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Role of phonons and Coulomb interactions in fluctuating-valence europium compounds
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An extended Anderson model including Coulomb interactions and electron-phonon coupling is discussed

within the Hartree-Pock approximation. This model is used to describe valence fluctuations in europium
intermetallic compounds. The total 4f occupation number and the 4f level width are shown to be in

qualitative agreement with experimental data. A connection to charge screening invoked in a previous work is

also made, and the conclusions tend to support the phenomenological approach developed in that work.

I. INTRODUCTION

A phenomenological model to discuss qualita-
tively the valence of europium atoms in interme-
tallic compounds was recently developed. ' Em-
phasis was given on the role of the charge screen-
ing in the valence-Quctuation phenomena. The
systematic trend of the europium valence, in-
cluding homogeneous mixed valence states in a
large variety of intermetallic compounds could
be then qualitatively understood.

Although successful in this qualitative under-
standing, drawbacks of this picture should be
pointed out. The first one concerns the origin and
value of the effective 4f level width b„, together
with the general approach of Ref. 1 in considering
separately 4f ions and d-band electrons coupled
only through a phenomenological interaction y~.
Clearly the values of 6 play a fundamental role to
understand experimental results, e.g. , isomer
shifts, ' and x-ray photoemission' (XPS) measure-
ments in Quctuating systems. Although it is pos-
sible, within the framework of this picture, suita-
bly extended to include temperature effects, 4 to
extract from experimental data, excitation ener-
gies between two europium configuration, and the
effective level widths, the problem of the origin
of these widths remains. In particular, one must
understand how 6 changes when one crosses from
a Eu" configuration to a Eu" by changing of the
x concentration in compounds like Eu(A, -„B„)„
where A, and 8 are transition metals.

Another limitation of the model developed in Ref.
1 is to understand the existence of magnetic order
associated with the 4f ' configuration and a non-
magnetic state for the 4f' configuration. In that
work' only limiting cases x =0 and x =1 could be
described using Hund's rule, but in the x = 1 case
the origin of the long-range magnetic order was
not discussed. Both problems involve among other
interactions, the hybridization between the d band
and localized f states, which is completely absent
in Ref. 1.

In this work one intends to improve the previous
one' in several respects. Although conserving the
one-center picture, one introduces one-electron
hybridization between the local and conduction
states. Then one chooses an Anderson-type ap-
proach for the f electrons in a metal. The usual
Anderson model, incorporating intraorbital Cou-
lomb interaction will be supplemented here by
introducing (i) local Coulomb interaction between
the local f electrons and the d band, (ii) the elec-
tron-phonon intt. raction between d-band states and
lattice vibrations. So, one expects to discuss a
mechanism which may account for the features
observed in Eu intermetaQic compounds.

The motivation of this extension goes as follows:
hybridization introduces naturally a source of f-
level width; intra-f-orbital Coulomb interaction is
usually invoked to describe local moment forma-
tion and magnetic ordering. The coupling between

f and d electrons introduces in a natural way cor-
relations between f level an-d d-band occupation
at the impurity site. Finally and perhaps more
importantly, electron-phonon interactions are ex-
pected to be present in the valence-Quctuating
systems as suggested by lattice deformations ob-
served in these systems. ' However it should be
stressed that one incorporates the coupling be-
tween d electrons and the lattice and not between
the f occupation number and the lattice. " -The

reason for this choice follows from the role played
by the d electrons in the cohesion of these sys-
tems. If an f electron hops to the d band, the
change in the d electron density is expected to al-
ter the cohesion forces and so lattice distortion
follows.

In the literature several extensions of the An-
derson model have been discussed in connection
with valence-fluctuation systems. The Coulomb
interaction between d and f electrons has been
introduced in the Anderson model by Khomskii
and Kocharjan, ' within the Hartree-Fock approxi-
mation in order to discuss the y —e —y' transitions
in Ce and metal-insulator transition in SmS.
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These authors assumed a suitable ground state of
excitonic nature and an extra f-level width ap-
pears due to this excitonic pairing in addition to
the usual level width associated with hybridization.

