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I

The tricirical exponents q, and $, are calculated through order ~ and e, respectively, in the

isotropic n-component model, where ~ =3 —d. The estimate for q„ in two dimensions for the

Ising case, is 0.027; the series for @, is quite ill behaved, producing a negative estimate at this

order. Beginning at this order in e, the spherical-model limit fails to exist. A scaling function

for the spin-spin correlation function, appropriate for nonexceptional paths of approach to the

tricritical point in the disordered phase, is calculated through ~2; its large momentum expansion

is shown to involve the crossover exponent, These results are generalized to points where g
coexisting phases become critical.

I. INTRODUCTION

We have seen in the previous paper' that model-
dependent properties associated with a particular
two-dimensional tricritical system could be estimated
by approaching two dimensions from below. In this
work, we consider universal quantities by approach-
ing two dirnensioris from above, via the ~ =3 —d ex-
pansion. With the transfer matrix we were able to
see the global behavior of the phase diagram as one
varied parameters in the Hamiltonian, but we were
not really able to probe the tricritical region in any
detail. Within the ~ expansion, one tends to lose
sight of the global properties, but, in compensation,
one gains almost unlimited access to the scaling re-
gime (in a formal way, at least).

Experience with the e2 expansion at critical points,
where ~2 =4 —d, obtained by comparison with high-
temperature series and experimental results, suggests
that one often obtains fairly accurate (say, 20'/o) nu-
merical estimates from two nontrivial orders of the
series evaluated at e2 =1. Of course, it is a complete-
ly open question as to whether this type of accuracy
continues to hold at tricritical points; the reason for
this is that ~ = 1 corresponds to two dimensions,
which is known to be special. For example, we shall
obtain results for the class of isotropic n component
models; when n =1 one expects standard tricritical
behavior in two dimensions. Yet, when n ~2, the
absence of long-range order in two dimensions must
make a two-dimensional tricritical point rather exotic,
if it exists at all. Since it would seem unlikely that
the series can "know" about this, one is led to be
rather suspicious of the expansion when ~ =1, and
n «2.

We try to avoid dwelling on calculational details,
but we do attempt to convey our methods when they
are not completely standard. Our stress is on those
matters which one encounters in a tricritical calcula-
tion and which are completely absent in a corre-
sponding calculation at critical points. We calculate
within the framework of Wilson's (1972) direct Feyn-
man diagram technique2 and the basic idea is well
known: namely, one compares directly the results of
perturbation theory with what one anticipates from
certain scaling expressions, cho'osing a coupling con-
stant (u6 here) order by order in e so that the leading
correction to scaling vanishes. Ho~ever, the addi-
tional relevant scaling field at tricritical points (with
respect to critical points) does provide additional
complications and additional freedom. The additional
freedom manifests itself in the choice of a path of ap-
proach to the tricritical point; some paths are compu-
tationally simpler than others in that they manifestly
eliminate a large number of Feynman diagrams from
the beginning of a calculation. With a poor choice of
path, one may not discover these same diagrams can-
celling each other until one is very far into the calcu-
lation. The basic freedom here is in deciding what to
do with the four point coupling (u4). We discuss two
natural choices.

These calculations3 extend previous results of
Stephen and McCauley, who calculated q„y„and
qh, through lowest nontrivial order in the n

component case; we have been unable to extend the
calculation of y, . The exponent calculations are re-
ported in Sec. II of this paper.

In Sec. III, we consider the spin-spin correlation
function in the disordered phase. This function is, in
general, a function of two arguments. However, we
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consider it with one of the arguments (containing the
crossover exponent) set to zero. This resulting func-
tion is then appropriate for comparison with its coun-
terpart at critical points. Our calculation uses the
method of Fisher and Aharony, ' which is explained
in detail by them, so we basically report only the
result. It is interesting that, in contrast to critical
points, one need not be forced to contend with an in-

tegral representation of this function' because the
resulting integral may be evaluated easily in terms of
simple functions. This is quite helpful when consid-
ering the large-momentum expansion of this func-
tion; we find that the expansion contains a new term
not present at critical points: even though we though
the crossover exponent had been "suppressed, " it ap-
parently reappears in the new term.

In Appendix A, we generalize many of these
results to order 6 critical points, where 6 coexisting
phases become critical. Specifically, we provide a
general expression for q which reproduces Wilson's
result at critical points (8 =2) and our new result
here for tricritical points (8 =3) through se3 where

se -28/(8 —I) —d. The general expression is rath-
er complicated, involving hypergeometric sums. We
also provide a general expression for y6 through ~6'.

