3Z Z'W'ii(cc; cc~, cc& )G(cc, E,)S„(cc,~, ) = Z g W&'f (ic; cc~, ic& )Y~(Q„)G(cc,E, )
K nn'(neo) (2 &) l

x +47c(i) '&j, (ccR-„}Y~ (Qs )Y~ (Q„)
Lg

xg g 6'(«)Y (Q )Y (Q )
I +3

I L;L~,L, i '~P
~f1'(f OO) X;r, ~L, +3

00

x 2 W~'i(cc;icy, icy) G(tc, E)g& (IcR„)s„f&(cc, gc)Yc (Q„,),
0

(2.19)

In Eq. (2.19)

I(L;L~,L2)= dQY~(Q)Yg (Q )Y~ (Q ), (2.20)

harmonic function, j,(n') is the spherical Bessel
function of order k, and

(2.21)
where L is a shorthand notation for the angular-
momentum variables (I,m), Yz, (Q) is the spherical-

i~0 m~A

I(L;L„L,) is expressible in terms of the Clebsch-
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Gordan coefficients~ and if real analogs of the
spherical harmonics are used" then the I(L;L„L,)
become the usual Gaunt coefficients. In going to
the second term on the right-hand side of Eq.
(2.19), the following expansion formulas were
used32

exp(i« ~ R„)=g 4&t(i)'j, («R„)Y~~(Qs )Yz, (Q„); (2.22)

(fI'/2m)K~(EI) =
E& —Z(E&)

G„, qK(E, )) -=g ' ' «'I(L, L„L,)
Lg

x I P)(K(E,)
i R„,-R„,i)

x Yi (Qff ff )

(2.26)

(2.27)

Wt &(«, lc&, Tc&, )= g W'&'~t(«; «&, «&)Y~(Q„); (2.23)

g g' W't &(«; «I„Tcz)G(T&, E, )S„(T&,T&, )

where

W')'f(K(E I );«f, «P )G~~ 2(K(E, ))
nn' ( n& 0) I&+

x&P„WQ(K(E, ); «, )Y~ (Q„,),
(2.25)

s„„.(«) T&,) = Q 5'„g3(«,'«, )Yg (Q„)Y~ (Q„). (2.24)

The important thing to note about Eq. (2.19) is that
for I(L;L„L,) a 0, the integrand is an even func-
tion" of x. Hence, the integral can be extended to
-~ and performed using contour techniques. As
in the LEED work, ' ' I will include only the con-
tributions from the poles of G(«, E) which yields

is the structural propagator which describes the
coupling of the L, partial-wave component centered
at site n, to the L partial-wave component cen-
tered at site n, . In Eq. (2.27) hI&) is the f,th spher-
ical Hankel function of the first kind. Note that
unlike the structural propagators used in previous
LIED work, there is no explicit dependence on z,.
in Eq. (2.27). The angular dependence of T&, enters
only through Y~ (Q„) in Eq. (2.25), The evaluation
of the other terms in Eq. (2.16) follow in an analog-
ous fashion. Defining (n, t 0)

III'.,'(K(EI ))= ZZ -G.,', '(K(EI )}
. I 2t&3 n'

x (J~+.3(K(E,), «, )Y~ (Q„,)

(2.28)

the excitation matrix element can be written as

M ( ( ( Kg
'

Kg, ICp ) = M2 ()Pj ((Kg' Kg, Kp )+ Q )() p((((E( )' Ilg, It@
)I( ((((E())+ ' ' '

L) ny

I.,i;,. ™Fz,,(K(EI)'K*(EI), «P N ~ '(K(EI ))W,'(K(E, ))+

(«,«,
~
4~,~)&.&

=
~
—((T&.

~

4~)(«,
~

(I),)

+&«.(P&)&«, ~PI )). (2.30)

The symmetry property [see Eq. (A9) in the Ap-
pendix]

& I ( I& ~ «~, I&2) — t & (« ~ I&2 ) «& ) (2.31)

compensates for the sign change in the final-state
wave function and one obtains

where the Q indicates that the sums over atomic
sites are for z„z„~,0.

For the case of antiparallel electron spins the
calculation goes through in an analagous manner.
This time the final-state wave function in the mo-
mentum representation is

~'t ~(«&; «~, «I ) equal to the right-hand side of Eq.
(2.29) with

(2.32)

The Coulomb interaction is spin independent and
so for a spin-polarized beam of incident electrons
it should be possible in principle (if not in prac-
tice) to separately measure the singlet and triplet
component of the final-state electrons. However,
in the APS measurements, one measures the qual-
ity given in Eqs. (2.8).

