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Solids with thermal or static disorder. II. Optical properties
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The effect of temperature and impurities on optical properties of solids is discussed with particular emphasis
on features absent for free electrons but present for Bloch electrons. Using an equation-of-motion method, a
generalized Boltzmann equation valid for both intraband and interband conduction is obtained. This is

formally solved to give an expression for the conductivity cr(co) nearly identical to the usual Kramers-
Heisenberg dispersion formula except for a complex, frequency-dependent function M„„„(co)which serves to
shift and broaden the energy denominators. When the external frequency eo is on resonance with an
interband transition eg„—e„„,the function M becomes to good approximation X(kn, e~„)—X (kn, eg„),
i.e., the one-electron self-energy shift. When co is on resonance with an indirect transition e@, —y.„., the
standard theory of phonon- or impurity-induced indirect absorption is obtained. New results are given for the
shift of the dc dielectric constant. The connection with Holsteins and other quantum Boltzmann-like

equations (for intraband conductivity) is described in an appendix.

I. INTRODUCTION

In the preceding paper' (referred to as I), the
effect of thermal and static disorder on one-elec-
tron properties has been discussed. An optical
excitation involves both an electron and a hole.
The effect of disorder is twofold: (a) it alters
the properties of the electron and hole separately,
as described by one-electron theory; (b) the elec-
tron and hole interact with each other via the dis-
order. The processes of type (b) make the theory
for optical response functions much more compli-
cated than one-electron theory. As in I, we em-
phasize the new features that emerge when the
electron states are Bloch waves and not plane
waves.

Our motivation for starting this work arose from
a particular problem: the shift with temperature
of interband edges in the optical spectra of both
semiconductors and metals. Typically the shift
is of the order of 4&10 ' eV/'K. The primary
cause for this is electron-phonon interaction.
Various one-electron theories of the phenomenon
exist. Fan' suggested a self-energy theory keeping
only intraband terms. Antoncik' pointed out the
importance of Debye-Wailer terms. Recently it
has been realized4 that both types of terms are
needed in a complete theory. Allen and Heine'
have systematically discussed the one-electron
problem, and show how both corrections enter on
equal footing in the theory, including interband
self-energy terms omitted by Fan. There exists
an alternative formulation' of the problem due to
Brooks. This theory is a simple consequence of
thermodynamics, and expresses the temperature
variation of the gap as the effect of electron-hole
pairs on phonon frequencies. The method has been

applied by Heine and Van Vechten to explain the
temperature dependence of band gaps in Si. In
making comparison with experimental data, it is
implicitly assumed that shift of interband edges
is given by the change in one-electron energies.
The neglect of interference effects between the
electron and the hole worried us, so we proceeded
to get a theory for the effect of disorder on optical
response functions. In the process we obtained a
generalized Boltzmann equation for a particle-
hole amplitude function. This equation can be used
for various purposes, and is much more general
than the specific problem it was intended for.

The combined effect of disorder and interband
transitions has not received much attention in the
literature. A simple method for getting the con-
ductivity is to use the Fermi golden rule for the
real part, and Kramers-Kronig analysis for the
imaginary part. This is the approach' taken by
both Stevenson and Nettel. They have considered
the effect of electron-phonon interaction using low-
ozder perturbation theory. Nettel's calculation is
restricted to one-phonon processes. Stevenson's
work includes multiphonon, Debye-Wailer, and
anharmonic effects. His calculation, using a local
pseudopotential approximation for sodium shows
excellent agreement with experiment at low fre-
quencies, even beyond the Drude absorption region.
He has also calculated the temperature dependence
of the spectrum due to lattice expansion and Debye-
Waller factors. The effect of a single impurity on
interband absorption has been studied by Parlebas
and Mills. ' They have used a more sophisticated
perturbative method. The expression for c,(&o)

(imaginary part of the dielectric constant) in terms
of Green's functions [Eq. (2.12), Ref. 8] is exact
and can be used for a dilute alloy after ensemble
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averaging over impurity configurations. Parlebas
and Mills deal with a single impurity and as a fur-
ther simplification they consider a two-band model.
This greatly simplifies the task of evaluating e,(&o).

The expression they get at this stage though much
simpler, is still difficult to analyze for informa-
tion about the structure of e,(&o). For this purpose
the authors assume a one-dimenional form for each
of the two bands and calculate e, (&o) for this model.
Their calculation shows that new features arise in
the spectrum due to impurity-induced absorption.
Our expression for the conductivity includes these
effects in a more complete way, since it takes into
account the effect of more than one impurity (the
dilute approximation is made however), and a
completely general band structure.

