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Absence of phase transitions in treelike percolation in two dimensions
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It is shown on the basis of a continuity argument that the treelike percolation on the square, triangular,

and honeycomb lattices does not have a phase transition.

In a recent paper, Stephen' proposed the prob-
lem of a treelike percolation on a lattice and sug-
gested the occurrence of a phase transition in
such systems. Indeed, the existence of such a
transition is not without interest. Recent studies
based on both Monte Carlo data" and exact anal-
yses ' indicate that in the ordinary percolation
the shapes of large clusters near the percolation
limit are highly ramified (treelike). In fact, in
one soluble model of bond percolation on a com-
plete graph, ' essentially all clusters are of the
tree type below the percolation threshold. It is
then pertinent to ask whether the percolation
threshold would persist in an ensemble in which
only the treelike clusters are included. This leads
to the treelike percolation. While the usual ques-
tions of a percolation can be asked for this prob-
lem, "' the purpose of this paper is to point out
that the treelike percolation does not have a phase
transition in two dimensions.

We consider a treelike bond percolation in which
the edges of a lattice 4 are "occupied" indepen-
dently by bonds with a probability P, with the oc-
cupied edges forming only trees, which are sub-
graphs of Z containing no cycles or loops. While
the treelike percolation can be formulated' as the
infinite-temperature zero-component limit of the
Potts model, ' it is more convenient to use the
Whitney polynomial '

further by considering the mean number of trees
per site n(p). For a large lattice of N sites we
define the Whitney function as

w(x, y) = lim N ' ln W (x, y) . (4)

It follows that

n(P) = 1 —x
d w(x, 0), (5)

where p and x are 'related by Eq. ( 3) and use has
been made of the fact that the number of trees in
a tree configuration is simply N- e. This formu-
lation is valid for lattice in any dimension.

If a transition occurs in the treelike percolation,
we expect as in the usual bond or site percolation"
that n(p) becomes nonanalytic in p at some 0&p,
&1, where P, is the critical probability. It is
clear from Eq. (5) that the singularity of n(p), if
any, coincides with that of m(x, 0). In order to
locate the singularity of the function m(x, 0), we
now consider more generally the Whitney function
ao(x, y). The ensuing discussion is confined to 2
in two dimensions.

For planar lattices the Whitney function is equiv-
alent to the free energy of an ice-type vertex
model. " From this equivalence and the established
results on the vertex models, "' we know that
m(x, y) is nonanalytic in the region x, y &0 at

W(x, y) = Q x'~y' xy = 1, square lattice,

x(3y+y2) =1, triangular lattice, (6)
as the generating function for the problem. The
summation in Eq. (1) extends to all subgraphs
GL: Z of e —= e(G) edges and c=—c(G) independent cy-
cles. It is clear that only the tree graphs (c =0)
survive if we set y =0 in Eq. (1). Thus

W(x, o)= P x' (2
tr ees

generates the tree configurations in the treelike
percolation provided that we take

x=P/(I P)-
The connection between the Whitney polynomial

and the treelike percolation can be taken one step

1+ 3x = x'y, honeycomb lattice .
In fact, it has been established rigorously' that
ze(x, y) can be nonanalytic only at Eq. (6) in the
region y&4x&0. Indeed, the Whitney function for
a square lattice satisfies the duality relation"

zv(x, y)=ln(xy)+au(y ', x '),
which maps a point (x, y) to (y ', x '). If one makes
the usual assumption" of a unique singular point
along the "Potts" line y/x= constant, then the sin-
gular point is always given by the self-dual-point
xy= l. A similar argument can be made for the
triangular and honeycomb lattices leading to a
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transition point which is the same as that given in
Eq. (6) (Refs. 16 and lV). Thus it appears safe to
conclude that cv(x, y) is an analytic function for all
x, y & 0 except at Eq. (6).

To draw conclusions on the location of the sin-
gular point of xo(x, 0), we now invoke a continuity
argument which assumes a continuous dependence
of the criticality of a lattice statistical model on
its parameters. ' gn the present problem, we as-
sume a continuous dependence of the singularity
of the Whitney function m(x, y) on the arguments x
and y. The singularity of ao(x, 0) can thus be de-
termined from Eq. (6) by taking the limit y-0.
Since in this limit the only solution of Eq. (6) is
x= ~or p=1, it follows that n(p) is nonanalytic in

p only at p = i. Consequently, the treelike percola-
tion does not have a phase transition, except at
the trivial point p =1. While this result is not in
disagreement with the earlier finding of the domi-
nance of the treelike clusters below the percola-
tion threshold in an ordinary percolation, it does
single out the important role of the non-tree-like
clusters in bringing about a transition at p, &1.

Unfortunately, not much is known about the

Whitney function for three-dimensional lattices.
However, by slightly extending the ab()ve argu-
ment, it is possible to relate the existence of a
transition in the treelike percolation with a cer-
tain condition on the criticality of the related
Potts model. Using the equivalence of the Whitney
polynomial and the Potts partition function, "
which is valid in any dimension, it can be seen
that the treelike percolation exhibits a transition
only if the critical condition of the q-state Potts
model takes the form

e'~ "r = 1+qh(q), (6)
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with the function h(q) satisfying 0 &&(0) & ~, a being
the difference between the interactions of unlike
and like Potts sta, tes. For two-dimensional lat-
tices, Eq. (6) implies h(0) = ~ and, as a conse-
quence, there is no transition in the treelike per-
colation.
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