To proceed further I pass to the continuum limit
on the momentum sums and assume a given model
for the electronic density of states above the Fer-
mi level. Since the angular dependence of the in-
itial- and final-state wave vectors enters only
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(2.33)

=Q p~~'(«, «, )Yg(Q„)Y~, (Q„,),
where

p~~ («, «) ) = Q 4w (i)"I(L', L„L,)Yg, (Qs }
LlL,

x j, («,R„)t„~2(«,«&).

The partial-wave components of Ecl. (2.24) sat-
isfy the following matrix ecluation

(2.34)

+'„P '(«, «, ) =p'„'(«, «, )5„„.

+ t"l ~ ZS GLlL,2ZS
nr t&nrrgn) LlL2

x ~(P p 'gK(E, ), «,) (2.35}

As in the LEED problem, only scattering events
on the complex energy shell are considered, i.e. ,
«, -K(E)), «- K(E)), and

I2
t„~)(K(E,),K(E,)) =

)
[exp(2i5,") —1],

(2.36)

where the 5,"are energy-dependent scattering
phase shifts. This turns Ecl. (2.35) into a legit-
imate matrix equation. For a given model of the
lattice geometry, the sums over the lattice sites

via spherical harmonic functions, the angular in-
tegrations dA& and dA& can be easily carried out
on a term by term basis and then the integration
over d~& e& carried out with the aid of the energy
5 function. In the case of a disordered solid, one
essentiaQy sees an average over the angular com-
ponents of the incident wave vector and this also
is easily performed. The resulting equation con-
tains a large number of terms and is tedious to
write down. Since it is model dependent, I will
not display it explicitly here but will illustrate
it in Sec. III for the special case of S-wave scat-
tering and a spherically symmetric density of
states.

It only remains to describe the evaluation of
4'„,o„,o(K(E,), «, ) and hence p&(K(E, )). Defining

p„(Tc,Tc, ) = exp(iTc, R„)t„(Tc,Tc, )

can be carried out to evaluate the structural
propagators.

It is possible to recast the problem as was done
in LEED to take advantage of the lattice sym-
metries, but in the strictest sense, the presence
of the excited atom breaks the lattice symmetry
and results in a defect problem. Hence, for the
model calculations of Sec. III, I will adopt a
cluster approach where 6„„.is determined for a
given subset of atoms which surround the excited
atom. Because of the inelastic collision damping,
only a modest number of atoms will be needed for
convergence.

III. MODEL CALCULATIONS

ll))c«) = ll )').ooc) ))(4&) "=con (3.1)

The electron-single -atom elastic -scattering amp-
litude is given by

t (oo(KE),cK(E,))= [exp(2i5o) —1] y (3.2)

where the 50 are arbitrarily specified. Assuming
a spherically symmetric density of states, the
transition rate is

In this section, the importance of multiple-
scattering effects is investigated in the context
of the isotropic scatterer, inelastic-collision mo-
del used in early LEED work. " This is a non-
trivial question since, although it is clear that
multiple-scattering effects are important in in-
terpreting LEED spectra and photoemission from
localized adsorbate levels, ' it is currently thought
that many features of EXES spectra can be an-
alyzed via a single-scattering mode. '-" This
later feature enables local atomic geometries to
be obtained via. simple Fourier transforms of the
experimental data without having to resort to com-
p1ex multiple-scattering calculations. To investi-
gate this aspect of the calculation, I wiQ ignore
any energy dependence of the bare excitation ma-
trix elements and take only the S-wave compon-
ent to be nonzero, i.e.,

)ftpde, e)",(e, -~ E)"'e(z, -~-e, - g)-

X
~

1+ (4&)' 'Q p (K(E)))+ ~ ~ ~ + 4V g )1)o (K(E)))(~e(K(EI))+ ' ' '

+ (4v)"' p go„,(K{E,))|(o„,*(K(E,))Oo (K(Et ))
~

nln2n3 &g' &&~~y
(3.3)
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In Eq. (3.3) all energies are referenced with re-
spect to the muffin-tin zero which is Vo below
the vacuum level. This means

BULK NICKEL,
{single scottering approximation)

Vp l4eV, ) „=8A, 8 = ~/2, ~= 9eV, E c= l008eV

a'K'(E,.)/2~ = E, —~(E,)

while for the final-state electrons

g'K'(E, )/2m = E, —Z(E, ) —V,

(3.4)

(3.5a)

O'K'(E~. )/2m &Eg —Z(Egi) —Vo. (3.5b)