The analogous problem of dc transport in a solid
has been considered by Kohn and Luttinger. ' They
use an equation-of-motion method to get a dc trans-
port equation for an electron-impurity system.
Interband effects are not included properly in their
work. As the frequency is increased to infrared
values, quantum effects become important. Ron"
and Yamada ' have generalized Kohn and Luttin-
ger's method to finite frequencies, but treated the
electrons as free and not Bloch electrons. A more
systematic way of attacking the problem is by
Green's functions and Feynman-diagram tech-
niques. The Green's-function theory of Kadanoff
and Baym has been used by Prange and Kadanoff 3

for the electron-phonon system. Holstein" has
derived a transport equation using diagrammatic
methods. To the best of our knowledge no attempt
has been made to generalize these treatments to
include interband transitions. We have general-
ized Kohn and Luttinger's method to obtain a the-
ory which properly takes into account interband
effects. We have not used diagrammatic or Green'8-
function techniques since the equation-of-motion
method itself gets complicated enough and gives
the level of accuracy we need. Some of the above-
mentioned equations are dealt with more complete-
ly in Appendix B, and a comparison between these
and the present work made.

The definition of a generalized distribution func-
tion and the Boltzmann-type equation that it satis-
fies are presented in Sec. II. In this section we
also examine the equation in various limits and
see how familiar results can be recovered. In Sec.
III a transformation of the equation is presented
which enables us to write down a general solution
for the optical conductivity. This section also
deals with applications of the general results to
specific cases of interest, primarily in semi-
conductors. A brief derivation of the equation is
presented in Appendix A, and Appendix B dis-
cusses relevant previous work, and their relation

to our work.
Some of the results of this paper have already

been presented in a brief Note. ' Since then we
have found a more systematic method of getting
a solution for the conductivity, and have rederived
the previous results using the new method. Terms
in the dc dielectric constant have been found which
were missing before because of a mistake in the
earlier treatment. It is clear from the expression
for o (v) in Sec. 1II, that it predicts corrections to
the Boltzmann result for the dc resistivity. These
corrections seem to us the proper way of incor-
porating temperature dependence of energy bands
into transport theory. This is not discussed here,
but we plan to do a detailed investigation soon.

II. GENERALIZED BOLTZMANN EQUATION

4 nn'

vgntn~Kn' ~Tn~

v-„„,„=( T n'( (p„!~)(kn& .
Here c I, „ is the creation operator for the state
(k, n), vT, „„is the velocity matrix element, and

for n =n' is the one-electron velocity vT, „=acT, „!sk
(units of K= 1). Equation (1) can now be rewritten

J=-e Q vt „„Fg„„,
k nn'

~T."=~In, Tn'

&T,T' ' =Tr(&cT' 'cT ) ~

(sb)

(Sc)

Throughout this paper, subscripts are truncated
when possible. Thus when k'=k, I'~ -„,„, is writ-

t

ten I'-„„„., and when n' =n, it is further truncated

The semiclassical Boltzmann equation deals with
a distribution function defined by the diagonal ele-
ments of the density matrix p. This is obviously
not satisfactory for a quantum treatment, since the
off-diagonal elements of p are essential for cal-
culating any physical quantity and have to be treated
at par with the diagonal elements. Getting a gen-
eralized distribution function therefore seems to be
the first step towards obtaining a generalized
Boltzmann equation.

The optical conductivity o is related to the mac-
roscopic current by the relation J=zE, where the
E field is in the x direction and we are only con-
cerned with the component of J in the same direc-
tion,

~=»(w)
where j is the current operator. For a system of
Bloch electrons characterized by wave vector R,
band index n, -and energy e T, „the operator j can be
written
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to p &„. The semiclassical expression for the
macroscopic current J is

kn

p-k„=z 4„„=Tr(pc Tn cK„).

(4a)

Here P &„ is the semiclassical distribution function
for electrons in state kn and vz„ is the one-elec-
tron velocity C. omparing Eqs. (4) with Eqs. (3)
shows that Eg„&„i is a natural generalization of
I' k„. The physical interpretation of P &„ is that it
gives the probability of finding an electron in state
Tm. The generalized function p-k„k „has a simple
physical meaning too. It is an average amplitude
for finding the e1ectron-hole pair, with electron in
state k'n' and hole in kn, mixed into the state of
the system. Because the wave vector of the ex-
ternal electric fieM is assumed to be zero, the
macroscopic current involves only those pairs
which have zero total momentum. This can be
seen from Eq. (Sa). The semiclassical distribu-
tion function satisfies a Boltzmann equation, and
this can be used to determine the dc and infrared
optical conductivity. For the generalized theory
of the optical conductivity, what is needed there-
fore is a Boltzmann-type equation satisfied by
Eg„. The off-diagonal elements (n'4n) will give
the nonc1assical interband conductivity.

In linear-response theory I' g„„ean be expanded
to first order in the electric fieM

I' 7 nn' ~ k nn' + @ k nn' ~

&~k-' =»(Po c k 'c k )

4 knni =Tr( pe C knic k n ) .

