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Theoretical study of lithium graphite. I. Band structure,
density of states, and Fermi-surface properties

N. A. W. Holzwarth, S. Rabii, and L. A. Girifalco

Structure of Matter, University of Pennsy'lvania, Philadelphia, Pennsylvania 19104
(Received 8 May 1978)

The results of a detailed band-structure calculation for first-stage lithium graphite (LiC6) are presented. In
addition to the band dispersion, the density of states near the Fermi level, the shape of the Fermi surface,
plasma frequencies, optical masses, de Haas-van Alphen frequencies and masses, and interband optical
transitions are obtained. It is found that the occupied bands of LiC6 are essentially those of graphite with A-
A layer stacking and 1/6 excess electron per C atom. Except for some hybridization with the Li 2s states,
the dispersion of the occupied bands in a layer plane is in quantitative agreement with the corresponding
dispersion for two-dimensional graphite, as calculated by previous workers. The Fermi level of LiC6
corresponds to an energy near a saddle point in the m bands of two-dimensional graphite. The Li 2s states
are found to hybridize with a bonding C m. band -7-9 eV below EF and to form a metal-like band having a
minimum -1.7 eV above E„.Hybridization of the Li 2s states with the Fermi-level bands is weak, so that
the metallic properties of LiC6 are derived from partially filled bands which have primarily C m character.
The present results are found to be consistent with experimental measurements of the Fermi-level density of
states and of the plasma frequencies.

I. INTRODUCTION

Graphite intercalation compounds have been the
subject of several recent experimental and theo-
retical investigations. "' These highly anisotropic
metals are of interest not only because of their
unusual electronic and chemical properties, but
also because of their technological possibilities. '
In the present work, we report the results of a
detailed band-structure calculation for the corn-
positionally and structurally most simple com-
pound in this class —first-stage lithium-intercal-
ated graphite (LiC,)."' Although the present
work represents the first comprehensive band-
structure study of an intercalated graphite com-
pound, extended Huckel calcul. ations for KC, have
been carried out by Swanson' and by Inoshita,
Nakao, and Kamimura. '

A theoretical idea which has guided much of the
research on graphite -intercalation compounds is
that it is the w bands of each two-dimensional
graphite layer which are being partially filled (in
donor compounds) or emptied (in acceptor com-
pounds) in the intercalation process. ' The focus
of the present work is to determine to what ex-
tent this two-dimensional rigid-band model is
representative of LiC, as well as to provide a
framework for understanding various experimental
results for LiC, .

Our results are presented in two papers.
The outline of paper I is as follows. In Sec. II
the crystal structure and effective one-electron
potentials for LiC, are discussed. In Sec. III the
numerical methods used for the band-structure

calculations are described. The band structure
itself is presented in Sec. IV. An interpolation
model for the Fermi-level bands, based on a lin-
ear combination of atomic orbitals (LCAO), has
been developed in order to evaluate various Fermi-
surface properties such as densities of states,
de Haas-van Alphen frequencies and masses, and
plasma frequencies. These are discussed in Sec.
V. Paper I is concluded in Sec. V'I with a com-
parison of the present work with recent experi-
mental results for LiC, and other donor intercal-
ates and with the extended Huckel calculations for
KC, ."' Paper II (the following paper') deals with
a calculation of the distribution of electronic
charge in LiC, and a qualitative discussion of its
bonding characteristics.

I
/

II. CRYSTAL STRUCTURE AND POTENTIAL FOR LiC6

LiC, has the highest symmetry of the graphite,
intercalation compounds known at the present
time —D,'„."' Each carbon layer has the two-di-
mensional hexagonal structure of graphite with a
hexagonal lattice constant of a= 2.485 A, ' a value
which is dilated by 1% over that of graphite. The
carbon layers are stacked in direct registry with
respect to each other, A-A stacking, in contrast
to graphite which has an A-8-type stacking. The
distance between carbon layers in LiC, is e
= 3.706 A, ' a 10% increase over the carbon-layer
spacing in graphite. 'The Li atoms are arranged
midway between two carbon layers such that one-
third of the C hexagons have Li atoms directly
above and below as shown in Fig. 1(a). Figure
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l(b) is a drawing of the three-dimensional unit
cell, showing the coordinates used in the present
work. Figure l(c) is a drawing of the correspond-
ing Brillouin zone showing the standard special
point labels. "

A reasonable approximation to the effective one-
electron crystal potential can be obtained from
overlapping atomic Coulomb potentials plus an
exchange interaction in the Slater Xe approxima-
tion. " For this purpose, it is important to choose
the atomic configurations that best approximate
the electronic charge density in the crystal. The
atomic configuration appropriate for graphite"
is C 2s'2p„'„2p,', the sp' hybrids form trigonal
cr bonds, while the p, states form the m bands. 'The

FIG. 1. (a) Projection of c face of LiC6. Li atoms are
denoted byO, nearest-neighbor C-C bonds are denoted by
full lines. The cross section of the unit cell is denoted
by a dashed line. (b) Unit cell of LiC6 showing coordinate
system used in present work. The interlayer lattice
constant c and the "graphite" interlayer 1attice constant
a are also noted in the diagram. (The hexagonal intra-
layer lattice constant of LiC8 is 0 3a.) (o) Brillouin zone
of LiC&. The special point labels are those of Herring
(Ref. 10).