The difference between Eqs. (3.4) and (3.5) is
because 4, is the incident-beam energy which is
specified relative to the vacuum while E& and E&
are for electrons within the solid and hence do not
require the inner potential correction. In Eq.
(3.3), p is the Fermi energy and 8 is the usual
step function. Removing the contribution to Eq.
(3.3) which would occur for an isolated atom, the
geometrical enhancement factor (GEF) due to the
surrounding atoms is proportional to

Qs

0

~C:~b

~E

II
'i

I ',
,

il

A
/ ~

I g
~

/
/

s / r

—GEF (neoreet neitthbore}---- derivotive of GEF
(neareet nei(}hbore}—.-derivative of GEF
(neareet Inext-neoreet

r~
/

/
I /r

In Fig. 1 I show calculations with parameters
corresponding to the excitation of the Lz level in
bulk nickel. As an estimate of the core-level bind-
ing energy, I use the ESCA value given by Sieg-
balm et a/. '4 of E,= 1008 eV and correcting this
relation to the muffin-tin zero gives 4= 994 eV.
(I take V, = 14 eV and assume p, = 9 eV after pre-
vious LEED work on nickel" ). In view of the
many simplifying assumptions made in Eq. (3.3)
any reasonably consistent set of parameters
would suffice for the model calculations. This
set of calculations neglects multiple-scattering
effects and considers only single-scattering
events from the atoms in the cluster, i.e. ,

(P~~. (K(E)),K(E)))-P„~ (K(E)),K(E)))5„„e (3.V)

and phase shifts of 5 = —,'m are assumed for both
the initial and final states. 'The excited atom is
taken to lie at the center of the cluster. The solid
line shows the calculated GEF for a cluster con-
sisting of the excited atom and its nearest neigh-
bors. Note that there is only a minimal amount
of structure present in this function indicating that
the effects of the lattice scattering are 1argely
hidden by the background induced by the final-
state summation. However, differentiating with
respect to the incident-beam energy, as is done
experimentally, yieMs the lower dashed curve
which shows considerable structure. This struc-
ture is due primarily to the final-state electrons
rather than to the incident electron because of the
factor I(,

" which occurs in the denominator of the

&/, &, f /z,—/, (z, —~' 'E,)"'eIE, —~--z, —q) . .

(3.6)
1000

I

IIOO
I I

I 200 1300
Incident Beom Energy {eV)

I

I400 I500

P'„(v). The upper dashed line shows the derivatives
of the GEF for a cluster consisting of both nearest
and next-nearest neighbors. This curve shows
only enhancement of the structure already present
for the nearest-neighbor-only case. Hence, in
the context of this model calculation it appears
that only very short-ranged geometrical informa-
tion is present in the SXAPS hand AEAPS spectra.
A more realistic calculation with stronger elec-
tron-atom scattering (i.e. , more phase shifts)
could possibly extend the distance over which
geometrical information could be obtained.

To display the effects of multiple-scattering
processes, I consider the excitation of any oxygen
atom adsorbed on the Ni (001) surface. The clus-
ter of atoms utilized in this series of calculations
is shown in Fig. 2. The oxygen atom is assumed
to lie in the fourfold symmetric position at a dis-
tance d above the outermost plane of nickel atoms.

FIG. 1. Calculation of the geometrical enhancement
factor (GEF) and its derivative for various clusters of
nickel atoms. The calculation is performed in the single-
scattering approximation and utilizes the parameters
shown in the figure. The solid line shows the GEF for a
cluster containing only nearest-neighbor atoms and the
lower dashed line shows its derivative with respect to
the incident beam energy. The upper dashed line shows
the derivative of the GEF when both. nearest- and next-
nearest-neighbor atoms are included in the cluster.
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FIG. 2. Atomic cluster used for the 0- Ni(001) calcula-
tions. The cluster consists of the oxygen atom, the four
underlying nickel surface atoms, and the next-nearest-
neighbor nickel atom which lies in the second atomic
plane. The oxygen atom lies in the four foM symmetric
position at a distance d above the nickel surface. (a)
shows the projection of the cluster in the x-y plane and

(b) shows the projection of the cluster in the g-z
plane.
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The cluster consists of the oxygen atom, the four
underlying nickel atoms, and the next-nearest-
neighbor nickel atom which lies in the second
plane. This cluster was chosen to minimize the
required computation time and more atoms would
likely be required to analyze experimental data
using a more realistic potential. The Ni-Ni dis-
tances are appr'opriate for an undisturbed surface,
i.e., ¹-Ninearest-neighbor distance equal to
1.76 A. The binding energy of the oxygen K level
from ESCA" is 532 eV corresponding to a value
of 4= 518 eV relative to the muffin-tin zero.