(5a)

(5b)

(5c)

Her-e pp is the equilibrium density matrix, pp
=e ~/Z, and ps is the deviation to first order in
the electric field Equat. ion (5b) defines the gen-
eralized equilibrium distribution function Eg„„.
This is almost the same as a Fermi function,

f(e-k„) =(e &n+1) '5„„..
But even in equilibrium, electron-phonon and elec-
tron-impurity interactions mix in electron-hole
pairs somewhat, and give corrections to the Fermi
function. The deviation from equilibrium of the
distribution function is given by 4 &„„i. Since the
current vanishes in equilibrium, J involves 4g„„
only. By decoupling in second order, we get a.
closed-form transport equation for 4 z„„i, starting
from the equation of motion of the density matrix.
The theory is not band diagonal except in the semi-
classical case. The derivation of the equation is
presented in Appendix A. We now present the equa-
tion for the case where both electron-phonon and
electron-impurity interactions are present:

-g'(z -g) 4 =eZX+Ik C . (6)
Here z is a complex external frequency and will be
set equal to ~+i6, where v is real and 5 is a posi-
tive infinitesimal. The notation Q means that Q is
a tetradic; i.e., P operates on a matrix A, accord-
ing to the definition (QA)» =Pn, Q».n, As~. The
tetradic elements of 9 are given by

f~»:n~=('~ —&2) ~x, n 62, e.
Equation (6) has a simple interpretation as a gen-
eralized Boltzmann equation. The first term on
the right-hand side, eEX I,„„., gives the rate at
which electron-hole pairs are created by light.
The second term describes how the electron-hole
pair is scattered by the disorder (phonons and
impurities) in the system. The factor on the left-
hand side is an inertial term, being 90'out of
phase with the electric field. This factor inhibits
the production of electron-hole pairs, unless co is
near resonance, i.e., almost equal to eI,„-eg„..
The explicit form of the driving term is

(p) (2)& I .. =XX.. +XV.. +' ' ' (Sa)

f kn' -f Kn
Inn k nn

Vn' — ~n
(Sb)

The terms X"' and beyond involve second and
higher powers of the scattering matrix element.
The expression for X(2) is presented in Appendix
A; its explicit form is used in this paper only for
calculating the dc dielectric constant of a semi-
conductor. The factor v k„„/(eI„—eg„.) in Eq.
(Sb) is the dipole matrix element, -i(%n) x~%n').
The tetradic K in (6) is the scattering operator.
In general it is complex and z dependent, but in
the appropriate limit (to be specified soon) it be-
comes the real Boltzmann scattering operator.

ek ' - ek f(ek —ek ' —& —'~)

The solution for o(e), using Eq. (9) is

)
~ ng] ~nfk ' fk&p knn'

k nn'

(ek. -eX. -~-f6)
This is the standard formula for optical properties
of solids. » The intraband (n =n') part gives the
coGisionless Drude term.

A. Collisionless limit

The collisionless optical properties can be easily
derived from Eq. (6). In the absence of any col-
lision processes, the solution for 4 z„„.is given by
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B. Collision term

(2)
The effect of collisions is contained in XT,„„and

higher-order terms of Xk„„~ and the scattering op-
erator k. The discussion of the XT,„„ terms will
be left for Appendix A. The scattering operator
will now be discussed. Although our equation has
not been derived by the technique of Feynman dia-
grams, we can nevertheless understand (in a quaii-

haft (z) = " (z) —-" (-z)
=. (z) =="'"'(z) +=" (z),

,(z) =Z(knm, e-k„+z) 5, ~ 6„. „.,

(11a)

(11b)

(11c)

tative fashion) the scattering operator k as the col-
lection of irreducible scattering graphs shown in
Fig. 1. The formal expression for k can be written
as follows:

&x& &x& I+N(&u v T) -f(EI„) ~(~ t k)+f(ek„)
pe' —

1& n p-K p~' —
T(n + p-V

&I tI...lpm&&~'II...lk")
lIIIP 8+@' pfn' k n

(11d)

C. Semiclassical limit

It is worthwhile to see how the semiclassical
Boltzmann equation emerges from Eq. (6). If we

keep only diagonal parts of C, throw away all

kn

K

kn' ~ km'
= ~Z

kn

kn ~ km

kn

kn

I
pm

pm

kn

kn

pm
I

gI.
I

pm

FIG. 1. Diagrammatic representation of processes
contributing to the scattering operator K; Z represents
self-energy graphs.

