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Ill-conditioned matrices in the scattering of waves from hard corrugated surfaces
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In this paper we present an analysis of the conditioning character of the matrices obtained in the different
methods for solving the integral equations that appear in the scattering of waves from a hard corrugated
surface. It is found that the matrices derived from the Rayleigh hypothesis become ill conditioned for large
corrugations when the approach is not valid at any rate. The method based on the extinction theorem
developed by Masel, Merrill, and Miller is analytically correct, but it becomes ill conditioned and no
practical numerical solutions can be obtained for large values of the corrugation strength, depending on the
precision of the computer used. Finally the self-consistent method with the numerical procedure developed by
Garcia and Cabrera is well conditioned and leads always to a good practical numerical solution for all kinds
of corrugations, no matter how large.

I. INTRODUCTION

The problem of wave scattering from a hard cor-
rugated surface (HCS) arises in optics, acoustics,
wave-guide theory, and in the quantum theory of
atom-surface interactions. ' " In this paper we
discuss in detail the scattering of a scalar wave

(g) with Dirichlet boundary conditions ((x, z =D(x)}
= 0 on the surface, where x and z are coordinates
parallel and perpendicular to the average direction
of the surface, and D(x) is the surface profile, as-
sumed one dimensional, and with periodicity a.
This model corresponds to an infinitely repulsive
corrugated wall and is of current interest because
it has been successfully used in the analysis of
atom-surface scattering. ' "'" The gerieral anal-
ysis, however, is also valid for the other prob-
lems mentioned above.

In general the scattering problem can be reduced
to solving a Fredholm integral equation for the
sources of the scattered field, "' or an equivalent
infinite set of linear equations. " Numerical prob-
lems arise in the inversion of the large finite ma-
trices obtained by truncating the infinite sets. The
precision used and the round-off errors play a
very important role if the problem leads to ill-
conditioned" "matrices. In this case, small
variations in the coefficients of the linear equa-
tions or in the independent term imply large vari-
ations in the unknowns. If the coefficients, for in-
stance, are not exactly known, but are obtairied
after numerical manipulations, the solution ob-
tained can be totally unreliable.

The aim of this paper is to analyze in detail and
discuss the conditioning of the matrices obtained
from the different methods used to solve the scat-
tering of atoms from HCS. %e delve into this

problem because experience has shown that some
of the methods, while analytically exact, do not
lead always to convergent numerical solutions
while another exact method" gives always good nu-
merical answers for any strength of the corru-
gation parameter h = l,/a [where l, is the differ-
ence between the. maximum and the minimum val-
ues of the corrugated surface D(x)j.

In Sec. II we will discuss the different equations
corresponding to the three proposed methods: (i)
the Rayleigh approach' that is known to be exact,
for small values of h for analytical D(x) (Ref. 5};
(ii) the exact method based on the extinction the-
orem developed first by Masel, Merrill, and Mil-
ler" (MMM), extended and applied later by Good-
man"; and (iii) the method which has been devel-
oped by Garcia and Cabrera'4 (GC method) based
on the self- consistent boundary condition obtained
from Huygens' principle. The ill-conditioning
criteria to be used in the computations as well as
some definitions of matrix norms will be given
(after Wilkinson" ) in Sec. IIL Computations using
configuration and momentum- space approaches
for (i)'" and (iii)" and the proposed matrix""
for (ii) are presented in Sec. IV. All the calcu-
lations are carried out for a cosinelike corrugation
function:

D(x) = ah cos(2@x/a),

which is extensively used in applications to atom-
surface interactions. Finally, conclusions will be
drawn iri Sec. V.

II. METHODS OF SOLUTION

%e describe very briefly the different methods
that have been proposed to solve the scattering of
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waves from a HCS. We consider an incident plane
wave e'~'~, where (K, -k, ) are the parallel and per-
pendicular components of the wave vector k, r
= (x, z) is the position vector and only two dimen-
sions have been considered for simplicity. Be-
cause of the pe riodicity in the x direction, the par-
allel momentum for outgoing waves must be of the
form K+ G, where

G = 2'/a (2)

i f kC z +(x )+ G x ] - i kzD (x )ze
C

(4)

Different numerical methods have been proposed
for solving Eq. (4),"'""but the simple one that
can handle any corrugation is the GR procedure, '"
in which the left-hand side of (4) is evaluated at a
number of space points (R points) equal to the num-
be r of coefficients A.~ that are kept in the expan-
sion.