C

suggestion of the idea of "donor" intercalate is
that the atoms in LiC, have a partial ionic char-
acter, Li having positive charge I and C having
negative charge ~I, corresponding to the atomic
configurations Li 2s' I and C 2s 2p '2p", re-
spectively. In the present work, in lieu of a fully
self-consistent calculation, band-structure results
were obtained for two crystal potentials formed
from the two extreme atomic configurations I= 1
and 1=0. The ionic potential "Li'C, "(I=1) and
the neutral potential "LiC," (I= 0) are graphed
along various crystal directions in Fig. 2. These
were evaluated using atomic charge densities ob-
tained from a Herman-Skillman self-eonsistent-
field program" and using the Xn exchange para-
meter 0.77.'4 A further approximation in eval-
uating these effective one-electron potentials was
made in that only spherically symmetric contribu-
tions to the charge density of each atom were in-
cluded. For evaluating the ionic potential (Li'C, ),
an Ewald summation" was used to determine the
long-range Coulombic contributions. A summary
of lattice constants and potential parameters is
given in Table I.

From Fig. 2, it is evident that the ionic poten-
tial Li'C, is generally more repulsive than that
of LiC„due to the localized repulsive interactions
of the C ' ions. Qne expects, and it is verified
by the results of the band-structure calculations,
that the Li'C, potential has a 'stronger attraction
toward i,i than does the neutral potential. How-
ever, this difference in relative potential strength
is difficult to see ori the scale of Fig. 2, because
the Li 2s orbital of neutral Li has an extended
charge distribution. The striking point illustrated
in Fig. 2 is that in both approximations, the crys-
tal potential is found to be highly anisotropic. If
one divides the crystal into nonoverlapping muffin-
tiri spheres, one finds that the anisotropy even
within each sphere is far from negligible.

III. NUMERICAL METHODS

Choice of a band-structure-calculation method
for LiC, requires some care. The extreme aniso-
tropy of the crysta. l potential mentioned above in-
dicates that band-structure methods based on a
muffin-tin-type potential such as Korringa-Kohn-
Rostoker (KKR)" or augmented-plane-wave
(APW)" methods would be highly unreliable. The
large number of atoms per unit cell (7) would
cause a linear-combination-of -atomic -orbitals
(LCAO) calculation to be encumbered by a very
large. number of basis functions per unit cell."
The largeness of the unit cell also results in the
slow convergence of reciprocal-lattice sums,
making orthogonalized-plane-wave" or again
APW" methods inappropriate. Because of these
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Here, A',", denotes the KKR structure matrix"
s fm&l m'

and W', , , denotes a scattered-wave amplitude
which enters the evaluation of the muffin-tin wave
functions. The summation in Eq. (1) is over all
atomic sites o' within the unit cell and over all
angular momenta l'm' for which the scattering is
appreciable, i.e. , l' ~L, where ~E;,

~

&e for
all L, l'&L. In the present work, it was found suf-
ficient to include s- and p-wave scattering only
from each of the Li and C sites (L = 1) resulting
in a KKR secular matrix of dimension 28. Num-
erical details of the evaluation of the muffin-tin
wave functions are presented in the Appendix.

The second step of the band-structure calcula-
tion is solution of the Schrodinger equation for the
full crystal potential V(r) using the muffin-tin
basis generated in step 1. The final wave function
is expressed

reducible sector. The muffin-tin wave functions
were evaluated as described in the Appendix. In
order to achieve accurate results for all bands
near and below the Fermi level, the muffin-tin
basis set (g „(k,r)) for each k and irreducible
representation was taken to span the energies
from the lowest valence band to approximately
1.2 Ry above E„.
'The numerical error introduced in evaluating the
muffin-tin correction matrix elements 4„„,(k) and

by basis-set truncation is approximately +0.01
Ry for bands near EJ, . 'The error is somewhat
higher for bands appreciably above EJ; due to
basis-set truncation and also somewhat higher for
the low-energy cr bands due to inadequacy of the
integration grid for treating these highly localized
wave functions,

where

g

n n

(2) IV. RESULTS OF BAND-STRUCTURE CALCULATION

A. Band structure of LiC6

l&.(~&~~'=f ( e.(k, ~&~~'d'~.
uait cell

The expansion coefficients C„are determined
from solution of the secular equations

Q [E„(k)5„„,+ b „„.(k) )C„.(k) = E (k)C„(k),
n'

(4)

where the muffin-tin correction matrix elements
are given by

1
nn' ( ) / (k)~, (k) ~n(

x [V(r) —V ,(r)]
x ( (k„.r) d, 'r, (5)

the integrand being nonzero only in the interstitial
region of the unit cell. Since the crystal potential
V(r) and its muffin-tin counterpart VM~(r) have the
full symmetry of the crystal, &„„i(k)and the sec-
ular equation (4) are block diagonal according to
the irreducible representations of the group of the
wave vector k. 'The numerical evaluation of the
muffin-tin correction matrix element (5) was ac-
complished by choosing an integration grid in the
interstitial region based on a midpoint algorithm
in the two dimensions parallel to the graphite
layers and Gaussian quadrature in the third di-
mension. " The total integration grid included
297 points within the irreducible sector (~2,) of the
unit cell. For evaluation of matrix elements be-
tween wave functions of symmetry lower than