In Eq. (11a) ' is the Hermitian conlugate of -,

Eq. (11c) is the matrix self-energy discussed in
I. It includes the self-energy due to both phonons
and impurities, and is the sum of 5"' and 3"' as
defined in I. The symbols used in Eqs. (11) are
the same as in I. The terms "'"'and " corre-
spond to the scattering-out and scattering-in terms
of semiclassical theory. Comparing the expression
for K with the graphs in Fig. 1, we see that the
first two graphs comprise the scattering-out terms,
whereas the scattering-in terms arise from the
last two graphs. The order of magnitude of the
electron-phonon part of the collision term is either
kT or SurD, whichever is larger. This is of the
same order as the shift in interband edges with

temperature.

terms beyond X&, in XT,„„„andtake the small-
frequency limit of K, Eq. (6) reads

&kn Ikn
(12)

where 4T, „ is short for 4 T,„„and a similar short-
hand is used for &. This is the semiclassical
equation. In general g is complex, but in the
small-frequency limit, it has only real parts.
In getting Eq. (12) we have used the fact that when
n=n, (f k„-fk„.)/(ek„—e-„„.) becomes Bf(e k„)/
&~kn ~

III. SOLUTION FOR OPTICAL CONDUCTIVITY

This section is devoted to finding a general so-
lution for a, and applications of this solution to
certain special cases. A formal solution to Eq.
(6) is

C =eZ(G(z)X), G(z) =[a(fl -z) -k(z)j-'. (13)

The function Q is a two-particle Walog of a one-
particle Green's function. Although Eq. (13) is
formally exact, inverting the operator involved
in G is by no means easy. Therefore some al-
ternative way has to be found for solving Eq. (6).
The scattering operator g has the following use-
ful properties:

(14)

The operator f(Q -z) clearly has the same sym-
metries. It then follows that the tetradic elements
of Q, G k„„. „t(z), have the above symmetry prop-
erties. These symmetries can be used profitably
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if one looks at the expression for g instead Of 4:

o =-e' Q v-„„.„(G(z)X)-„„„.. (15
ann'

This equation can be transformed using the sym-
metry of Q, into a form where Q acts on the ma-
trix v$„„. instead of Xk„„i..

-i[~k. ,T,. +z+Mk..(z)]
' (»b)

Operating through by G ', this becomes

o(z) =-e' QXT,„i„(-G(-z)v)k„„.
Ann'

We-now look for a solution for 0, of the form

(16)
A

vx.. = g —[i(g+z) -&(-z)]k„. , p„„
P mm'

V pmm'

i[-(u-p„p„. +z+M v„„i(z)]
o z) e2 X~ i knnV

-i[(o-„„-k„.+z+M k„„.(z)] '

(17a)

where ask„T, „ is short for e I,„-eg„i, and a mem-
ory functional has been defined by

(16)

An exact nonlinear integral equation for ~ can be
derived from Eq. (16). Multiplying through by

i[(O-T,„-„„.+Z+M kn„i(Z)] jV-k„„i and uaing Eq. (7)
for 5, we get

(Z) —i g IfT, ( Z) Pmm
I

knn'( )+ kn Tcn'
(19)

Although an exact solution of Eq. (19) is difficult,
good approximations are available. A low-order
perturbative solution of Eq. (19) for M gives a
much better approximation to g than a straight-
forward expansion of 4. From Eq. (19) it is evi-
dent that M has the symmetry MT, „„.(z) =-M k„„(-z).
The size of the leading contributions to M is the
same as that of k. The magnitude of M is there-
fore of order kT, or 8'coD.

In the following parts of this section we discuss
some effects of interest in semiconductors, name-
ly, (a) Van Hove edges, (b) indirect absorption,
and (c) dc dielectric constant.

A. Van Hove edges

In a collisionless optical spectrum, the interband
or Van Hove edges occur at frequencies e = AT, „.T,„,

where cT,„.and eT, „satisfy the condition

VT((ug„. „„)I
T, ~

-0. (20)

In the presence of collisions 0 gets modified ac-
cording to Eq. (17) and the conation determining
interband edges, becomes

~k(+Tt ', k ™k'(&))i $, $ NT, ( )= =0 ~

(21)

The change in Van Hove edges is therefore deter-
mined by M T,„„i(cok„. g„-ik&a), where b, &o is small,
corresponding to co slightly shifted from the un-
perturbed edge. The integral equation for M, Eq.
(19) in this limit is,

Mk-(&T",T.— &) =i Z &k..; p „(~k., k. +»)
pmm'

V Zmm MTnn, (Z&Tn, kn g~)
vj„„n& (MT, „|„-Era)+td-„- —td-„„&„—Era )

(22)
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The quantity M I,„„.-8 m in the numerator is very
small for & near the edge and vanishes at the ex-
act edge as seen from E(I. (21). So the leading
contribution to M &„„comes from those terms in
the sum where the denominator is smaO too, which
in general happens only when pm =7m and pm' =ks',

(z)
MT„„.=iZT„„.k„„..((oT„T„.+i (o)

=Z(kB, 6,„+4M) -Z*(kn', 6 k„. -6(0) .
(23)

The second relation follows by using E(I. (11). The
scattering-in term is smaller by a factor N ' and
thus does not contribute. The shift with tempera-
ture or disorder of the Van Hove edges is there-
fore determined by the real part of the diagonal
elements of the self-energy matrix. In a semi-
conductor it is accurate to neglect the dependence
of HeZ one(d and the phonon frequencies, this is
however, not a good approximation for metals at
low temperature (see Appendix Il). The resulting

expression for the shift of interband edges is iden-
tical to the one obtained by using one-electron
perturbation theory. ' The edges are also broadened
by the imaginary part of M. For this part the ne-
glect of 5(d and phonon frequencies in the energy
denominators is not justified even for a semicon-
ductor, except at high temperature. In this prob-
lem therefore, the non-self-energy parts of & do
not play an important role at least to lowest order.
The next-higher-order corrections can be easily
worked out. They are much smaQer than the self-
energy corrections, and do not contribute signifi-
cantly.