The d-f Coulomb interaction was invoked also
by Haldane, ' together with a two-Channel descrip-
tion of the coupled Anderson model: one channel
(fast) associated with the d electrons is used to
ensure overall charge neutrality during the rela-
tively slow f-electron-number fluctuation. With-
in the framework of the Tomonaga approximation
this problem is shown' to be equivalent to a fer-
mionlike problem (the Anderson Hamiltonian)
coupled to a boson field (the screening i'ield). A

formally identical picture is provided by Rise-
borough's work, ' where the fermion operators n&

are coupled, via an electron-phonon coupling, to
the phonons. In both points of vj.ew, due to the
formal similarity one would say, following Hal-
dane, ' that valence fluctuations are purely elec-
tronic phenomena. The inclusion of the electron-
yhonon coupling to the. d states enables one to
bridge between cohesive energy arguments and
valence fluctuations. Also, as will be discussed
in the approximations of this model, electron-
phonon interaction will play a fundamental role in
the screening of the charge and so besides pro-
viding a microscopic view of the phenomenological
screening potential, ' it connects also the electron-
ic nature of valence fluctuations to lattice distor-
tions.

This work is divided in four sections. Section
II is devoted to describe the model and approxi-
mations to deal with the many-body terms. In
Sec. III the formalism is developed. Section IV
contains the numerical results and some discus-
sions to generalize the one-electron problem to
europium atoms. Finally, Sec. V includes gener-
al. discussions and final comments.

II. MODEL AND APPROXIMATIONS

The conduction states are assumed to be of d
character, and will be discussed within the tight-
binding approximation. In second-quantization
form the Hamiltonian for conduction states reads

If(d) — Q T(&)dt d
i,f, o

where T,f is the hopping integral leading to a dis-
persion relation e(i+ and de ((f„) are creation
(destruction) operators for a d electron with spin
cr at the site i. For simplicity, one neglects the
Coulomb interaction tJ«among d states and so one
assumes that E(l. (1) contains all the relevant in-
formation for the unperturbed d band.

Concerning the f states, one adopts the one-

center picture, "' as a zeroth-order approxima-
tion, for valence-Quctuating systems. The one-
center Hamiltonian for f electrons reads then

If .( = Zr6fsp +Uffmotsqk p no ofoafoa ' (2)(I)- ~ f f f f

In E(I. (2) fqt (fq ) creates (destroys) an electron
with spin 0 and energy e& at the origin. For the
moment a nondegenerate level will be adopted; an
approximate description of the many-electron na-
ture of Eu atoms will be made later on.

The interactions between the d conduction states
and the localized states are of two kinds.

(i) A one-electron hybridization term between
the local f states and the conduction d states

(lllIX)
=Vuy~~oafqa+VyuZ fqo&qo ~

This mixing term contains the usual phenomeno-
logical aspects, namely, it acts only at the ori-
gin, and the matrix element

~ V~& ~' is to be
thought of as a parameter of the theory. Alterna-
tive formulations would involve' the different pari-
ty of d and f electrons and a next-neighbor over-
lay. This implies k-dependent matrix elements
and for simplicity one adopts the phenomenologi-
cal approach.

(ii) A Coulomb interaction (intrasite) between the
4f electrons and the d band; the complete term
reads

H =
Z Ugf no~ noa ~

(~f) —~ 4 f
0 ~ 0

The Hamiltonians E(I. (1)-(4) are the terms of
the usual extended Anderson Hamiltonian with the
Coulomb interaction among d and f electrons. If
the one-center picture is applied to valence-fluc-
tuating systems another term is to be included to
account for peculiar effects associated to these
systems. One refers to lattice deformations in-
duced by valence changes. As mentioned in the
Introduction such deformations are understandable
since the transfer of a 4f electron to the conduc-
tion band is expected to change the elastic forces
between neighboring atoms. If the cohesive energy
in these metals is to be ascribed to the itinerant
d states, it seems physically reasonable to expect
that the electron-phonon interaction between d
electrons and lattice vibrations should play an es-
sential role in the formulation of the valence-
fluctuation problem. In view of these remarks one
considers the following term:

B"" = rApaa
q

+ C ( iq. Ri &~&-, i)&&
q q~ q lay

4, q, a
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where a-„(a~) stand for creation (annihilation)
operators for a phonon of wave vector q and ener-
gy ~q Cq is the electron-phonon coupling. In-
stead of adding Eq. (5) to the model Hamiltonian,
one follows Bari' and adds the effective electron-
electron interaction among d electrons mediated
via phonon excitation, namely,

B,t p~=-QCi; (Qnf ) (6)

Due to the many-body nature of the total Hamil-
tonian one needs some approximate method to deal
with correlations. The extended version of the
Anderson model has been treated using several
methods. In particular for C« = 0, Haldane' using
Tomonaga' s method reduces the problem to a
coupled fermion-boson one, which is treated with-
in the mean-field approximation. On the other
hand, a functional-integral technique, together
with the saddle-point method was used by Rise-
borough' to treat the Anderson model coupled
with phonons through the f electron occupation.
Due to the complexity of the Hamiltonian, Eq. (I),
we decided to work within the simplest approxima-
tion, namely, the Hartree-Fock approximation,
as in other similar works"" dealing with valence
Quc tuations.

One starts by linearizing the electron-electron
interaction terms. The intra-f-orbital Coulomb
term is linearized in the usual way, but the d-f
interaction terms needs some discussion. As
mentioned in Ref. 7 an important question arises
when one considers the full Hartree-Fock lineari-
zation of Eq. (4).

+&dt.f..&f.'. d..).
The last two terms of Eq. (8) are those invoked

In Bari's work, ' this term arises through the
classical canonical transformation eliminating
phonon variables from the Hamiltonian. One has
made in Eq. (6), the approximation of keeping only
intrasite terms, where C«characterizes the
strength of the electron-phonon interaction be-
tween d states and lattice vibrations. It should be
mentioned that the validity of (6) to describe pho-
non-mediated coupling between d, electrons is an
important assumption of this work.

The total Hamiltonian is given by

./ -/(~) +/(f) +/(1m~) +II(&f) +/(~&)

by Khomskii and Kocharjan' to describe the extra
f-level width due to excitonic pairing, which per-
sist in the absence of one-electron hybridization.
The existence of self-consistent solutions exhibi-
ting nonzero values of the "order parameter"
&do,fo, ) assume a ground state of different nature
from the usual one assumed for the Anderson
model. .We argue however that the behavior for the
f-level width can be explained without this extra
assumption, provided the first two terms of Eq.
(8) are properly included. Moreover, one expects
that the 4f width should go to zero in the absence
of one-electron hybridization", except for extra
broadening effects which are not included in this
picture. Hence, we neglect the second term of
Eq. (8). The other terms of the total Hamiltonian
are linearized in the usual way and one gets the
effective Hamiltonian

II —II(&)+ II(f)+ ~(lllh)

where

H = Q TIg~+ U„~Q n&~~0)6;,6;,

(10)

The mixing term remains unaltered. Concerping
the nonhybridized f states, Eq. (11), the Hartree-
Fock linearization introduces apart from the usual
Coulomb shift U&&&n~ o), an extra shift due to the
repulsion energy among d and f electrons. From
Eq. (10) one observes that the U„& coupling intro-
duces a localized perturbation, with strength pro-
portional to the f-orbital occupation number,
which may strongly deform the unperturbed d-band
density of states. Within the Hartree-Fock ap-
proximation one sees that the electron-phonon
term acts twofoldly. If one rewrites this term as

c, Q&n',.!&» ~;..-gc...
P«n", !,)~!.

two contributions appear. The first one, associa-
ted with the translationally invariant occupation
members, just shifts the center of the band, and
so is unimportant. The second one however, in-
troduces a new scattering source for d electrons.
This term is nonlocalized in nature, due to usual
Friedel-like oscillations, and the solution of such
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T&')a'a +Vn'i j ia ja ia~
i,a, &