D,~, the grid was extended as needed, by applying
symmetry operations not included in the group
of the wave vector to the grid points of the ir-

The labeling of the symmetry points and direc-
tions in a hexagonal unit cell has been taken to
be that of Herring" in his study of hexagonal-
close-packed structures, having symmetry D,'„
as shown in Fig. 1(c). The state labels for the D,'„
structure of LiC, can be taken to be the same as
for D,'„ in the k, =0 plane. However, inthe k, =m/c
plane the D,'„ labels no longer pertain to D,'„.
We therefore chose to label the k, =v/c states
with the same subscripts and superscripts as for
the corresponding 4, = 0 states, but using the
letters appropriate for the location in the Bril-
louin zone. " Since the center of symmetry was
chosen at a J i site, carbon n and o states change
labels as k, changes from k, = 0 to k, =v/c.

The most complete calculations were carried
out using the ionic potential Li'C, -. The results
are given in Fig. 3 along the directions M-Z-I'-
T-K (the k, = 0 plane), I'-&-A (the c axis), and
L-R-A-S-H (the k, =w/c plane). Here the w bands
of carbon are represented by dashed lines, while
the a bands are represented by full lines. Be-
cause of the choice of the center of symmetry, C
m states are labeled Z3$Z„T„T» etc. , in the 0,
= 0 plane, while they are labeled Rj B4 Sg S&,
etc. , in the k, =n/c plane. On the basis of this
band structure, it will be established that LiC,
has occupied valence bands which are essentially
those of graphite with an A-A layer stacking. This
result indicates that LiC, is a ~-band metal. 'The

lowest band having appreciable Li 2s character
has its minimum at the I' point (1",), at least 1.7
eV above the Fermi level. This metal band hy-
bridzes with C o bands in the P, = 0 plane and with
C m bands in the k, = w/c plane; it is clearly dis-
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tinguished from the graphite bands by its large
dispersion along the c axis. Apart from this
gross picture, the Li 2s states hybridize to some
extent with low-lying graphite bands, particularly
with a bonding n band. This latter point will be
discussed more fully in paper II.'

B. Comparison with bands of graphite

In order to compare the band structure of LiC,
with that of graphite, it is convenient to transform
the graphite bands into the Brillouin zone of LiC, .
First consider the dispersion in the two dimen-
sions parallel to a graphite layer. In these di-
mensions, the Brillouin zone of LiC, is one-third
the area of the Brillouin zone of graphite, the K
point for two-dimensional graphite mapping into
the 1" point for the LiC, structure, and the M
point for two-dimensional graphite mapping into
the M point for the LiC6 structure. Figure 4 shows
the m bands of two-dimensional graphite, taken
from the calculation of Painter and Ellis, ""fold-
ed" into the corresponding Brillouin zone of LiC, .
For contrast, Fig. 4 also contains a similar con-

struction for the KC, structure, which will be dis-
cussed briefly in Sec. V.

The Fermi level of two-dimensional graphite
occurs at the K point of the graphite Brillouin
zone where the two m bands come together. In the
LiC, Brillouin zone, these two m bands near the
Fermi level of graphite are translated into four
bands centered at I' point in the k, = 0 plane and
at the A point in the k, =m/c plane. These four
Fermi:-level bands are found to be weakly bonding
or antibonding in nature. In addition, there is a
low-lying bonding m band and a high-lying anti-
bonding w band, making a total of six n bands from
the original graphite structure. The bonding and
antibonding attributes of thy m bands will be dis-
cussed more fully in paper II. Comparing the dis-
persion of the folded graphite bands shown in the
central panel of Fig. 4 with that of the correspond-
ing bands of LiC, shown in the two side panels of
Fig. 3 reveals their striking similarity. The mag-
nitudes of the band gaps at the Brillouin-zone
boundaries indicate the strength of the Li pertur-
bation. It will be shown in Paper II that the Li
band hybridizes to an appreciable extent with the
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lowest (bonding) v band of graphite. This interac-
tion results in band gaps at M (M', -M, ; 0.06 Ry)
and at K (K, K,; 0.07 Ry). In fact-, these gaps
are induced by an indirect interaction of Li 2s
states with the C m states, the direct interaction
being zero for symmetry reasons in the k, = 0
plane. In the k, =v/c plane, the corresponding
band gaps are negligible, presumably because
the Li 2s states have much higher energy than at
k, = 0, which reduces the effective interaction.
Further evidence of the lack of Li hybridization
for k, =n/c states below Ez is shown by the de-
generacy (within the accuracy of the calculation)
of the S, and S4 bands. " The first appreciable
band gap for k, = w/c C m states occurs at H (H, -

H, ; 0.02 Ry), 0-.2 Ry above E~. Comparison of
the occupied C cr bands of two-dimensional grap-

hite" with those of LiC, (Fig. 3) shows that these
are affected by intercalation to a lesser degree
than are the C m bands.

Dispersion of the graphite m bands parallel to
the c axis is almost an order of magnitude smaller
than the dispersion parallel to the graphite layers;
dispersion of the o bands along the c axis is even
smaller, due to relatively weak carbon interlayer
interactions. The same trend is found for the oc-
cupied bands of LiC, as shown in the central panel
of Fig. 3. As shown in Sec. V the c-axis disper-
sion of the LiC, Fermi-level bands is roughly the
same magnitude as of the corresponding disper-
sion is graphite due to the interaction of A-A
stacked carbon atoms.

