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Theory of nonlinear oscillating dipolar excitations in one-dimensional condensates
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We find that for a one-dimensional condensate in the presence of an applied ac field, a significant
absorption peak should occur for values of the external frequency just below the pinning frequency co+. This
power absorption is due to those nonlinear normal modes of the condensate known as "breathers, " which are
shown to phase lock with the applied field.

I. INTRODUCTION AND DISCUSSION

In a recent Letter' Rice, Bishop, Krumhansl,
and Trullinger (RBKT) suggested that solitary
waves in a one-dimensional condensate, such as
Tetrathiafulvalenium- tetracyanoquinodimethanide
(TTF-TCNQ), could give a significant contribution
to the dc conductivity at low temperatures. These
solitary waves, called "P particles, " are local-
ized charge-density waves possessing a total
charge of + e*. If the system dynamics is des-
cribed by the sine-Gordon equation, "4 then these
solitary waves are solitons (i.e. , they retain
their identities through collisions} and are called
kinks and antikinks, or 2m pulses. Of course, . it
is also well recognized that the actual physical
potential probably is not an exact sine-Gordon
potential, in which case these localized kinklike
solutions are only solitary waves, not solitons.
However, even if this is the case, there is always
another nonlinear mode in systems such as these
that for sufficiently small amplitude of oscilla-
tions is a true soliton. In addition, we must point
out that, although this nonlinear mode does have a
small amplitude, it will still be nonlinear due to
its long range. %'e shall return to this point later.
When the potential is a sine-Gordon potential, this
nonlinear mode is always a soliton (i. e. , under
collisions it loses no energy or momentum) for
any amp1. itude, small or large, and is called a
breather, 2 or Ow pulse. Unlike the kink, the
breather requires no activation energy, and its
energy can range continuously from zero to 2Mco,
where MC02 is the rest energy of the kink or anti-
kink. Furthermore, although the total charge
carried by the breather is zero, it is an oscillat-
ing state and corresponds in the RBKT model to an
oscillating electric dipole. It is the purpose of this
paper to show that breathers can be stimulated by,
and can synchronize to, an external ac forcing field
with a frequency below the pinning frequency of the
medium, and to suggest that at low temperatures
they may be responsible for a significant amount
of the ac-current-carrying capacity of the conden-
sate. Although the initial part of our discussion

will be in terms of the sine-Gordon model, again
we must point out that our theory will be applic-
able for a very broad range of potentials.

Using the sine-Gordon potential in the RBKT
one-dimensional model, the local phase P(x, f} is
described by

~0

c20$" +&u~2 sinQ =0,
for which the breather solution2 is

g(x, t) = 4 tan '(4 cos~T}/cosh(2@X), (2)

where

X=2qcg(u,

40 =OPS —4g CO &

2= 2 22

and

T =y(f —vx/cp) qi

X==y(x —vt),
v2/c2)-1 /2

(3a)

(3b)

(4a)

(4b)

Note that the natural frequency of the breather de-
pends on its amplitude and lies below ~z. Also
note that the amplitude and width are inversely re-
lated, such that this pulse has an absolute area on
the order of co/|d. For small amplitudes, it has
a wide structure, and by referring to Eq. 1), one
can easily see how this is happening when P ~

«1.
For this pulse, the second term in Eq. (1), the
dispersion, is of the order of q3co/&u, while the
nonlinearity in the sing term is of the same order.
Thus there occurs a balance between the disper-
sion and nonlinearity.

On the other hand, the phonon solution of Eq. (1)
corresponding to the linear dispersive wave of
wave number 0 and frequency ur», is

» = coz2+ cob, (5)

which lies above ao&. In this solution, there is no
balance between the dispersion and nonlinearity,
and the wave is essentially dispersive in charac-
ter. What happens here is that the phasing be-
tween the dispersion and nonlinearity is the same,
so that both terms act to push the wave apart and
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p, (t) =(men J2q,q) sinh '(A cosset},

which for a low-amplitude breather reduces to
P = (recon /qp(u) cosset, which is independent of the
amplitude and has only one frequency component.
But for large amplitudes, this moment will be
amplitude dependent and will contain ~ and all of
its higher odd harmonics.