(12)

where the local scattering potential is defined by

a potential scattering problem is mathematically
and numerically complex. Cl,early, one could as-
sume a perturbation localized at the central site
and next neighbors, treating the perturbation as-
sociated with the latter within the Born approxi-
mation. If one assumes the potential to be re-
stricted to the central site, this term together
with the U«one, will provide a Slater-Koster im-
purity problem" which is exactly treatable. Post-
poning a better discussion for Sec. IV, for the
moment one restricts to the central cell and ap-
proximates the Eq. (10) by

where Ed(oi) has real and imaginary parts, i.e.,

Ed((a+i e) = Esd(od) iw—p d((o), e 0'

Ed (&u) being the Hilbert transform defined by

E", ((o) =(P ",d(o'.
"Pd(oi')

g (d-CO

E, and E, are the bottom and the top of the d band,
respectively. Similarly 5'd o(u&) is the Hilbert
transform associated with the perturbed 4 band
P d (o()o= —(I/m)lmg dot((o) .

The second step consists of solving a genera-
lized Anderson-Moriya problem Th.e bare f-f
Hartree-Fock propagator reads [cf. Eq. (11)]

goo(4&) =5o5io~((o &y) ~

V = Ug j n~p~~ —C&np . (13) where

Equations (12) and (13) in the absence of the mix-
ing term B™~~)define the above-mentioned Slater-
Koster problem. If the mixing is used, Eqs. (11).,
(3), (12), and (13) define an Anderson-Moriya"
problem coupled to a Slater-Koster one. The
same formalism has been used in other contexts,
namely, the formation of actinide-impurity mag-
netic m'oment in disordered transition hosts" and
rare-earth impurities in s-P hosts. " The mathe-
matical solution of this problem together with the
suitable sum rules for the electron occupations
numbers is the subject of the Sec. III.

III. FORMALISM

The effective Hartree-Fock Hamiltonian, Eqs.
(10), (3), and (ll), can be treated in two steps.
Using the Green's function formalism one defines
an "intermediate" Green's function g to describe
the scattering of the extended d states. In such a
way one solves the extended Slater-Koster pro-
blem defined in Eqs. (12) and (13) through the
Dyson-like equation

The solution of the coupled equations is

G~~ 1-'" [g" ()]-'-IV, I'-"'()
The G",f ((o) propagator is given by

G, fa(&0) =g i«(&o)+g foa(&o)VdfG', ia((o), (18a)

G~,' ((o) = g~o~~((u)VqdGod';(&u) (18b)

and from Eqs. (15), (16), (18a), and (18b) one gets

ej ~f +ff (+O o) +Udy g(NO
a'

The Anderson-Moriya problem, formulated in
terms of a Dyson-like equation, can be defined by

G =g+gV'G,

where the matrix elements g between d and f
states are noted as g

dd and g~~. The f fpropato-r
is obtained from the two coupled equations

(Vo(&) giia(&) +giOa(&)i'ydGOi a((O) ~

G." .(~) =g!" (o)VdyGoi' (~)

. where g has the following matrix elements:

gdd((O) Q gi k( RRid /')( (dg" )

(14) Gff. (~) =gfi (od)+ g' '(~i)1 V dd. .gfo(~)~8 ppk)

go (&)1-Vgll(od) [g"...((o)] '-
I Vdg I'l.'."((o)

c&K being the band dispersion relation.
Equation (11) yields for the diagonal matrix ele-

ment

g 'f(~)
1 —Vg' ((o)

The 4f occupation number . is obtained from

(19)

g";((o)=g';"(&o)+g'".(oi) 1 V, ,g."((d) (15)
&-Vg«&~& '

One has at the origin

- dd goo((d) Ed((d) EI Vdd() I VE()do()x()

Q(n~() ) = ——Im Q Go~~~ ((o)doo
a CJ

8 cfQp=- -imp
a &-~ (o &i —

I Vd-i I ~d, o((o)



18 ROLE OF PHONONS AND COULOMB INTERACTIONS IN. . . 5135

where Z~ is the Fermi level.
A convenient way to take into account the possi-

bility of f-bound states below the d band is to di-
vide the integral of Eq. (20) into two parts: (i)

respectively.
By imposing

g(n', .)+ 6n'= 1, (26)

(21)
including the contribution from the extended states
in energy and (ii) if bound states are present, they
contribute as

ni ~
1' "' ~I-IV., I'[»l,.()/s ]l...,

(22)

where E~, is position of the pole corresponding fo
the 4f, propagator. As expected the total 4f oc-
cupation goes to 1 when «~&- -~.