Figure 3 shows the derivatives of the GEF in
both the single -scattering approximation and with
all multiple -scattering processes included. The
lower panel shows curves for the oxygen atom
0.9 A above the Ni (001) surface and the upper
panel shows curves for the oxygen atom 1.2 A
above the Ni (001) surface. Constant scattering
phase shifts of 5= —,'m are used for both the oxygen
and the nickel atoms in both the initial and final
states. Comparing the single-scattering curves,
going from d = 1.2 A to d = O.S A shifts the struc-
ture in the curves to higher energies consistent
with similar shifts observed in LEED calcula-
tions when the upper layer spacing is decreased.
It is more important, however, to note the changes
in the curves on going from the single-scattering
approximation to the inclusion of multiple scat-
tering effects. Not only peak shapes but also
peak positions are drastically altered. Hence, in
the context of this simple model it appears that
multiple scattering effects must be included in any
analysis of experimental data that requires a di-

500 600 700
Incident Beorn Energy (eV)

800

FIG. 3. Derivatives of the GEF for the 0-Ni(001)
cluster shown in Fig. 2. The solid lines are for the sin-
gle-scattering approximation while the dashed curves
include all multiple-scattering effects. The upper panel
is for the oxygen atom 1.2 A above the Ni(001) surface
and the lower panel for the oxygen atom 0.9 A above the
Ni(001) surface. The other parameters used in the cal-
culation are shown in the figure.

IV. SUMMARY AND CONCLUSIONS

In summary, I have described a calculation of
the structure introduced in SXAPS and AEAPS
spectra because of scattering events taking place
in the neighborhood of the atom excited by the in-
cident electron beam. This structure depends on
the local atomic geometry and its analysis may

rect comparison with theoretical calculations.
Presumably, more realistic models for the elec-
tron-atom scattering would produce even stronger
multiple -scattering corrections. However, Fig.
3 does show the presence of structure which is
dependent on the local atomic geometry and so
properly analyzed SXAPS and AEAPS data may
well yield information about atomic positions in
the vicinity of specified atoms.
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provide a way of learning about the local atomic
geometry in the region of the t,xcited atom. Un-
like the case of LEED, this technique is not re-
stricted to ordered systems. By proper selection
of the core levels involved it may be possible to
focus on catalytically active sites and not have to
determine the eritire structure of complex mol-
ecular systems. A completely general formalism
was described which makes use of the current
state of the art of LEED theory for calculating
the initial- and final-state electronic wave func-
tions. The problem is more complicated than its
counterparts in localized photoemission'~ and
EXAFS' ' in that since a high-energy electron is
used to excite the atomic core level, there are
multiple-scattering events taking place in the in-
itial as well as in the final states and there are
no definite selection rules relating the final-state
angular momentum to the angular-momentum
quantum numbers of the core level. There are
also two final-state electrons and so one is left
with an explicit sum over final-state energies
which tends to smear out the geometrically in-
duced structure. However, differentiating with
respect to the incident beam energy brings back
this structural information. On the positive side
is the fact that SXAPS and AEAPS experiments re-
quire only very simple equipment to perform and
do not tie the experimentalist to a synchrotron as
a continuum source of soft x rays. This advantage
may well outweigh the difficulties in analyzing the
data. The problem of calculating the bare excita-
tion matrix element was described although no
numerical calculations of this quantity were per-
formed. To illustrate the geometrical effects,
model calculations were performed in the spirit
of the isotropic-scatterer inelastic collision mo-

del used in early LEED work. " In the context of
those model calculations it appears that the geo-
metrically introduced structure reflects only the
positions of the neighboring atoms and that proper
inclusion of multiple scattering effects mill be
important in any direct comparison between theo-
ry and experiment. This paper represents only
the first step in understanding the phenomenon.
Future work mill include a more thorough study
of the bare excitation matrix element to see how

many partial-wave compounds will be necessary
to accurately model it and will include a better
descriptiop of the electron-atom elastic -scattering
amplitudes. Work is currently in progress to
assess the applicability of Fourier transform
techniques to data analysis. It will also be nec-
cessary to assess the degree to which uncertainty
in specifying the scattering potential of the excited
atom will affect extraction of geometrical infor-
mation and to optimize the cluster size to ensure
convergence for a given model potential. How-

ever, even in the absence of a complete data an-
alysis, comparison of spectra for both ordered
and disordered systems may provide information
about changes in adsorbate binding sites. Forth-
coming experimental. work' will provide additional
motivation for the theoretical investigations out-
lined above.