(ii) MMM solution. It Consists in finding the val-
ue for the sources f(x) from the integral equation

O

&eo = f(X)Gi(Ke G)xG lkGgD(g& dX
kg, a (5)

This is an exact solution obtained by the application
of the extinction theorem. " ' The numerical pro-
cedures proposed determine the Fourier transform
of f(x), fo, but then the method is applicable in
practice only when the Fourier transform of
e 'k~ z '"' is known in closed form.

(iii) GC self-consistent solution. This is also
based on finding the source function f(x) from the
inte g ra, 1 equation

a)Ex-kz B(x & ]

e e & (E+ Q ) (x-x~ )
Qgzl D(x)-D(x & I ~

kgz

(6)

This is clearly an exact method, and in fact con-
vergent solutions have been obtained without limit
in the corrugation strength or in shape of the cor-
rugation" by applying the RR numerical procedure
consisting in disc retizing the continuous variables
Xp X ~

The connection between the three methods has
been discussed by Toigo et al." Their complete
equivalence for sufficiently small corrugations
has been shown recently by expanding the expon-

and n is an integer. Because of energy conser-
vation, the perpendicular com ponent of the mome n-
tum for the G beam, 0 0„ is given by

kG, = k' - (K+ G)' .

(i) Rayleigh method. It consists in solving for the
values in the following equa, tion:

entials in Eqs. (4)-(6) in power series. " It turns
out that an iterative series for the unknown coef-
ficients can be obtained in closed form, but the
convergence of the series is limited to certain
values of the corrugation strengths.

From previous work on this problem the follow-
ing points have emerged:

(a) Equations (4) and (5) lead to some matrix ele-
ments that are very big and others that are very
small because kG, becomes imaginary [see Eq. (3)]
for large values of G, going to infinity when 6 -00.

Obviously this will create numerical troubles.
(b) In addition, for the corrugation (1) the Ray-

leigh method is incorrect for 5 ~ 0.072.'"
(c) The matrix elements obtained from the inte-

gral equation (6), however, are always well be-
haved and are bounded because of the modulus in
the exponential. Hence the summation over G con-
verges very rapidly.

(d) Even though formula (5) is exact, it does not
lead to convergent solutions for large corrugations.
The result depends drastically on the capacity of
the computer and on the numerical procedure
used. "'"'"'" Examples of this behavior are dis-
cussed in Sec. V of this paper.

(e) In a typical case, we found that by adding an
independent term with G 4 0 of the order of 10 ' in
the integral equation (5), we obtain variations of
10 ' in the Fourier components of f(x)

All these points make us suspect an ill- con-
ditioned behavior of Eqs. (4) and (5), while integral.
equation (6) because of the bounded character of its
kernel should be well conditioned leading always to
good solutions.

III. MATRIX NORMS AND ILLXONDIONING CRITERIA

We give a short review of matricial norms, of
the condition number and of its value for each dif-
ferent norm, following Chaps. 1, 2, and 4 of Wil-
kinson' s book."

The norm is a single number that gives an over-
all assessment of the size of a vector R or a ma-
trixA. The norm IIXII of a vector X must satisfy
the following inequalitie s:

IIX ll»0 unless X=0,

RX II= IR
I IIX II for any complex scalar R,

I
lx+ Y

I
I-

I lx I
I+ I I&

I I
(triangular inequality) .

(~)

The norm
I IA I I

of a, matrix A must satisfy IIA I
I» 0

and

(6)

If the condition
I I»ll~ II" I Ilx II is satisfied for

all A and X, the two norma IX I I
a"d

I IA I I
are
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I IA I I, = (max eigenvalue of AtA)'~',

which is subordinate to the vectorial. norm

xfl. =(lx I'+Ix. l" "+Ix.l')'"

(9)

(10)

said to be compatible. If

= m~.„(I
IAx

I I/ I fx I I),
then the norm of A is subordinate to the norm of
X. For any subordinate norm ll&If=1, wheref is
the unit matrix.