The localized-state occupation number is given
by Eg. (21) if bound states are absent or Eg. (21)
plus (22) when a bound state exists below'-the d
band.

On the other hand the total change of d occupa-
tion number is

1 gg
6n'= —-Imp t [Gtf, ((o) gf';,-((u)jdcu.

W

Using Eq. (19) one gets.

10 v Vp, (Z~)6n = —arctani

I'~ —
l vs. l'[»g..(~)/3~1

l veal E, (+)

(23) .

10 vVp (E )6n'= —are tan ~„( )

I vu. l'[&...—(~)» ~1
w-~. -lv„, l z, ,(~)

g lv. ,l'[s&". .( )» 1

~ 1 —lVej l*[»u,o(~)/6~) s, .' (24)

Summing Eels. (21), (22), and (24) one has

{n, &+en = —arctan
10 v Vp~(E~)

Q PQB g

+ (1-u), (25)

where ~=0 or 1, if one has a bound state or not,

where the factor of 10 in the first term accounts
for d-band degeneracy. The integral in Eq. (23)
can be treated similarly as done for Eq. (20). The
Eq. (23) becomes

one gets the sum rule which governs the self-
consistent procedure and contains the essential
physical requirement of charge neutrality. Two
limiting cases are to be pointed out. If
Z, (n~a )=1, which corresponds to the Eu ' con-
figuration, then 6n~=0. The othe limit;
Z, (n~o, )=0, corresponding to the Eus' should
satisfy for 6n~= i. This means that the f electron
is transferred to the d band and the screening is
performed entirely by the d states. A word of
comparison with Ref. 1 is in order. In that case
two ionic configurations were present and the
electron transferred to the 4 band was screened
by the localized potential. In the present ap-
proach, the two-level nature of the problem (two
configurations of the 4f ions) is replaced by the
average occupations Z, (n~o, ), but the screening
associated with the d band is still present.

I

rV. NUMERICAL RESULTS AND DISCUSSIONS

The ideas discussed in Sects. II and III could be
applied to general pseudobinary compounds like
Eu(A, „B,)„,4 and B standing for transition met-
als and n = 1, 2, 3, . . . . The concentration x ranges
from x=0 to x=1. In these limits, the
europium valence is assumed to be 3' and 2',
respectively. One is interested in thi.s work in
exhibiting a smooth and continuous change with
concentration of the europium valence state. To
our knowledge such behavior has only been ex-
perimentally observed in the Eu(Ir, „Pt„),sys-
tem. ' However, Table I of Ref. 1 may suggest
other experimental possibilities. Based on these
comments, one keeps the notation Eu(A, ,B,),
throughout the work. Since no detailed informa-
tion is available concerning the density of states
of the intermetallics EuA. , and EuB, to justify a
coherent-potential approximation (CPA) calcula-
tion, we use the simplest approach, namely, the
virtual-crystal approximation. One adopts a para-
bolic Moriya density of states defined, by

pg(~) = (3/4&g) (1 —~'/&g'),

the half bandwidth A~ being chosen equal to 1 in
the numerical calculations. One assumes also
that for a EuB~ compound the Fermi level lies at
the top of the d band, whereas in the EuA. 2 com-
pound the A atom has one less electron than B.
The Fermi level is fixed for x =0 imposing the
d-band occupation equal to 9. For intermediate
concentrations the Fermi level lies between these
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V =(U„+C)g(n', .) -C.
Ot

(28)

For x = 0 the potential V(x =0) is equal to —C, and
with the adopted band structure it is determined
to be C=0.3351. Then the difficulty of estimating
electron-phonon interactions and phonon spectra is
circumvented using this approximation.