From the Lagrangian for the sine-Gordon mod-
el, one can determine the Hamiltonian, which then
gives the rest mass of the breather as being

M, = 2M (1 —&o'/~~2}'~',

where M is the kink or, antikink effective mass,
which is

M = 8n,m*v~/(coq~).

(8}

For ~ =0 the rest mass M& is the same as that for
a kink plus antikink, and as ~ approaches v&, it
goes to zero and ther'efore would require no acti-
vation energy. One can thus formally consider the
breather as being a bound state of a kink-antikink
pair, and then the oscillating dipole moment may
be simply interpreted as the natural plasmalike

to disperse it. Thus for suitably wide disturbances
one can expect both of these solutions to be pres-
ent, with the nonlinearity "splitting" the energy
levels. The breather is like a bound state with a
frequency [Eq. (Sb)] below &oz, while the nonlinear
phonon state has a frequency [Eq. (5}]above ez.
[There are nonlinear wave-train solutions of Eq.
(1) whose frequency is less than &o~ due to non-
linear frequency modulation (or shift), but these
are unstable and relax to the lower-energy states,
which are the breather modes. ] Consequently, in
any experiment involving frequencies close to v~,
we would expect contributions from both the pho-
non and breather modes, the latter (stable modes)
being exclusively responsive to frequencies ~ ~ co&.

Prom the phenomenological theory of such sys-
tems, *6 the local current and charge densities are
given by

j (x, t) =n,eqo'(fi(x, t}, (6a)

p(x, t) =-n, eqp P (x t), (6b)

mhere n„e, and qo are the density of condensed
conduction electrons, their charge, and the funda-
mental periodicity of the undeformed condensate,
respectively. If we use the sine-Gordon breather
solution, Eq. (2}, in Eq. (6b), since the total
change in Q from x =- ~ to x =+~ is zero (unlike
the kink solution where it is 2v), the total charge
f "„p(x,t)dx of the breather is zero (for the kink
it is a finite constant e*); however, the dipole
moment P,(t)=i" xp(x, t)dx is not zero. From
Eq. (2), it follows that in the rest frame of the
breather

oscillation between the positively and negatively
charged regions.

At low temperatures, since the activation ener-
gy for a breather can be very small, and even
almost zero, we can expect the density of breath-
ers to be reasonably large, perhaps even close to
the density of phonons. So it is of considerable
interest to determine whether or not they can be
experimentally observed, and to deter'mine how

they could affect the properties of a system.
Clearly, since low-amplitude breathers have a
natural frequency just below ~&, we want to look
at the properties of these solitons in the presence
of an applied ac electric field, where &&or~.
And, to make the calculations a little more physi-
cal, we shall introduce also a phenomenological
viscous damping.

II. ANALYSIS

Before calculating the effects of damping and the
applied field on these breathers, it is first advis-
able to reduce a generalization of Eq. (1}to a more
generic form, using a small-amplitude approxi-
mation, and to discuss carefully some of the more
important features of this generic equation. After
we do this, me shall consider the damping and ap-
plied field as perturbations, and calculate their
long-time effects on the breathers to first order.
Although there exist mell-developed perturbation
theories for handling such peiturbations, "8 we
shall derive these effects by a much simpler meth-
od, by using the first two of the infinity of conser-
vation laws. The advantage of this is that it quick-
ly gives the correct answer and works whenever
the continuous spectrum (phonons} does not reson-
ate with either the per turbation or the solitons.

These conditions will be satisfied in this case,
because me shall assume explicitly that the fre-
quency of the applied field is less than v&. Our
calculations show that the breather can 'phase
lock" onto the applied field, drawing energy out of
the field. The conditions for phase locking to oc-
cur will be discussed, and then we shall give some
numerical estimates of the size of this effect in
TTF- TCNQ.

The generalized form of Eq. (1}, in the notation
of RBKT, is

, tfl + Fp co(f& + (dp =—2&dgt COSQ)ot& (10}

where I' is the phenomenological viscous damping
constant,

e =2e~E/vMco,

and the ac electric field has been taken to be
-E cos~ot, with ~0 as its central frequency. Also,
me are now considering a more general case than
the sine-Gordon model by allowing V(Q) to be fair-
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ly arbitrary (in the sine-Gordon model V=1
—cosP}. In general, for small amplitudes, V(@}
will have the Taylor-series expansion, .