C. Effects of muffin-tin corrections

The muffin-tin approximation for LiC, is expect-
ed to be unreliable for the reasons mentioned in
Sec. III. Not only do the muffin-tin spheres con-
tain only 46%%ug of the crystal volume, but also fluc-
tuations in the interstitial potential with respect
to the mean VM, are 1 Ry or higher in some re-
gions. To appreciate this point, the results of
the muffin-tin calculation for the potential Li'C,
are graphed in Fig. 5. The drastic differences
between the complete calculation and the muffin-
tin results can be seen by comparing Figs. 3 and

5, respectively. To a large extent, these differ-
ences can be understood to result from the fact
that the muffin-tin approximation overestimates
the interlayer interactions. This overestimation
has the effect of exaggerating the c-axis disper-
sion and exaggerating the hybridization between
C cr and C n' bands with each other" and
with the meta1, bands. The cause of this overesti-
mation is a systematic error introduced by re-
placing the interstitial potentia1 with the constant
VM„ thereby underestimating the attractive po-
tential in the C plane and overestimating it in the
Li plane. For the Li'C, model, the mean- inter-
stitial potential has the value VM, = -1.23 Ry.
'The interstitial potential in a Li plane achieves
a value of -0.45 Ry (the maximum) directly be-
tween centers of "empty" C hexagons and takes
a value of -0.67 Hy directly between two C atoms.
In contrast, the maximum value of the intersitial
potential in a C plane is -1.12 Ry, which occurs
at the center of a C hexagon and achieves values
as low as -4 Ry in small regions near a C-C bond.
Thus the correction potential [V(r) —VMT(r)] has
substantial valleys centered on the C planes and
barriers centered on the Li planes which syste-
matically decrease the interlayer interactions
predicted by the muffin-tin approximation. The
most important error of the muffin-tin approxima-
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tion is its failure to predict the correct ordering
of the bands near the Fermi level. The muffin-
tin approximation predicts that the metal band lies
below the Fermi level of graphite which is opposite
the result established by the full calculations.

D. Effects of choice of crystal potential

by a self-consistent calculation, are bracketed by
the two potential models Li'C, and LiC, . The
Li'C, model is expected to be closer to the self-
consistent result than is the LiC, model, but is
expected to slightly underestimate the screening
of the Li' ion and therefore to overestimate its

Band-structure calculations along the high-sym-
metry line I'-6-A were carried out for the crys-
tal potential "LiC„"generated from neutral-
atom charge densities. 'These are compared
with the corresponding results for the crystal
potential "Li'C,-," generated from ionic charge
densities, in Fig. 6. 'The two band structures are
qualitatively similar with some differences in
detail. 'The important result is that for both ap-
proximations to the crystal potential, the metal
band j.

y &y Ay is predicted to lie above the Fermi
level of graphite, and as we shall show in Sec. V,
above the Fermi level of LiC, . The gap between
the bottom of the metal band (1,) and the extremum
of the graphite Fermi-level band (I',) is 0.37 Ry
for the LiC, potential model and 0.22 Ry for the
Li'C, potential model. The reduction of the gap
for the Li'C, potential model is consistent with
the expectation that the ionic potential model has
a larger relative strength toward the Li site than
does the neutral potential model. Qne can rea-
sonably argue that features of the band-structure
results which depend upon the relative attractive
potential contributions of the Li and C sites, as given
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TABLE II. LCAO parameters for Fermi-level bands of LiC6 and graphite.

Interaction

(C p C p n)i~

(C Pz C Pz +)fB

(Cp, Cp, &)

(Cp Cp &)~

(Cp, Cp, o),

(Cp, Li s)

(CP «P, y)

(Cp Lip)
E(C p, )

E(Li s)

E(Li p„~)

E(Li pz)

Value for LiC& (By)

-0 ~ 185

-0.181

0.070

0.001

0.031

0.146

-0.159

-0.147

-0.545

-0.434

0.446

Value for graphite (By)

~0 2b

-0.03

1 and 2 denote nearest and next-nearest neighbors in a C plane; A denotes neighbors within
a C hexagon "surrounding" Li site; B denotes neighbors within C hexagon "surrounding" empty
site.

Fit to bands of two-dimensional graphite (Bef. 18).
'Derived from Befs. 29 and 30.

relative attractive interaction. It follows that the
results quoted in the present paper which are
based on band-structure calcu1ations using the
Li'C, model potential can be taken as the louver
limit for energy separations between metal and
graphite bands and as the upper limit for hybrid-
ization between metal and graphite states.