In the x = 1 limit, p~(Ez) = 0 since e~ lies at the
top of the d band. This implies that the Slater-
Koster phase shift vanishes. So, in the sum rule,
Eq. (26), only the Anderson-Moriya contributions
remain, which should be equal to 1. One may ask
if a self-consistent solution can be achieved for an
effective f level, ez, lying within the d band. Since
p„(E„)vanishes and so does p„,(Ez), thus imply-
ing that the phase shift associated with 0 or 4

spins is equal to m. This situation violates the
sum rule and is dropped out. Another possibility
is to try a solution involving a filled and an empty
f bound state. As mentioned above the constant
Vdz assumption (~ V~&~'= 0.05) implies in taking
these levels one far below and the other far above
the d band respectively. Since one takes (n~«)= 1
and (n~„)=0, one sees that a quite large value of
Uzf (-203,~) is necessary. Although the validity of
the Hartree-Pock scheme could be questioned, one
argues that this is an artifact of the constant
~ V„z~' para. meter. So, much smaller values of

limits. The self-consistent determination of the
f level occupation is defined by the Slater-Koster
problem coupled to the Anderson-Moriya one. As
was shown in Eq. (25), the Slater-Koster potential
depends on the 4f occupation number. For x=0
one has a Eu" configuration corresponding in the
present picture to Z, (n ~0)=0. This means f lev-
els far above the top of the d band. In fact, if one
takes

~ V,z~'= const, there exists a critical dis-
tance between the f level and the top of the d band
above which the Anderson-Moriya occupation num-
ber can be neglected. In this case the sum rule,
Eq. (26), with @=1 imposes the Slater-Koster
potential to satisfy

10 vV(x=0)p, (Z )
1 —V(x = 0)&~(E~)

where V(x =0) denotes the value of the Slater-Kos-
ter potential corresponding to x=0 and it is given
from Eq. (13) by

V(x=0) = C&n—,'
Recall that 5n," is the change in the d occupation
number at the origin. If one approximates 5n," by
5n, defined in Eq. (24), which amounts to assume
a perfect local screening, one may use the sum
rule, Eq. (26), to rewrite the potential for an ar-
bitrary concentration x:

Uzz (e.g. , —2A,) can be used if hybridization is
properly taken into account. Then the boundary
condition, x =1, is only satisfied by the magnetic
solution (n~«)= 1 and (n~»)= 0.

In principle the complete self-consistent pro-
blem for intermediate concentrations could be
solved numerically using Eq. (28) together with
the equations of Sec. III. One has preferred how-
ever to restrict the parameter space of the pro-
blem introducing another simplification concerning
the potential V. This is based on the following re-
mark concerning the Slater-Koster phase shift.
Suppose that the. potential V is constant. For an
attractive potential (it is true for Eu" configura-
tion) the phase shift starts from zero at the bot-
tom of the d band, increases to attain a maximum
and decreases to zero at the top of the band. One
fixes such potential to warrant a screening equal
to 1 for x =0. This gives the same value of C
=0.3351 obtained before. At the top of the band
one obtains also the same behavior as before. For
intermediate concentrations the U~f repulsive
term in Eq. (28) does not destroy the tendency of
the phase shift observed for a potential which is
attractive and constant. Then the sum rule Eq.
(26) which contains the more important physical
aspect of the problem is satisfied in the same
way, that means the charge difference I -Z, (n~„)
is always attracted in the d band.

%ithin the above discussed approximations one
solves the self-consistent problem.

One uses the model density of states [Eq. (27)];
the Fermi level as a function of concentration
being defined in terms of the band fillings at the
limiting concentrations. It is assumed that the
d-band occupation number changes by 1 in going
from x =0 to x =1. Vhthin the proposed simplifi-
cation of constant V= -C, the parameters of the
model are fixed by the boundary conditions at x = 0
and x=1, namely, Eu" and Eu", respectively.
For intermediate concentrations, the self-consis-
tent procedure is defined by Eqs. (2), (23), and
the general sum rule, Eq. (26). The results are
shown in Fig. 1, which can be compared qualita-
tively with the experimental observations of the
valence state of the Eu(Ir, „Pt„),system. ' For
comparison one has plotted also in Fig. 1 the re-
sults obtained within the phenomenological model
in Ref. 1 (cf. Fig 3of Ref.. 1). In both cases, the
screening condition plays a central role. How-
ever, in the present work, hybridization effects
give a natural origin for the width introduced
phenomenologically in Ref. 1. One believes that
present approach can be considered as a step fur-
ler in avoiding the phenomenological aspects of
Ref. 1. The 4f-level width, due to distortions of
the usual Lorentizian form were estimated com-
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Ov, mp