B. Indirect absorption edge

To get the essential features of this effect it
sufficeS to consider a simplified model of a semi-
conductor. We consider a two-band model, with a
small indirect gap e~, and investigate the behavior
of Reo((o) for &o near eI. We also assume that (o

is smaller than any direct gap. For the model con-
sidered, E(I. (17) can be written

1 1o((o pig) ie2 v»» 2 f kv f Kc /
t'j —t'j ' ( Ej —t'$ +td+ttt j (fd+tl!) t'j —t'j —tt —M j (td+ttt! )

(24)

Here subscripts c, v denote conduction and valence
bands, respectively. Since we are interested in
the lowest-order effects X has been replaced by
X' '. Contributions frotm X"' are higher order in
the interaction. The function of interest is Reo((d
+id) for (d almost e(lual to e,'. We can separate M
into its real and imaginary parts, and Res can be
written

Reo((d+i5) =-e' P ~ v,„,„~' f "'

X
M- ((d)k

(~X. -eX.+ )'

(25a)

Mg„,((o+i6) =My„,((o) +iMT, „,((d) .
In getting E(I. (25a) from E(I. (24) we have neglected

M' and M" in the denominators since for ~=a~,
~

&o —(sg, —eg„)»Mg„,(&o). To lowest order, o can
be obtained by taking the first iteration of E(I. (19)
forM. This is justified in the case of a semicon-
ductor because the intraband parts give vanish-
ingly small contributions. The expression we ob-
tain for M" can be written

MT, „,((o}-Mk'„", ((o)+MT,„,((d),

Mp„",
'

(&o) = 1m [Z(kv, k T„—&o) -Z*(kc, eg„+to)),

M'k„, (~) =p lm[=-»„, -k, „,(~) —=-T,„~,„(-~)l

&&
(Vk'!tt: ++~ k!t ~kt:

vt co+&I

The notation used is the same as in E(ls. (11}. The
expression for ImZ(kv, e-k, —(o) can be written

ImZ(kv, tT( —(o) =77 g (~ V'k'„' -„,„I ([fg,„+X((dk, -„)]5(EI( —6 k „+'(ok k- M)

+ [I f k'u++(+ k'- k}]5(~ kc ~ k'!t + k'- k +))
+N, (kv(V~ (k'v)['5(ek, —c- „k- ) (d.} (2V)
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Equation (2V) can be derived from Eqs. (14) and
(24) of I, and we have thrown away 5 functions of
the type 5(eg, —eTc, —v), since it can be shown
that these contributions cancel with similar ones
from ImZ*(kc, e„„+v) when substituted into the ex-
pression for Reo (&u). The contribution of M"'"c(&o)
to Beo (ro} can be obtained by substituting in Eq.
(25a), Eq. (2V) for ImZ(kv, eT„—(o) and the simi-
lar expression for ImZ*(%c, cT, + &o). In the sum
over%, %', only the terms with L near the conduc-
tion-band minimum and%' near the valence-band
maximum or vice versa, contribute. The result
is the same as obtained from standard theory, ~'

showing an edge of the type (&o —e,')'. The con-
tribution of M" (&o) remains to be investigated.
A typical term in Hec (&u) arising from M" (+) is

These terms involving eT, „,are frequently left out
of standard theories. " The evaluation of Eq. (28)
and similar terms proceeds exactly in the same
way as forM"'"'(+). The expressions for
Im=g„, g, etc., canbe obtained from Eqs. (11).
The result shows the same type of edge and has
the same magnitude as the contribution from
M"'"c(v). Our theory therefore predicts an indirect
absorption edge in agreement with standard theory.

C. dc dielectric constant of a semiconductor

In this section we calculate the real pa.rt of the
dc dielectric constant e(v =0). By the Kramers-
Kronig relations, Bee(0) can be written

Bee~((o)

&n ~knn f Tccc f kn

&Tc - &%v - + ~Tc - &Tv

Hee(0) =1+4, Bee((o).d(d

(d
(29)

~ k'vcx Im" y„
&T'C —~TI'v —

(23)

For a semiconductor only the interband parts of
o (&o) are needed, the intraband contributions being
exponentially small. Using Eq. (1Va), the expres-
sion for Hev(v) is

[&o —&og „g„-ReM g „.„(-~)]'+[lmM-k „„(-&v)]'
n&n'