V. FERMI-LEVEL BANDS

A. LCAO parametrization of Fermi-level bands

In order to study the Fermi-level bands of LiC,
in greater detail, a simple LCAO model' was fit
to the accurate dispersion curves based on the
Li'C, potential (Fig. 3). Because the Fermi-level
bands are weakly bonding and antibonding, they
contain relatively little metal s-band character.
It was therefore possible to fit these bands using
only C v (P,), Li s, Li P„„, and Li p, orbitals as
basis functions and neglecting all Li-Li interac-
tions. There were a total of 12 unknown parame-
ters whose values are listed in Table II, where
they are compared with LCAO parameters of
graphite, derived from various sources. "'"' It
is evident that the LCAO parameters for the
Fermi-level bands of LiC, are quite comparable
to the corresponding parameters for graphite.
The dispersion parallel to the graphite layers re-
sults mainly from the nearest-neighbor interac-
tion with small second-neighbor contributions.
The dispersion along the c direction can be ex-

plained by an interlayer C-C interaction. Its value
is similar to the interlayer A-A carbon interaction
is graphite" which is to be expected since the
carbon layer spacings differ by only 10%. Li par-
ameters of the LCAO model listed in Table I are
obviously not realistic; this is presumably due to
the neglect of Li-Li and Li-C cr interactions. The
overall quality of the fit to the LiC, Fermi-level
bands is good, the maximum error in the energy
range -0.85- -0.40 Ry being 0.01 Ry. Using the
LCAO model as an interpolation formula, the den-
sity of states and Fermi surface parameters could
be calculated.

B. Density of states near the Fermi level

The density-of-states histogram of LiC, is pre-
sented in Fig. 7. From the integrated density of
states, the Fermi level for LiC, is located at E~
= -0.4815 By. At this energy there are two partly
filled bands having C m characters, the lower con-
taining 0.74 electrons, the upper containing 0.26
electrons. Since the minimum of the Li 2s band
is located at -0.357 Ry, it is therefore established
that the Li 2s band is completely empty and that
the Fermi level lies within the m bands of graphite,
as suggested by the early rigid-band theory. '

It is interesting to compare the density-of-states
histogram for LiC, (Fig. 7) with that of graphite
as calculated by illis, Fitton, and Painter. "
The density of states for graphite is distinguished
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er than N(Ez) derived from the Pauli susceptibility
measured by the same authors. The larger value
of the measured Pauli susceptibility over the cal-
culated one-electron value is consistant with the
enhancement expected from the exchange inter-
actions of the C m electrons.

~.5 — f

3.0—

205

I-a
2.0—

C. Fermi surface properties

The location of the Fermi level for LiC, derived
from the integrated density of states is shown in
relationship to the dispersion curves in Fig. 3.
From this diagram, it is seen that the Fermi level.
is located at an energy below the lower band near
M4 Z 3 but above it ne ar Lj R

y
india ating that the

lower-band Fermi surface cuts the Brillouin-zone
boundary in each M-K-H-L plane. This feature
of the band structure is a remnant of the saddle-
point dispersion at the M point of the m bands of
two-dimensional graphite. Both the upper- and
lower-band Fermi surfaces cut the Brillouin-zone
boundaries at k, = +w/c. A perspective drawing
of the Fermi surfaces is shown in Fig. 8 and
cross sections of the Fermi surfaces in the k, =0
and k, =m/c planes are given in Fig. 9. For com-
parison, cross sections of the Fermi surfaces de-
rived from the rigid-band model of LiC„based
on the two-dimensional graphite band structure
of Painter and Ellis, "is shown in Fig. 10. The
calculated Lic, Fermi surface cross sections in
the k, = 0 plane are very similar although smaller
in comparison to those predicted by the rigid-band
model; the cross sections in the k, =v/c are dis-
torted due to contact with the Brillouin-zone
boundary. Once the Fermi surface has been de-
termined, various parameters of experimental
interest can be calculated. In addition to N(Ez)
discussed in Sec. V B above, plasma frequencies,
and optical masses, as well as cyclotron fre-
quencies and masses have been calculated for
LiC6.

The dielectric tensor of any material having a

I.O—

0,5—

E

I I I I I I I I

—QSO —0.75 —0.70 —Q65 -0.60 -Q55 -0.5 -0,45 -0.4 0

Ry

FIG. 7. Histogram of density of states Fermi-
level bands of LiC6 derived from LCAO model of
Li+C6 band-structure results.

by a minimum due to the meeting of the bonding
and antibonding m bands at its Brillouin-zone edge,
flanked by maxima corresponding to saddle-point
dispersion of these bands near the M point for two-
dimensional graphite (see top panel of Fig. 4).
These basic features are clearly evident in the
density of states of LiC, shown in Fig. 7. Accord-
ing to a rigid model of intercalation, the Fermi
level for first-stage intercalation compounds
should be found near the M-point maxima in the
density of states of graphite. The value of N(E~)
for LiC, according to the rigid-band model using
density-of-states results of Willis, Fitton, and
Painter is comparable to the value calculated in
the present work. The value of N(Ez) for I.iC, is
found to be 0.24 states/(C-atom eV) (see Table
III), in good agreement with the value of 0.21

,
+ 0.01 states/(C-atom eV) derived from the speci-
fic-heat measurements of Delhaes, Bouillon,
Manceau, Guerard, and Herold, "although small-

Lower band Upper band Total

Conduction electrons per
unit cell 0.74 0.26

Fermi-level DOS, &(E~)
[states /(C-atom eV) J 0.040.19 0.24

~p (eV)

~& (eV)

m, pt/m,

m', pt/m,

4.15.2 6.7

0.9 2.21.9
0.40.6

4.6 6.9

TABLE III. Fermi-level density of states, plasma frequencies, and optical masses.
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'This anisotropy is smaller than the value of 11 for
the corresponding anisotropy for KC, derived from
polarized reflectance data. "