I g~z,~g~ ) = Q A(Mz J o&, m, )
O]= Oy
fftg= tÃ j

tftyOy N2O2
'

tN6O6 mvO7

(29a)
Ops ltle

0.0 0.2 0.4 0.6 0.8 1.0 X

FIG. 1. Change of the total 4f occupation number with
the x concentration in the pseudobinary intermetallic
systems Eu(A& „B„)2. The full line represents the para-
magnetic solution and the dotted line the magnetic one.
The dashed line shows for comparison the results ob-
tained in Bef. 1 within the phenomenological model. The
experimental data are obtained from interpolation of
lattice-parameter measurements in the Eu(Ir~ „Pt„)~
system (Bef. 2).

puting the second moment of the f density of
states. The behavior of the level width as a func-
tion of the concentration shows a rapid increase
from zero to attain a plateau value. of the order of
600 K and decreases, in the same way, at the
other limit of the concentration range. Such be-
havior suggests that the fast-valence-fluctuation
regime persists along the concentration range ex-
cept in the borders of the concentration limits.

Up to now, a nondegenerate f level was as-
sumed. The question one raises naturally is un-
der which assumptions the above results are
meaningful for many-electron ions like europium.
In particular one may ask how physical quantities
relevant to europium intexmetallics may be ob-
tained from the crossover curve obtained under
the hypothesis of a nondegenerate f level. One
wants to propose the following picture: the binding
energy of an Eu atom is such that during the fluc-
tuation process, six electrons remain tightly
bound to the ion core by the strong ionic potential.
So, only one electron is active during the Quctua-
tion process. The natural set of states to describe
this situation could consist in a complete set of
atomiclike states, properly symmetrized to pre-
serve atomic symmetries, describing a 4f' con-
figuration and a 4f'5d' configuration. In the liter-
ature, to our knowledge, only few works" "dis-
cuss the many-electron nature of the f ions. One
adopts here the formulation introduced in Ref. 1V,
which although more appropriate to a perturbation
scheme may suggest a way to formalize the pre-
sent picture. These authors" construct a many-
electron ionic function starting from one-electron
Bloch wave functions (or their Wannier trans-
forms) for f and d states.

The St'ates corresponding to an Eu ion in the
Eu'+ and Eu" configurations read

I

(29b)

where J and M~ stands, respectively, for the
angular momentum and its z component, respec-
tively. In E&l. (29a) and (29b) suitable com-
binations of atomiclike functions, with the appro-
priate symmetry of states Eu" (J,M~) and
Eu" (O', M~~) are provided by the proper choice of
the coefficients A(Mz, J) and A(Mz, J').

~ 0) is
defined as the extended vacuum consisting of all
core electrons and filled bands. These states are
assumed to be eigenstates of the uncoupled f and-
@-band Hamiltonians and, in principle, intraionic
interactions are contained from the beginning,
giving rise to spectroscopic energies. Then d f-
hybridization or whatever interaction among d and

f electrons will mix these states. Moreover one
expects that E&ls. (29a) and (29b) form a suitable
complete set for perturbation theory, that is, a
good zeroth-order approximation for the coupled
system.

Our approximation goes in the reverse sense;
one wants to suggest modifications to be made in
E&ls. (29a) and (29b) in order to include &lualita-
tively the effects of the coupling without making
any further perturbation theory. One has devel-
oped an one-electron theory along this work.
From this one-electron picture one extracts occu-
pations numbers which include hybridization ef-
fects, the role of d-d interactions mediated by
phonons and Coulomb interactions. We propose
then to use this information to construct many
electron states like Eqs. (29a) and (29b) but keep-
ing the idea of a fixed "shell" of six electrons
during the fluctuation. So, one conserves six
purely atomic f-like functions denoted by

~ f ).
and adds two modified (weighted) ones:

Starting from these new functions, one constructs
many-electron functions using the above-g. en-
tioned scheme.
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Symmetry requirements are incorporated again
through the quantities C(M~, J). The final result
is clearly equivalent to multiplying Eqs. (29a) and
(29b) by the weights Z, i(n~o .) and I - Z, i(n~„),
respectively. Such a simplified picture neglects
all intraionic relaxation processes which occur
when a f electron hops into the d band. In view of
this picture, the isomer shift of the fluctuating
Eu ion can be described from the crossover
curves of Fig. 1. Moreover, one argues that be-
hind the experimental determination of the valence
states through the Mossbauer experiments these
assumptions are implicitly included. From the
known values, respect to a given source, of the
isomer shift associated with Eu'+ and Eu" con-
figurations, one fits the observed shifts using
weight factors like those introduced above. Then,
the present picture connects these data to some
electronic parameter s.

One has discussed in this section the one-elec-
tron results, in particular the crossover curves
and the 4f-level width. In Fig. I one has plotted
the paramagnetic solution (full line) and the mag-
netic one (dotted line). The level-width behavior
for the magnetic solution shows essentially the
same behavior as in the paramagnetic case.

It is experimentally known that a 4f' configura-
tion shows a 7/~ net moment in agreement with
Hund's rule. In some cases, e.g. , EuPt„ this
magnetic moment couples with neighboring ones
and produces long-range order. The magnetic
order in EuPt has been usually ascribed to Ru-
dermann-Kittel-Kasuya- Yosida interactions medi-
ated by the highly mobile s electrons of the com-
pound.

An interesting question to be discussed concerns
the persistence or not of magnetic order for in-
creasing Ir concentration in Eu(Ir„Pt, „),. The
small concentration region x&0.1 has not, to our
knowledge, been experimentally studied: such an
experimental study is in our view very illumina-
ting. In fact, if fast charge fluctuation starts to
occur, no more Curie-Vfeiss behavior is expected
to occur. According to our predictions, the width
increases steeply as a function of concentration to
attain a plateau of the order of 600 'K. This
width would correspond to a fluctuation time of the
order of 10 "sec. Clearly this predi. ction depends
on the particular choice of the value of the ~V~&)'
matrix element. If experimental data become a-
vailabl, one can check the validity of our as-

sumption for this parameter. On the other hand,
if experimental results indicate that magnetic or-
der persists over a broader concentration region,
our

~ V~& ~' assumption should be revised taking
into account a better description of the hybridiza-
tion matrix element (cf. Ref. 8).

V. FINAL REMARKS

In this section one summarizes the principal
results and indicates possible extensions of this
work. One has developed an extended Anderson
Hamiltonian which includes among other interac-
tions the coupling of the d band to lattice vibra-
tions. A general formulation within the Hartree-
Fock approximation was developed and the numer-
ical results obtained using some simplifications.
The-general results support a previous view' of
the role of d-band screening of the extra charge
transferred during the fluctuation process. This
screening is connected to a phonon-mediated in-
teraction among d electrons. From the numerical
results, crossover curves could be compared with
experimental data. Also, the 4f level width which
is computed from the self-consistent solution
shows a plateau for a large concentration range
and a rapid decrease to zero in the neighborhood
of the concentrations limits g =0 and x = I) of the
pseudobinary intermetallic system Eu(A, ,B„),.
These two facts show the consistency of our view
of fluctuating systems, in particular respect to
the role of the d-band screening via a general sum
rule. One has developed also a qualitative view of
the many-electron ions like Eu and connected
some experimental information, extracted from
isomer shifts measurements, to the microscopic
parameters of the model via the total f occupation
numbers derived from the one-electron problem.
Finally one has pointed out the limitations of the
suggested picture with respect to magnetic pro-
perties.

The above-mentioned ideas can be generalized
to treat extended versions of the one-center Harn-
iltonian discussed here. More specifically the so
called alloy analogy treatment of strong correla-
tions" can be used to describe a collection of f
levels and a d band. The same couplings invoked
here can be treated within this approximation and
in particular the phonon-mediated coupling among
d states may be of central importance. "
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