A useful matrix norm is the spectral norm

«, (A) ~ «s(A) ~ n«, (A) .
Then «s(A) gives bounds for «, (A) within the order
of the matrix n. This factor comes because the
two norms of the identity matrix are related by

= n'~'I lf I I2. The condition numbers defined
above are not easy to compute. In fact, finding A. '
is essentially equivalent to finding the solution of
(14). By working with Euclidean norms, it is pos-
sible to obtain a simpler criterion that requires
only the computation of the determinant & of the
normalized matrix

We will find it useful to consider the Euclidean or
Schur norm:

IIA lfs=l Zlaol

where a,&
is the ij element of the matrix A. This

is not subordinate (because
I II I ls =n'~') but is

compatible with
I IX

I I,. Since

~Q 012

01 Q1

~21 22
~ ~

Q2 D2

+1n

(19)

flAII;=T (A'A)= Pe (12)
where

nl n2 ~ ~ ~ nnQf„Q„Q„n n n

IIA II.- I
IA lla- n"'I IA fl' (13)

The above norms are invariant under unitary
transformations. Let us now consider the system
of linear equations

AX=b, (14)

and determine the sensitivity of the solution X to
small changes in b, so that (14) becomes

A(X + &X)= b+ &b .

By taking norms in (15) it is easy to show that

(i6)

where

(17)

is the condition number. A small value of «(A) as-
sures that the system is well conditioned. For a
small change in the matrix A, it turns out that
again «(A) is the magnitude that determines the
relative error II» II/'llxl It is easy to prove
that for the spectral norm IA I I, the condition
number is

«, (A) = (r,/o„,
t

where v', and v'„are the largest and smallest eigen-
values of A~A; This is the usual way of defining
the condition number but to find the eigenvalues is
rather laborious. If A is Hermitian, «, (A) =

I
&, I/

[A.„l, where X, and X„are the largest and smallest
eigenvalues of A. From the relation (13) it follows
that

(where o',. are the eigenvalues of AtA), we a.iso have
~l= Z (20)

The normalization is chosen so that IIA„lls=n' '
and it implies that I& I- 1.

writing (14) in the form A„X=b„, with b„;
=y, /o&, we find, analogously to (16), the error
bound

If»l /fix ll- «(As)(If~5~f1/lf "~l f) (»)
'The new Euclidean condition number is

"(A.) = ~"'IIB
I ls/ ln

I
(22)

IV. COMPUTATIONAL RESULTS

We now proceed to discuss representative com-
putations carried out on the different matrices.
We have first calculated the determinant 4 of A„
given by (19) to have some indication of ill con-

where B is the matrix of the minors of A„. Now

I
IB I fs is bounded by n'M ', where M is the modu-

lus of the largest minor. Since all. the minors of
A„have modulus no greater than one, it follows
that

f
fa

I
f' - n' and.,(A„)=n"'/f~l. (23)

Thus one can say that
I
&

I
« I is a necessary re-

quirement for the system (14) to be ill conditioned.
Furthermore the condition (21) indicates that an
error in a component b„ is more important if the
corresponding o.'„ is small. But Eq. (23) repre-
sents an upper bound of «s(A„). As will be shown

in the calculation the bound is much larger than
the actual «s(A„).
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FIG. 1. Conditioning and unitarity criteria for the
MMM method with ka =40 applied to a sinusoidal profile
for matrices of rank N=31 (a) and N=51 (b). The dashed
line gives —ln( n( and the continuous line gives the total
reflected intensity as a function of h.

ditioning because of the simplicity of this test.
Some results for the MMM method" are shown

in Fig. 1. The dashed line in Fig. 1(a} represents
-ln ~&

~

as a function of h using 81 G vectors for ha
=40. We observe that as h increase & decreases
very rapidly. The continuous line is a plot of the
total reflected intensity that must equal unity for
the elastic scattering being considered (unitarity
condition). We observe that the calculations fail
for h&0. 20. Figure 1(b) shows that & becomes
smaller, so that more ill conditioning appears,
when the number of G vectors (i.e. , the rank of
the matrix) is increased to 51. This was suggested
in Sec. II given the structure of the matrix ele-
ments that diverge for G -. The unitarity test
again fails at h = 0.20. The value of & and the cal-
culated norm (see Fig. 4 below) are only indicative
of a rapidly increasing behavior, for h&0.20, and
should not be regarded as accurate.