In .order to further quantify the anisotropy of the
Fermi surfaces of LiC„de Haas —van Alphen fre-
quencies E(H) and masses m(H) have been evalu-
ated from the Fermi'surface line integrals:"

(g ~

t

I

/

I

I

and

(12)

MC6

FIG. 10. Cross section of the Fermi surfaces of the
two-dimensional rigid-band model of LiC6 derived from
band structure of two-dimensional graphite from calcu-
lation by Painter and Ellis (Ref. 18). Dashed lines denote
Brillouin zone and Fermi surface in two-dimensional
graphite structure.

tions at energies higher than the photon ener-
gies. '"" In LiC, the ref lectivity is slightly com-
plicated by the presence of low-energy interband
transitions predicted from the present band-struc-
ture results and suggested by the experimental
data. " From the band-structure results shown in
Fig. 3, it can be seen that photons polarized par-
allel to the graphite planes can induced low-energy
transitions near the Fermi level between the two
carrier bands which are nearly degenerate along
the T (T,- T,), S(S,-S,),"and intermediate di-
rections.

An uniaxial crystal has two independent com-
ponents of the plasma and optical mass tensors
which can be denoted with superscripts a and c
for polarizations in the x-y plane and along the
z axis, respectively,

((dc) —P [((02)xx+ ((d2)gg]].1/2

(OIc) —[(nI2)gg]1/2

These have been evaluated for LiC, according to
Eqs. (8) and (9) and the results are listed in Table
III. The contributions from the two carriers are
similar, although the anisotropy of the lower
band is substantially less than that of the upper
band due to its contact with Brillouin-zone bound-
aries parallel to the c axis. The ref lectivity data
of LiC, for photon polarizations parallel to the
graphite planes" is consistent with the results
listed in Table III. The anisotropy of the optical
mass of the combined carriers is calculated to be

TABLE IV. De Haas —van Alphen frequencies and
masses.

Orbit
Band Plane Center Type E (10 G) m/m,

1 Lower k =0

2 Upper k, =0

S Lower 0,= w/c

4 Upper k~ = vr/c

5 Lower

6 Lower

2x
3a

k =0

Electron 0.40

Electron 0.21

Hole 0.54

Electron 0.48

Electron 0.20

M Hole 0.55

0.98

0.32

0.64

0.47

0.71

2.13

respectively. Here k, denotes the component of
the Fermi wave vector perpendicular to the mag-
netic field whose magnitude k, depends upon an
azimuthal angle Q. From Figs. 8 and 9, it is
evident that the Fermi surfaces of LiC, have a
total of six closed extremal orbits, indicated by
the numbers. 'The de Haas-van Alphen frequen-
cies and masses for these orbits are listed in
Table IV. In general, the two orbits for the upper
band (2 and 4) have lower frequency and smaller
mass than the corresponding orbits of the lower
band (1 and 8). There are two orbits for the lower
band which would be observed with magnetic fields
perpendicular to the c axis (orbits 5 and 6). Of
these, only orbit 6 samples a significant amount of
the c axis dispersion, resulting in a relatively
large mass. Unfortunately, it is doubtful that all
of the de Haas-van Alphen oscillations can be ob-
served experimentally, not only because of the
relatively poor quality of available graphite, ' but
also because of magnetic breakdown which could
occur along the T, S, and intermediate directions,
where the two carrier bands become nearly degen-
erate. "
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TABLE V. Some predicted optical transition for LiC6.

Transition Photon polarization hv (Ry) Comment

~L3

L& -L4
Lg L2

L3 L4

~6 -~6

r, -r',
~s -~e
A5 Ae

{x-7r)

(n -o.)
(~- M)

(zr —7r)

(x- o.)

(n -~)
(~- M)

(o -~)
(o -o.)

M2 M4 (&- 7r)

M+, -M, {~-7r)

M3 M4 (r- &)

0.31

0.60

0.50

0.30

0.39

0.57

0.60

0.62

0.67

0.81

0.94

0.95

Allowed critical-point trans itions

E ffx

Ega

z (fx

Elis

Ellz

g (0.34 By)

f

(~0 7)
f

g (-0.9)

T3 ~T2, Sg S4 (X —Z)

Z3 -Z„a,-a4 (X-m) 0.07 ~h&~ 0.30

~3 -~, , T3-T, (~-M)

Noncritical-point transitions near Fermi level

E[[x 0 —&& ~ 0.02

0.15 ~hv~ 0.22

7r and o denote primarily C bands, M denotes primarily Li band.
Coordinates labeled according to Fig. lib); E ~~x denotes six equivalent polarizations as

does Z ~[j.
g denotes transition allowed in graphite value in parentheses calculated for two-dimen-

sional graphite (Ref. 18); f denotes transition introduced by Brillouin-zone folding; m denotes
transition to metallike band.