V(P)
& P2 & ~PPP ~ygP+. . . (12)

Cubic terms in the expansion for V(P} may be in-
cluded. In a small amplitude expansion, they will
produce second harmonics and a possible dc field,
both of which in turn mill interact with the funda-
mental, and the net effect will be to modify the
coefficient of the quartic term in V(P). We assume
only that the (effective) coefficient of pp is nega-
tive, the "soft" spring case. In the sine-Gordon
model a =1, so n will be a measure of the dev-
iation of V(P) from the sine-Gordon model. How-
ever, we should also emphasize again that our
results will be valid for any value of a2 & 0, and
thus the errors in our small amplitude approxi-
mation shall only be in the fifth order [which is
absent if V(P} is even] or the sixth order.

To reduce Eq. (10) to a more generic form, we
note from Eqs. (2) and (3) that for low-amplitude
breathers the frequency of the natural oscillation
of P is very close to a&~, and thus we may let

P(x, t) =Re[((x, t)e '"&']. (»)
Inserting Eqs. (12) and (13) into Eq. (10), and (i)
assuming that the time variations in g are much
longer that &o~' (exactly the same approximation
that is used to derive the nonr elativis tie Schrod-
inger equation from either the K)ein-Gordon or
the Dirac equation), (ii) assuming that all "fast"
time (&ozf) variations average out, and (iii) re-
taining only the first two terms in Eq. (12}, one
obtains

if, = —(cpP/2&op }g"—
—,

' eP&ozg~gP —-'il'P P+e""'

(14)

plies to a much wider class of systems than does
the sine-Gordon model.

Now, a careful reader may well Lsk why should
we consider this soliton solution at all, since it
is clear that Eq. (14) has exact nonlinear plane-
mave solutions with frequencies less than zero
[and thus P(x, f} has a frequency less then ~&J in
the absence, of the forcing term and damping. That
is indeed true, but all such plane-wave solutions
are modulationally unstable, ' and will, with a
growth rate on the order of aP&u~gP'g, decay into
these soliton solutions and the "nonlinear phonon"
modes. Thus in any general system, such as giv-
en by Eqs. (10}and (12), the solitons will be the
staMe configurations, whereas plane waves mill
be unstable.

I et us now turn our attention to the crux of the
problem, which is to determine the long-time
first-order effects of the damping and forcing
terms on the soliton solutions of Eq. (14). Cur
rently, there are well-developed methods~'~ for
doing this in the context of the inverse scattering
transform. These methods are very general, and-
are based on the fact that the inverse scattering
transform is a canonical transform, transforming
the field into the action-angle variables, which @re
the "scattering data. " However, for the one-soli-
ton solution, there is a much more direct method
for obtaining the final result, which we shall now
illustrate and use. (Nevertheless, sometimes this
more direct method can give misleading results,
especially if the continuum spectrum can be ex-
cited and contribute to the conserved quantities.
For an example, see Ref. 9. However in )he pres-
ent case, no such difficulties occur. }

Every system solvable by the inverse scattering
transform has an infinity of conserved quantities,
the first two of which, for the NLS, are

where
C( — + dg,

mOO

(19a)

g(x, f}=(Scpp}/o. (o~) sech8e",

where

8 =2q(x —xp- vt),

0'= —2)x —2cp(de ($ —fP}f +cp&

with the velocity given by

v =- 2cp )/(dy .