( )
&-~k ' Tn-H MTn'n(-+)' [(o-(oT,„. -„„-BeMk„.„(-(o}]'+[imMk„.„(-&o)]' ' (30)

5((u —(ok„T„-HeMg„„(-&o))
~(& &kn'kn ™kn'n(+tIn.kn'})

)1 —(d/d(o) ReM k„„(-(o)l (31a)

=ReM k„„((aTc„n„)

In the second term of Eq. (30), M k„„(-&o)can be
neglected since X"' is already second order in the
interaction. It can be shown that to lowest order,
the Lorentzian part of the first term can be re-
placed by a 5 function, m5(a& —eg„g„-ReM T, „c„(-v)).
Within the 5 function, it is accurate to expand
Mg„„(-&u) about &u=&uT, „c n„, to first order. The
5 function can then be written

The factor (I -dM/d&o) ' is closely analogous to the
renormalization factor (1-BZ/8&@) ~ in the theory of
metals. Because of nonadiabatic effects near the
Fermi surface of metal, the correction dM/du& is
of order 1 at low temperatures. However, in the
adiabatic approximation (which is certainly ac-
curate in a semiconductor) the factor dM/d&u is
small, of the order of kT/E . The difference be-
tween M and HeM is then of the order of (kT)'/E,
since' is of order kT. Thereforel can be, re-
placed by ReM in Eq. (31a). The renormalization
factor in the denominator in Eq. (31a) must be
kept because it gives corrections of order )c,T/E
to the noninteracting dielectric constant.

The expression for Ree(0) can be written as a
sum of three parts:

Bee(0) = e'(0}+ ~'(0) + e'(0), (32a,)
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(0)
e (0) =1 4&e' p ""'""""', 1- [ReM-k„„(a)]' )

k nn,
' Q ~f

n&ft

(32b)

(2)X-, ( -, - )p-
e&(0) — 4&e- Re kn n( kn .kn' knn'

k nn',
nWn'

(2)4, p I" de Im[uT, „„X&„„(ra)]
40 +++] n I n'

u~n'
n&n'

Ek„=en„+ ReZ( kn, eg „).

(32c)

(32e)

where we have kept only terms linear in E. The
two parts of the distribution function g and 4 cor-
respond, respectively, to

F kn, k'n' Tr(poc k'n'c kn) & k'n'c kn)o & (A3)
4'-k„-k.„=Tr(p, cT,.„cx„)=- &ck „.cT„)z.

Using Eqs. (A2) and (A3) we get the following equa-
tion for 4:
([o+t5) 4 k„„i= &[cT,„ck„,X])z+eE&[cT,„cT, „,x])o.

In writing Eqs. (32), use has been made of the fact
that ReM k„~„(uk„k„~), to lowest order is the dif-
ference in self-energies of the states kn. ' and kn
[see Eqs. (22) and (23)]. The most extensive cal-
culations of the temperature dependence of Re@(0)
are those of Yu and Cardona. " Their formalism
is equivalent to neglecting e~ and e', and keeping
only the part of e' not involving dM/doo. Moreover,
they keep only the Debye-%aller corrections in

ET,„. The agreement that they get with experi-
ments is reasonably good. From the forma1. re-
sults presented here, it is difficult to see why

these corrections should dominate. A more de-
tailed and maybe more specific calculation will
be needed to see if there are any major cancel-
lations. The Yu and Cardona terms involve only
the corrections to band energies. The other terms
occurring in Eqs. (32) arise from the fact that the
dipole matrix elements and occupation probabili-
ties also get altered by the interaction.

In this appendix we present the derivation of the
transport equation. The method used is that of
Kohn and Luttinger, ' generabzed to include band-
stru'cture effects and phonons. The evolution in
time of a many-electron density matrix is given
by

i p =[K„p] . (A1)

([d+i5) p =[X,p ]+e[Ex,p,], (A2)

The complete Hamiltonian 3C~ is a sum of the com-
plete unperturbed system Hamiltonian K and the
external field Hamiltonian X~. We want to examine
in linear approximation the deviation p~ =p —po
from the equilibrium value po=e s~/z. This devi-
ation pz(t) =pze "m'+", then satisfies the equation

pr(t) =poo+ —,. dt'[&~(t') pr(t)]

p e-Sooo/z

p, (t) =e~o'p, e 'ooo',

X (t)=e' o'3C'e "'"oo

(Asa}

(A5b}

(Asc)

(Asd)

Here X' is the sum of electron-phonon and elec-
tron-impurity Hamiltonians, defined in I, Eqs.
(10), (18), and (19}. We get the first- and second-
order terms by iterating the equation for pr (t).
Writing X as Ko+X' and using (A3}, Eq. (A4} be-
comes

0 0
(Z+&kn', kn)@ann' eE g(+knmF kmn' F knm+kmn'}

+&[ck. ck. 3C'])z. (A6)

The last term in Eq. (A6) is the one that depends
explicitly on the interaction. It involves four parts,
corresponding to matrix elements of V' ' and t/'"'
of the electron-phonon interaction, and first- and
second-order matrix elements of V,-