And anally, we generalize a portion of the spin-spin
correlation function calculation, reproducing the
result of Fisher and Aharony at critical points, while
providing a new integral representation for that case.
We point out that the necessary limit for that calcula-
tion is trivial in position space, in contrast to the si-
tuation in momentum space.

In Appendix 8, we present the details of the large-
momentum expansion of the spin-spin correlation
function calculated in Sec. III. Again, our emphasis
is on those details which dier from the critical case.

II. EXPONENTS

The simple Ising-type Hamiltonian considered in

the previous work is inconvenient for e-expansion
calculations. Ho~ever, there are arguments which

suggest that it is in the same universality class as (the
n =I case of) the more convenient Landau-
Ginzburg-Wilson form

4 n

H=(2m) "Jl dq2 ' rn +q + q Xa'o'

1

n

+ d x u2 — X(o„')'+u4 X(o„')'
1 1

1 3

The constants (in space) u2, u4, and u6 are the
parameters of the eftective spin weight functio'n; each
spin Geld component cr I ranges over the real line,
and ct, is its Fourier transform. The term m, which
has been added and subtracted for a more convenient
perturbation theory, is defined to be the exact inverse
susceptibility I'2 (p =0); this is usually denoted by r.

The partition function is the functional integral

Z- da. e and exists only as the formal generator
4

of correlation functions (because the thermodynamic
limit has been taken); the correlation functions exist
as long as u6 )0. Wilson's direct Feynman diagram
technique' is a calculational tool best motivated, and
understood, with some version of an underlying re-
normalization group formalism. Let us briefly sum-
marize what we need to know about such a formal-
ism, within the context of tricritical behavior, in ord-
er to be able to proceed with the calculation.

Consider a particular renor~alization group con-
structed, say, by Wilson's momentum shell integra-
tion procedure, ' acting on the three parameters of the
Hamiltonian (u2, u4, and u6) and all other generated
by a single iteration of the transformation. In gen-
eral, there are an infinite number of these others.
One discovers that there is a twice unstable fixed
point of the transformation at the origin of parameter
space for 4 & d & 3, one eigendirection leading to-
ward high temperatures and the other toward a criti-
cal fixed point. Because of this, one identifies this
fixed point as.a tricritical fixed point. Furthermore,
for suSciently small e =3 —d, this twice unstable
fixed point can be followed away from 'the origin,
where the eigenvalues of the linearized recursion re-
lations are (Ising case)' X~ = 2 + 0 (e'), k2 = I + 0 (s),
A3

———2s+ (s ), and various more negative eigen-
values. X3 is the only "dangerous" irrelevant eigen-
value of order e. It is presumed that, outside of the
~ expansion, there exists a fixed point which
corresponds to this one as ~ 0, and remains twice
unstable as ~ 1.

Associated with some domain of the tricritical fixed
point are an (infinite) set of nonlinear scaling fields9

(g&) (being nonlinear functions of the parameters).
These fields transform multiplicatively by a factor

b J, where b is the length rescaling. The scaling
fields are supposed to be analytic functions9 of the
parameters (u2, u& u6, others) within the domain.
Thus, the equations g~(u2, u4, u6, others =0)
=g2(u2, u4, u6, others =0) =0 are expected to admit a
solutiori which is a smooth tricritical line

(u2, (u6), u4, (u6)) in the original three-parameter
space. Moreover, one can expect to locate a special
tricritical point on this line, given by

(u2, (u6"),u4, (u6")), which is determined by the one
additional constraint g3(u2, u4, u6, others =0) =0.
Although throughout we denote this special value of
u6 by u6', it is expected not' to coincide with the
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fixed point value of u6 beginning at some high
enough order in e (say, p').

By considering how lengths, spins, and parameters
transform, one obtains a scaling law"" for the one-
particle irreducible 21point vertex functions in the
original three-parameter space

Ug

NON- EXCEPTIONAL
PATH

EXCEPTI ONAL PATH

I+ g(
I
\

Ist ORDER
LINK Qp

u, [3-l+~(l-i) -l~,)
1 21(pl 0»2 u4 u6) = lgt I

x C2I(g2/lgt I",

g2/lgil
' ' . . . ), (2)

TRICRI
POI X- LINK

Up

where @,- h2/h. t and all g& are functions gt(u2 ~ u4 ugt

others =0). The functions q22t depend on the sign of
gi. The principal temperature instability, represented
by gi, is removed by setting gi =0, which locates the
critical surface. Thus, fixed gi )0 keeps us in the
disordered phase; analyticity of the vertex functions
in this phase (as functions of u2 and u4) implies that