VI. DISCUSSION AND CONCLUSIONS

There have been relatively few experimental re-
sults for LiC, published to datae. This is primar-
ily due to the past difficulty of synthesis. ' How-
ever, a new synthesis technique developed by
Zanini, Basu, and Fischer" promises to make
high-quality c-face crystals available for experi-
ment in the near future. As discussed above,
the present results are in good agreement with the
specific-heat measurement of N(Ez), "and are
consistent with visible and near-ultraviolet reflec-
tance measurements. " In Paper II, we will make
qualitative comparison of the present results with
NMR and Raman measurements. In general, we
find that the present band-structure results are
consistent with all currently available experimen-
tal information for LiC, ; however, further experi-
mental information is needed to carry out rig-
orous comparison of theory and experiment. For
example, an extended optical study would be very
helpful for testing the details of the present band-
structure results. 'Table V lists the important

critical point transitions for hv& 0.6 Ry and some
important noncritical point transitions for low-en-
ergy transitions involving the Fermi-level bands.
Some higher-energy transitions are also listed in
order to compare with similar transitions in
graphite. The most well-documented transition
in graphite occurs at 4.6 eV, "and is associated
with t;he saddle-point dispersion of the m bands at
the I point of two-dimensional graphite. 'The

corresponding transition in LiC„M",-M, , is cal-
culated to occur at slightly lower photon energies
(-4.2 eV). We expect this M-point transition to
have less intensity in LiC, than it does in graphite
because roughly only —,

' as many final states are
above the Fermi level. Some intensity will be
gained, however, by a L',-L3 transition at nearly
the same photon energy. Painter and Ellis" pre-
dict the energy difference between the Fermi level
of graphite and the bottom of the o band to be
-0.7 Ry. Corresponding transitions in LiC, are
r', -r; and A., A; having predicted energies 0.62-
0.67 Ry. This correspondance is reasonable in
view of the fact that there is hybridization of the
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upper 0 bands with Li 2s states. Similarly the
separation of cr bands in graphite is calculated to
be 0.9 Ry, "in correspondance with the 0.94-0.95
Hy transitions 1,—I', and A, -A; predicted for
LiC, . We predict the separation between the m

band and Li band minima, I,- 1";, to be 0.81 Hy.
In addition to these critical-point features, the
optical spectrum of LiC, is expected to have some
absorption at low energy due to transitions involv-
ing the Fermi-level bands, as listed on the bottom
of Table P. Transitions induced by photon polar-
izations E &2 are introduced by the folding of the
graphite bands into the Brillouin zone of LiC.
Transitions induced by photon poiarizations E ~) z
involve the Li band as the final state. In order to
estimate the strength of these transitions, the in-
terband contribution to the dielectric tensor (6)
should be calculated.

An important property of graphite intercalation
compounds is their electrical conductivity. We
have made no attempt to calculate the conductivity
for LiC„although some qualitative information is
provided by the Fermi surface parameters listed
in Tables III and IV. In particular, if one could
neglect the anisotropy in the scattering lifetime
7', the ratio of the conductivity para11el to the gra-
phite layers o, to that parallel to the c axis 0,
would be given by the ratio of the optical masses
c,/o, =m,'~, /m'„, =10, as discussed in Sec. V. Be-
cause of the neglect of the anisotropy of w, this
value should not be taken seriously except to point
out that the anisotropy in the conductivity of LiC,
is expected to be substantially reduced from that
of graphite for which o,/o, = 10'.' A contributing
factor to the reduction of anisotropy is the A -A
carbon-layer stacking of I iC, . The c-axis dis-
persion of the Fermi-level bands of LiC, is deter-
mined by the interaction of neighboring layer
(n n) C w o-rbitals separated by 3.7 A. ' However,
in graphite, due to the A-B carbon-layer stacking,
a significant fraction of the carriers (e.g. , the
majority electrons) are in a band of mainly E,
character, "whose c-axis dispersion is determined
by the interactions of next-nearest-layer (P-P) C n

orbitals, separated by 6.7 A." Since even the
largest first-stage -donor intercalation compound
CsC„has an n-o. carbon-layer spacing of 5.9 A'
which is smaller than the P-P carbon-layer spacing
of graphite, one might expect the conductivity
anisotropy of graphite to be reduced by all donor
intercalates, as is seen experimentally. ' For the
MC, compounds it has been suggested'""'" that
another contributing factor to the reduction of con-
ductivity anisotropy is the presenceof some "three-
dimensional carriers" which are formed from the
hybridization of the Fermi-level graphite m bands
with the metal band, ' unlike the situation we have

/
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/
/
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I

I
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I

/
/
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/
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FIG. 11. Cross section of the Fermi surfaces of the
two-dimensional rigid-band model of I Caderived from the
band structure of two-dimensional graphite from calcu-
lation by Painter and Ellis (Ref. 18). Dashed lines de-
note BriOouin zone and Fermi surface in tw'o-dimension-
al graphite structure.

found for LiC, . If it were not for the presence of
three-dimensional carriers and differences in
scattering processes, we would expect the con-
ductivity anisotropy for LiC, to be lower than that
of the MC, compounds because of its smaller C-
layer spacing and because of its Fermi surface
cutting the Brillouin-zone boundary.