(A4)

We can see that this formalism will lead to a hier-
archy of equations, 4 g„„i will be given in terms of
a higher-order correlation function, and so on. To
get a closed equation for 4, we need to truncate
the scheme somewhere. We truncate it such that
all correlation effects up to second order in the in-
teraction are included. For the electron-phonon
interaction we factorize correlation functions like
&c, c~ bo f]oi), and for electron-impurity interaction
we factorize at the stage&c~oc, S(Q)S(Q')), or at
&etc, S(0)). From the second term of Eq. (A4) we
see that the equation will involve equilibrium cor-
relation functions, and these have to be pertur-
batively expanded too. This is done by getting the
expansion of the equilibrium density matrix to
second order in the interaction
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0 (1) (x) (z) (x)
' (Z ++ kn', kn) eT&nn' + g(+knmAmn' ~ knmZT&mn') + (Vltn, pmg pm, kn' 8 kn, pmvpm, kn')

m pm

+g(v-„„„e-k,-vg, eT,„„)[2+(~,)+1]+N, g((%nlv, I% &e-k

n!Q m

-(% Iv, I% '&e-„„„)

+Q((k lv.,lp &g-,„',-. -g-'. .;.&p Iv;.,I&'&).
pm

The definitions of the g's are

gl, 2 ( nc1( bn-1+ bl- 2) &Z &

g'x,' = &c'cps(2 —1)&z .

(A7)

(A8)

We have treated the phonons as being in equilibrium; N(ruz) is the Bose factor.
The next step would be to write down an equation for the g's starting from Eg. (A2). The process is the

same as before, and we end up with an equation involving (ct c, bto bo. ) or (cn~ c,S(Q) S(Q')). This is the
stage at which our approximation enters, we decouple the equations. The coefficients of the above cor-
relation functions in the equation are already second order in the interaction. Now if there were no inter-
action, these functions would be decoupled into a product of electron and phonon or electron and impurity
distribution functions. Any correlation effects would therefore contribute to the equation only in higher
order. So in a second-order theory we factorize (c~n c~ bet bo ) into (c~2 c,& (bet bo ) and similarly for the im-
purity case. This then leads to a closed equation for 4, which is the transport equation presented in Sec.
II of the paper

i(z --(ok„T,„i)eT,„„=eZX„„„.+ Q ZT,„„.-„.(z)e-„„i. (A9)
p mm'

We present the expression for X~„„only for the adiabatic case where the phonon frequencies can be neg-
lected in the energy denominators. The full nonadiabatic form is not needed for the purposes of this paper.

(o) (2)X knnr —Xk„„r +X

X-„„„.=(fi T, „„,+fly„.„)+[S-„„„.(z)+S-„„,„(-z)],
nm

Rknn = Q (~pP+1) Vkm f&n Gkm knzbm ~ mz+Vkm pmtvpmi kn

p mm'

( 8 knm (1) (1)sk- (z) = Q (~pl+1) I

"" vT p vp 4"GT p

G-„„y„)I
(d k n', pm' &-

(1) (1)x Vg„m V Xn GXn pm I
(M p„,X„+z),

I

(A10)

where Q is defined by

(All)GT, =(fT.-fp )~(eT —e

Equation (A10) is written for the case where elec-
tron-impurity interaction is absent. It can be
easily generalized to include both interactions.
Terms looking similar to Xg„„have been obtained(g)

before by Kohn and Luttinger and other authors.
These ter'ms do not arise if a Green's-function
formalism is us'ed. For the free-electron case,
the discrepancy has been resolved by Moore."
He shows that the extra field-dependent terms in

Kohn and Luttinger's equation'can be absorbed in-
to the coQision terms by defining a quasiparticle
distribution function, and converting the equation
for the one-electron distribution function to an
equation satisfied by the quasiparticle distribution
function. The method of Kohn and Luttinger which
we have followed is less powerful than the various
Green's-function methods, ~' '4 but it has sufficient
accuracy for most purposes. The virtue of the
present method is that it yields a final result, (A9),
which is a direct generalization of the Boltzmann
equation and thus physicaOy fairly transparent.
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APPENDIX 8

As mentioned in the Introduction, there is quite
a great deal of literature existing on the subject
of quantum transport equations. The purpose of
this appendix is to compare this work with the
previous calculations. Yamada" has an equation
valid for spatially inhomogeneous electric fields,
but treats the electrons as plane waves. The spa-
tially homogeneous version of his equations [Eqs.
(24) and (48), Ref. 11], has been compared with
Eq. (6), after throwing away all interband terms,
but keeping X~"„' and the complex frequency-depen-
dent parts of &. Except for the terms which arise
from the change in the Fermi factor due to dis-
order, they agree, and Yamada states that he
omits these terms because they are purely reaL
The equations of Ron'0 are the same as Yamada's,
wheri they are linearized and phonon drag neglected.
Kohn and Luttinger's' work deals with static elec-
tric field and electron-impurity interaction only.
Moreover, they assume that the electrons obey
classical statistics. To second order in the inter-

action, their equation looks very simila. r to the
dc intraband version of Eq. (6), there are, how-
ever, certain differences arising from the fact
that they assumed a Maxwell-Boltzmann distribu-
tion for the unperturbed electrons. They have also
considered the nondiagonal part of 4 but treat it
perturbatively, and their perturbation expansion
can be readily obtained from Eq. (6).