APPENDIX

The "bare" excitation matrix elements hre sim-
ple generalizations of the atomic physics expres-
sions for the ionization of a hydrogen atom by an
incident electron beam. ""Letting p, (r) be the
wave function of the core electron, the bare ma-
trix'element for the two excited-final-state elec-
trons emerging in a triplet state is

'r, rd, fe px[-i(Tcr, + «, ~ r,)]-exp[-i(Tc, ~ r, + cc, ~ r, )]]

2

x [exp(icc ~ r,)f,(r,) —exp(inc ~ r, )Q,(r,)]Ir, —r, l

= —W'&~ (Tc; Tc„Tc,) . (A1)

Although I have used a plane-wave basis in order
to simplify the coupling to LEED-like wave func-
tions, in actually carrying out a calculation of the
bare matrix elements it would be necessary to
orthogonalize the plane waves to the core-electron
wave function. " The symmetry properties illus-
trated in this. Appendix are not affected by this
orthogonalization procedure. In carrying out the
multiple-scattering portion of the calculation it was
necessary to utilize a partia1-wave expansion of the

excitation matrix element In performing this
expansion I make use of the following partial-
wave expansion":

'c+1 l(cos 12)
2l

ln Ecl. (A2), r& (r&) .is the lesser (greater) of the
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r, and x„d', (cos8») is the 1th Legendre polynomial
and 8„ is the polar angle between r, and r, . I also
assume that the atomic core-level wave function
can be written as the produce of a radial function
and a spherical-harmonic function, i.e.,

core-level wave function.
Using Egs. (A2) and (AS)

W $)(&y &z| &2)= g WA z, z (&y &gy &2)Yz(Q)
LLjL

P,(~) =R„, (r}Y (Q), (AS} x Yg (Q,)Y),(Q,), (A4)

where n, is the principal quantum number of the where

A, z., r.,(~i ~z~ &2) = ~ dt; ch2 ' . (i)' 'i-'2
&2w z, 0 o

' '25+1&&+z

xj,(ar, ) R, (r,)[I*(L;L,L,)I*(L;I.„L,)j, (g,t,)j, ('g,r, )

I*(L;—X, L,)I*(L;L„L,)j, (v, r,)j, (v,r,)] . (A5)

The important things to notice about Eq. (A5) are
the following symmetry properties:

( g; g„ lz, ) = (—1)'W'A~~ ~ (Iz; e„v,), (A6)

(Iz; -g, g ) = (-1) &W ~'~ & & (K; K» K2), (AV)

Wf( & & (Iz; v» K2)=(-—1) 2Wt'&~«(K; K»K2). (A8)

Similarly, the "bare" excitation matrix element
for the two excited-final-state electrons emerging
in a singlet state is given by

(2m)~ z'

2
~@~ dsr2(exp[-i(Tc, ~ r, + %, ~ r,)]+exp[-i(Tc, r, + lz, .~r)]]

2

x [exp(i' ~ r, )p, (r,)+ exp(iTc ~ r2)p, (r,)]
. Ir, —r, l

(A 9)

As in the case of antiparallel spine, a partial-wave expansion of Eq. (A9) yields

W ))(K; Kz, K2)= Q W )') z z (K; Kq, K2)Yz(Q)Yf (Qq)Yg+ (Q2),
1

(A10)

where

16e' OO co

(A 11)

xj ((Kxz)R„) (r2)[I+(L; L, I z)I+(X; L2, L )I & (Kzr~)j, (z,x,)

+I*(L;L,L,)I*(X;L„L,)j, (v, r,)j, (~,r,)]. .

As is the case of parallel spins, the partial-wave components have the following symmetry properties:

W')') ~ ~ (—v; v„v,) = (—1)'W')') ~ ~ (Iz; g„g );

W (')
~ z z (K; -Kq, K2) = (-1) &W )') ~ ~(K; Kq, K2);

W
P& ~,z, (tc; z» -z, ) =(-1)' W

&& ~,~ (v; a» v, )

(A12)

(A13}

(A14)

Note added in proof: Additional work indicates
that in the context of the S-wave scattering model
the main effect of multiple-scattex'ing processes
is to introduce an overall "phase shift" with re-
spect to curves for the GEF calculated in the

single-scattering limit. This shift makes curves
calculated in the two limits look quite different
but does not affect a Fourier transform process.
Hence, just as in EXAFS, Fourier transform
techniques may be useful in data analysis. "
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