(16)

(17a)

(17b)

(16)

Comparison of Eqs.
'

(2) and (16) shows that in the
low-amplitude limit, the sine-Gordon breather is
equivalent to a NLS soliton, but now Eq. (16}ap-

For the moment, ignore the last two terms in
Eq. (14}. Then Eq. (14) is simply the "nonlinear
Schrodinger (NLS) equation", 'p which for c, p & 0,"
has soliton solutions of the form

and

C2 i l (g*(("-——p*'g) dx. (19b)

From the inverse-scattering-transform theory,
one can show that each of these conserved quanti-
ties is an additive function of the corresponding
quantities for each soliton, and for each phononlike
"mode. " In other words, although the NLS is a
nonlinear equation, the total momentum, energy,
etc. , of the system is simply a linear sum of the
corresponding quantities for each soliton and each
phonon mode. Thus in the absence of any pertur-
bations, there is never any "real" interaction be-
tween these modes. Therefore, if we start with
only one soliton, no phononlike modes can buildup
except through the interaction of the soliton with
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the perturbation. However, if mo & v&, the phonon
modes will be nonresonant with the forcing term,
whereas the solitons will be resonant. So, one
can then expect that if C„ is initially pure soliton
in character, it then will continue to remain es-
sentiaQy pure soliton in character.

Now, consider the time rate of change of Eqs.
(19}, which, when the perturbations are present
[Eq. (14)J, gives

c,=- rc, -a„ (20a)

c,=- rc„ (201)

which are exact relations, with

sing

2
2CO

iJ
F

2C

I, =2Im e ""' dx (21) FIG. 1. Phase-plane trajectories for Eqs. (23), with
x= 6~t —0' a'M 8= 0'g&~~/8CO.

(22a)

When g reinains pure soliton in character, as in
Eq. (16), then by Eqs. (19),

C, = 64c q/20(o er)2,
Eq. (24c} that this phase locking will not occur un-
less 5u is sufficiently small, or

C2 = 256c02q g/(n &oz}2, (221)
0&5+&~+, (25)

so that by Eq. (201}, q)- 0, regardless of the
forcing term. This simply says that either the
soliton's amplitude or its velocity must vanish
due to the viscous damping. Thus, without loss
of generality, we may take )=0, and also x0=0.
Then evaluation of Eqs. (21) and (20a) gives

rj +I'q=(n veep/Bc, }si n( 5(ot- o). (23a)

The time rate of change of a to first order in the
perturbation must follow from more-general in-
verse scattering methods, '~ but since we only need
the lowest-order nonzero terms, which for 0' is
the zeroth-order term, inspection of Eq. (17b)
shows this to be simply

(7 = 2(C0/(dg)YJ (23 )

o'= ~t —
XO

'I}= (g 5(d(dr/C0)

sin}t 0
—(8I'/c. ve)(2 5&@/&oz)' ~2,

(24a)

(24b)

(24c)

where Xo is the phase-locked phase difference be-
tween the soliton and the applied field. Note from

Equations (23) are easy to interpret. Equation
(23a) shows that the damping tries to cause the
soliton to decay in amplitude, while the ac elec-
tric field can either work with or against the damp-
ing, depending on the instantaneous phase differ-
ence between the soliton and the forcing term.
Meanwhile, and very importantly, the soliton's
frequency i changes as its amplitude changes, as
shown by Eq. (23b). In such a situation, it is pos-
sible for the soliton to "phase lock" onto the ap-
plied ac electric field by adjusting its frequency,
and to draw energy out of the field. For this to
occur, @=5m, which theri gives

where the frequency window &u is given by

+(d =- Q 7f (t/I } &dg. (26)

Computer solutions of Eqs. (23) have shown that
this phase locking, when it occurs, occurs quite
rapidly, and a typical result for the phase plane of
g vs X, where

)( = 5(ot- o', (27)

~ ~ . d~(X)x+ r.~~x+ (28a)

where

I'„,= I'[2 —(b,(o/5(o)'~2 siriX],

U =- 21'5&o[y + (b to/5u&)'i2 cosy].

(281)

(28c)

Equation (28) corresponds to a damped particle

is shown in Fig. 1', the singular points (A, C) are
stable nodes (and also "spiral points") for Eqs.
(23}, while the companion singular points (B,D)
are unstable saddle points. Two typical trajec-
tories are indicated by the dotted lines. Of
course, all points in Fig. 1 for g & 0 must be dis-
counted, since solitons only correspond to q& 0.
Any orbit which passes into this lower-half g plane
presumably corresponds to a soliton decaying down
into phonons. whether or not the soliton would re-
form out of the phonons so formed if the orbit
moves back up into the upper-half g plane is un-
known at the moment.