All the equations described above were derived
by using equation-of-motion methods. Diagram-
matic techniques provide a more systematic meth-
od of including perturbative corrections, and lead
to more accurate, but more complicated, equa-
tions. The most careful derivation of a Boltzmann-
type equation by diagrammatic techniques is Hol-
stein's~4 equation for the electron-phonon system.
We devote the rest of this section to a comparison
of Eq. (6) to the Holstein-Boitzmann equation. As-
suming the phonons to be in equilibrium, Holstein's
equations can be written'~

(Bla)

f(e«)+P((oT, , T) 1-f(e»i)+N((oT, . T)
u 6&' + ~g'- T: g5 6& 6a' MTf -$'

f(e«'+(o)+N((g]'-] ) 1-f(e». +(g)+~(o]» «) )~

~& —~o'+ + 1 '-T+~& ~n —~a' —+T'- T+ ~&
(Blb)

3 1

( BE -l] fd +My(QI)]

~«(~) =Z»(e« —~-~6) -Z«(e«+~+~6)l .
The solution from Holstein's equation is'

(B2a)

(B2b)

In these equations k stands for both the wave vec-
tor and the band index. To compare this with Eq.
(6), we have to take the q-0 limit of (Bl) and ne-
glect off-diagonal terms in Eq. (6). Even in this
limit Eq. (6) looks different because of the pres-
ence of the X~"' terms. These give higher-order
corrections to cr, and we neglect them for the pres-
ent. In order to make a detailed comparison be-
tween Eqs. (Bl) and (6) it is helpful to simplify
things further by neglecting the scattering-in terms.
Experience with Eq. (B1) has shown'~ that the
omitted terms cause only minor quantitative modi-
fications in the results. The solution of Eq. (6) for
o(&o) can then be written

1
-i [&o+W»(~)]

(BSa)

(Bsb)

2 2 ~n — ~a++
(0

W»(&o) =Z»(e« - i5) -Z»(e«+ ~+i5) .
We can write M and Was

M =(dX+(6', (d) +i/T+(e, (0),

W = (dk(e) (d) + 1, /T(e~ (d) ~

X*= [ReZ (e —&u) —ReZ(e + &o)] /ru,

1/7* =ImZ(e —(o) +imZ(e+(o) .

(B4a)

(B4b)

(B4c)

(B4d)

The expressions for A. and 1/r are given in Ref.
21. Explicit expressions for these can be written
down at T=O, so we look at the two solutions in
this limit. In this limit the factor -ef/se» be-
comes a 6 function at the Fermi energy and the
solution

too�(ar)

from Eq. (6) reads,
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V2
tf(~) Ie*N(0=)

(~
—

( )~) ~ ( ) ), (H6a)

2

v[1+X*((o)]+i /7*(a))

Here the angular brackets denote averaging over
the Fermi surface; N(0) is the density of states at
the Fermi energy; and X*(e)=X*(0,v), 1/~*(tu)
=1/7.*(0, &o). The solution from Holstein's equation
in the weak-coupling limit' is

] ld

= 27k deal QOE((d ) ~ (H9a)

At the dc limit, Holstein's equation and Eq. (6) are
identical after throwing away X"'. But from Eqs.
(BV) and (88) we see that at frequencies v small
compared with &u~, X*(v) differs from X(&u) [in fact
X*(&o)=—2X(&u)j. The expressions for 1/v*(+) and
1/r((o) are

X((o) = x((o),
CO

(B6b)
1

( )
27I

QP ~l
d(o' 1-

~
n', E(~').

) 0 (Hgb)

1 0 8c 1
T((o) (g r((o)

(a6c)

To see the difference between the two solutions,
we have to compare X*(ar), 1/r*(&u) with X(&u) and
1/T(&o) at T =0. Using the formulas of Ref. 21,

2
X((o) = —— d(u' n', E(&o')

0

x ln —, — ln(
(0 —(d (0 Q) —4)

CO+ (d', (0 (d!2 7

From these equations it seems that our equation
neglects terms of the order of &o'/v, so our the-
ory should be valid for external frequencies large
compared to phonon frequencies. But at low tem-
peratures and low frequencies it does not give a
correct account of the nonadiabatic electron-
phonon corrections (assuming, as we do, the ac-
curacy of Holstein's theory) As m. entioned be-
fore, the dc limit of both theories concur if X"' is
neglected.
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