It is interesting to compare the present band
structure of LiC6 with the band structure of KCS
determined by an extended Huckel calculation by
Inoshita, Nakao, and Kamimura. ' 'The two-di-
mensional Brillouin zone of KC, is —,

' the area of
that of graphite, the M point of graphite mapping
into the I' point of KC„resulting in the folded
m band structure shown in bottom panel of Fig.
4. The important E-point structure of the graphite
bands is found at the E point in KC„ instead of at
the I' point as in LiC, . If the two-dimensional
rigid-band model were appropriate for KC, one
would expect the Fermi surface to be centered at
the E point as shown in Fig. 11 in contrast to that
centered at the I' point for LiC, shown in Fig. 10.
'The two-dimensional rigid-band model predicts
a single-sheeted Fermi surface for the KC„struc-

' ture, whereas the LiC, structure has a double-
sheeted Fermi surface. The band-structure results
of Inoshita, Nakao, and Kamimura' show some
resemblance to the rigid-band model of Figs. 4
and 11, although deviations are introduced by the
staggered E-layer stacking of KC, and by hybrid-
ization of the metal bands with the graphite bands
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near the Fermi level. No significant hybridization
is predicted between the K 4s states and the low-
lying bonding m bands of graphite; however, this
result could be due to the choice of.basis set used
in the calculation. ' An interesting feature of cal-
culated KC, band structure' is the relatively sma11
c-axis dispersion of the metal bands. An unoc-
cupied metal band is found to have a c-axis band-
width 2-3 times smaller than the corresponding
metal c-axis bandwidth found for LiC, . This. sug-
gests that the metal bands in KC, have some two-
dimensional character. Energetic reasons for the
possible qualitative differences between KC, and

LiC, are discussed in Paper II. It will be inter-
esting to seg whether or not the extended Huckel
predictions"' for KC, are corroborated by more
accurate band-structure calculations.

In conclusion, the results of our detailed band-
structure calculations indicate that the two-di-
mensional rigid-band model of intercalation pro-
vides a good zeroth-order approximation to the
Eet'mi -level propert es of LiC, . Important modi-
fications of the two-dimensional rigid-band pre-
dictions are, however, caused by the "band fold-
ing" due to the periodic perturbation of the inter-
calate layers and caused by the interlayer inter-

APPENDIX: EVALUATION OF THE MUFFIN-TIN WAVE

FUNCTIONS

The muffin-tin wave function P„(k, r), corres-
ponding to the solution of Etl. (1}at energy E„(k)
with scattered-wave amplitudes W', „(k,E„)can be
generally evaluated as a sum of two terms

g„(k, r) = $(scatt)+ g (MT sphere) . (Al)

The sum of coherently scattered wave diverging
from each atom is given by

actions of the graphite layers in LiC„resulting
in c-axis dispersion. 'Zhe qualitative, but not
necessarily quantitative, success of the rigid-
band model in explaining the Fermi-level proper-
ties of LiC, can be attributed to the fact that the
metal band does not appreciably hybridize with
the weakly bonding and antibonding Fermi-level
bands of graphite and to the fact that the bottom
of the metal band lies at least 1.V eV above the
Fermi level of LiC, . Properties of LiC, which
depend upon states appreciably above or below
E~, such as optical transitions or total charge
distribution, are not well approximated by the
rigid-band model, as will be discussed further
in Paper G.'

(A2)

and can be conveniently evaluated by an Ewald expansion'""

t"„.p,; t
"~",g, t g&u -v'Ir-7', -t, l'&((~l r- .7-t. l '~

+~tl P ( [
I +5 et'(4 t~)~1 " '(g2)" 1 1

2vz ~ (tl] Xf (2X —1) (AS}

Here, locates the atoms in the unit cell, t, is a lattice tranlation vector, h, is a spherical Hankel func-
tion of the first kind, ~ denotes the scalar wave vector

(A4)

Q denotes the volume of the unit cell, 0 is a reciprocal-lattice vector, and q is the Ewald parameter. "
g(scatt) represents the wave function in the interstitial region. Inside each muffin-tin sphere, the wave
function deviates from the scattered wave for Etls. (A2) and (AS} by an amount

P(MT sphere)= e""~'I" g ;W„[R",„(r-7, -t,) -f,", (r f, -t,)], -'
mrs

(A5)

where

f,", (x)-=Qj,, (m)Yt.„.(x}IP,;„t, ,„-(1-5;y„IP,(er)F, (x), (Ae)
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is a component of the expansion of g(scatt) about
the muffin-tin center. R"„(x)of Etl. (A5) is the
regular solution to the radial Schrodinger equation
appropriate for the crystal potential expanded in
spherical harmonics about the site o, satisfying
the boundary and normalization condition

R"„„(x)=f"„„(x)for x ~ ruT . (A7)

Thus g(MT sphere) is nonzero only inside a muffin-
tin sphere. In order to avoid divergence, Eqs. (A2),
(AS), and (A6) make use of a primed summation
over atomic sites which means that the term r
= w,+ t, is to be excluded while 5;.;,~ denotes the
Kronecker 5 function for the same term. The
convenience of the above representation of the
muffin-tin wave function is that even for such a
highly anisotropic material as LiC„ the partial-
wave sums in Egs. (A6) are rapidly converging
(I - I ). By proper choice of the Ewald parameter,
the lattice and reciprocal-lattice sums of Eq. (A3)
can also be made to be rapidly converging.

Note addedin Proof. N. Kambe, M. S. Dressel-
haus, G. Dresselhaus, S. Basu, A. B. McGhie,
and Z. E. Fischer [Mater. Sci. Eng. (to be pub-
lished)] have recently determined, on the basis of

transmission electron diffraction, that LiC, has
an o,Py stacking at T ~ 220'K. Their results at
room temperature are consistent with either an
o p stacking or a disordered stacking. We expect
the present band-structure results, based on the
D,'„structure, to be only weakly modified by the
structural differences.
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