To understand further the behavior of the solu-
tion about these singular points, one can easily
derive a quasilinear second-order differential
equation for X about these points. From Eqs. (23)
and (2V), assuming ~y ~

«5v so that rj

=co (2&o~5&o)' (1- 2X/5&v), it' then follows that
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moving in a potential O'. This potential has a peri-
odic part and a linear part, where the l.atter has a
negative slope. The unstable singular point (B)
corresponds to the local maxima of Eq. (28c),
which are given by

}tp ——v- sin '(Ro/her)' + 2m', (29)

while the stable spiral point (A} corresponds to the
local minima of Eq. (28c), given by

Xp
= sin '(5(0/&(o)'" + 2m. (30)

Power will be absorbed by a NI S soliton in a
time-averaged sense only when phase locking oc-
curs. From Eqs. (6), (13), (16), (1V), (24), (30),
and the definition of the applied electric field fol-
lowing Eq. (11), we have

(P)=-(RJ~ dxj(x, t)xaxtxot)

if I" =0. 1&os, then &(d =(0z for E = 10' V/cm, which
would certainly be measurable. Thus a measure-
ment of &e would be a sensitive measurement of
r/n.

If the window width is sufficiently small, then one
should consider the applied field to contain a dis-
tribution of frequencies, in which ease (P) must
be integrated over the entire frequency window in
order to calculate the total power absorbed. This
step assumes that each breather achieves its syn-
chronous state given by Eqs. (24), independent of
the existence of other breather states —an assump-
tion which in a nonlinear system can only be loose-
ly justified by arguing that the effects of cross
coupling will average out over time. To estimate
the density of breathers n&, we simply take an
estimate from Currie's study of the sine-Gordon
model, and let

= 2m' 'Mc02e sinxo,

= 2n 2I Mcp2(2«d/&uz)~i2
~ (31)

np =(v~/cp)(lpT/Mcp), (33)

where k is Boltzmann's constant. We shall assume
that all of these breathers phase lock with the ap-
plied field, and shall ignore any that may be creat-

and where we have assumed +0 -—v&. Note that the
power absorbed is independent of the strength of
the applied field, since e sinxo is independent of.e.

e*E= 2I'n 'Mcp(25(d/&o )' (32)

is reached. At this point phase locking can occur,
and (P) will suddenly increase to the nonzero val-
ue given by Eq. (31}, and will remain at this level,
regardless of the subsequent amplitude of E. On
the other hand, if E is kept fixed and vo is varied
slowly downward through (dz, then for uo) mz,
only the phonon spectrum is excited. However,
once (0p decreases below (d~, then (P) is given by
Eq. (31), which is now frequency dependent but
amplitude independent. The breathers continue
to synchronize until 5m =v&- +0 is larger than
the frequency window (26), which is field depen-
dent. At this point, (P) suddenly drops back to
zero. If we use the representative values of TTF-
TCNQ as given in RBKT,' we find 4&v/&u„= [(1.05
&& 10 4)nE(d„/r]2, which for E = 10p V/cm and I"
=&o~ gives «o/&o~ =0.011, which may be observ
able. Also, note that this frequency window is very
sensitive to the values of I' and a. In particular,

III. CONCLUSIONS

These results have several interesting conse-
quences. If at a fixed frequency less than ~& the
amplitude E of the applied field is slowly increased
from zero, (P) remains zero until the threshold
given by

ed out of the phonon background. Multiplying Eq.
(31) by this factor, integrating over the frequency
window, and assuming ~a~» ~~, where ~a~ is
the bandwidth of the applied field, gives

n p diam= ++~I T e& v& e E

(34)

Using again the representative parameters for
TTF- TCNQ and setting n =G =1 (sine-Gordon
model), we get for E in V/cm,

'~ x(p)dil~ = k (x2) [(5.9 x 10')Ej'
(34')

Here we see a strong nonohmic behavior, with
the total power absorbed going as E3.

The above numerical values suggest that these
effects may be observable. The actual physical
situation will probably be the broadband case, in
which case one should look for a resonance just
below co&, and for a nonohmic behavior for small
fields as given by Eq. (34').
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