Figure 2(a) gives the same plots as in Fig. 1 but
for the GC self-consistent method'4 and ka = 20.
We observe that the value of & keeps practically
constant as h increases, and no changes are noted
when increasing the dimension of the RR' matrix'
or increasing the number of 6 vectors. considered
in summation (6). The unitarity condition (contin-

FIG. 2. Comparison of the GC method (a) with the
MMM method (b). The surface profile and the symbols
are the same as in Fig. 1. The GC calculation was
carried out for a matrix of rank%=60 using%~40 6
vectors in the evaluation of the Green's function; the
results were. tested at h = 0.4 as a function of N and Nz,
as shown by X for%=80, K&=60, and 0 for N=80,
Ng= 80.

uous curve) is always satisfied. The method seems
to be well conditioned, as is to be expected from
the fact, discussed in Sec. II, that the kernel of
integral equation (6) is bounded. For comparison,
Fig. 2(b) gives the same plots for the MMM meth-
od. Here & is also fastly decreasing, the unitarity
improves a little with respect to Fig. 1(a) and 1(b)
but it fails when h~ 0.30.

This first test made us consider a further anal-
ysis of the condition number g(A) to infer more
clearly the ill-conditioning character of the MMM
method even if it is analytically exact. We calcu-
late the Euclidean condition number vz(A) but as
formula (18) shows the difference with ~,(A) is
relatively small.

We report first results for the Rayleigh method
using the GR numerical procedure. " Figure 3
gives plots of the condition number zz(A) for ha
= 20 (a} and ha = 40 (b) as a function of h. Note that
this increases as h does, giving ill conditioning as
suggested in II. Again the matrix elements blow
up or are very small as h increases and G -.
'The plots are done up to h = 0.1 because the method
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FEG. 4. As Fig. 3, but for the MMM method.

FEG. 3. Euclidean condition number K z(A} as a func-
tion of h for the Rayleigh method using the GR proce-
dure, for different values of ka and of rank N of the
matrix A, as indicated.

FEG. 5. As Fig. 3, but for the GC method.

is analytically incorrect when h & 0.072. .It can be
seen that the ill-conditioning character becomes
worse as the rank of the GR matrix increases.

Figure 4(a) gives the condition number vs(A) for
the MMM method versus the value of h for two val-
ues of ka and of the number of G vectors used
(which equals the rank of the A matrix). Again
vs(A) increases as h does, implicating ill con-
ditioning as in Figs. 1 and 2. (The method is de-
finitely ill conditioned. ) A very interesting point
emerges by relating Figs. 1, 2, and 4; unitarity
fails (the method does not give good numerical re-
sults) whenever the condition number satisfies
as(A) & 10"-10". It is understood that the MMM
method is valid for the range of h, quoted here only
when a CDC 6400 (16 digits precision) is used. In
the IBM-360/65 the range of h is smaller. '4 This
effect is a clear sign of ill conditioning. ""

Finally in Fig. 5 we present the results for
zz(A(k)} when using the GC self-consistent method
and the numerical RR procedure. We commented
before that the matrix elements arising from (6)
are always bounded because of the modulus in the
exponential" and consequently we predicted well-
conditioned matrices. Figure 5 is a clear mani-
festation of this: the condition number decreases
as k increases no matter how big is the matrix and
the incident energy. In fact, Garcia and Cabrera
have been able to obtain good numerical solutions
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without limitations in the shape or strength of the
corrugation. '4

V. CONCLUSIONS

In the light of the above results one can draw the
following conclusions: (i) The Rayleigh method is
ill conditioned but its condition number is well
controlled by the computer precision for h & 0.10;
for larger values of h where the condition number
is bigger the method is incorrect in itself. It has
been proved that by using a vacational approach
the method can become valid for all values of h.'"
However, computations show that the convergence
is poor in agreement with previous suggestioris. '
(ii) The MMM method based on the extinction the-

orem though it gives in principle the correct anal-
ytical solutions. (iii) The only well-conditioned
method that works without limitations on the cor-
rugation is the QC self-consistent method; the RR
numerical procedure leads always to a good. con-
vergent solution and has the advantage that it is
applicable to any shape of the corrugation D(x),
while the MMM method is only useful in practice
for very simple corrugations such as a sinusoid.
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