42l must be analytic near the origin of every argu-
ment that can go to zero in this phase. In particular,
we expect analyticity in the first argument. In Fig. 1,
we show the g~ axis and g2 axis at the tricritical point
in a plane of fixed u6, we define these axes to be the
normals to the gi = constant and g2 = constant con-
tours at the tricritical point in this plane. The axes
may be taken to be linear combinations of (u2 —u2&)

2t

FIG. 1. Schematic of the phase boundary in a u2 —u4

plane at fixed u6. The numerical value of u4, is probably

negative. Scaling axes g~,and g2 and examples of exception-

al and nonexceptional paths are shown.

and (u4 —u4, ).
Now imagine that, within perturbation theory, we

are able to locate u4, (up) and we fix u4 to this value.
Then, we consider Eq. (2) as gt 0+. Let us as-
sume, for the moment, that 42l is expandable in a
power series near the origin of its first t~o arguments.
Then, using (2 —

21,) 2, = y„and the fact that g2 will
be going to zero linearly with gi, we have, for l =2,

(3)

2 f3 —I+a(l—1)-lqf)/(2 —v) f) 2(Z3f/) &y 4J) 3)/), ... 2(i-y, )/~,
r2t(p, =o)l„, „, —m [ pb+&bg (2m +b2g2m + ' ' ')+b2m + ' ']

M4 M4f

(4)

1'2(p -o)I, -„„= m —gi (ttp + ttig2gt + t22(g2gt ) + ' ' 'l&2gi2 )A3]/A$ JAI3(/)t] 2 I

gi 0

where the a; are constants. Solving Eq. (3) for gt as a function of m and substituting back into Eq. (2) one ob-
tains

with new constants b, . Equation (4) is of primary
importance to the direct Feynman graph method,
where one computes these vertex functions directly
as a function of u4, up, and m' (u2 is eliminated ord-
er by order in favor of m2). We see that the power-
law behavior of Eq. (4) requires a constraint (in this
case, fixing u4) that ensures that the tricritical point
is being approached as m 0. In perturbation theory
near three dimensions one also finds this to be
correct; the vertex functions will be found, in gen-
eral, to be made from graphs which have leading
power-law singularities not given by Eq. (4) until one
imposes a constraint. If the constraint is achieved by
fixing u4 to a special constant, as in Ref. 4, we have
thus identified that value as u4, . There are other pos-
sibilities, however, which we discuss below. As an
example of the necessity of a constraint, consider
that Eq. (4) implies that, within the context of the p

expansion where rt = O(p'), I'4 has leading singulari-
ties given by powers of lnm/A. Nevertheless, one
finds in perturbation theory singularities worse than

I

this; in leading order there are A/m singularities in
diagrams contributing to I'6. However, as we have
anticipated, fixing u4 to u4, (up) removes these singu-
larities to all orders, leaving only powers of lnm/A.
We have, of course, only verified this explicitly
through two orders of perturbation theory.

Next, there is the matter of the corrections to the
leading power in the vertex functions, also displayed
in Eq. (4). Because the leading irrelevant eigenvalue
is of order ~, one sees that this induces a jumble of
lnm/A corrections to the leading power, within the
formal ~'expansion. As discovered by Wilson, ' we
can insist, order by order, that these corrections van-
ish; as one sees, this is equivalent to insisting that
g3=0. Moreover, one sees that setting g3=0 causes
these corrections to vanish in every vertex function
simultaneously. This additional constraint is imple-
mented by fixing u6 to a special value u6'self-
consistently so that the additional corrections do not
occur; one need only use one vertex function to
determine this value; I 6 is the most convenient, of
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course. Both of the special vajues u4, and u6'are
also functions of how the large momentum cutoff is
implemented.

Equation (4) was obtained under the assumption
that u4= u4, . In general, one may want to approach
the tricritical point along some other path. One usu-
ally distinguishes two types of approach from the
disordered phase, which we shall call here nonexcep-
tional and exceptional paths. Nonexceptional paths,
such as the one u4 = u4„are always characterized by

g2/g~
' 0. Exceptional paths are characterized by

g2/g&
' —A, where A & 0. As long as —~ ~ A ~ xo,

where xo is of order unity, one can expect 42& (A,
others =0) to exist. " Thus, one can also derive the
leading power-law behavior for the vertex functions,
as a function of I for any type of path of approach,
within the above restrictions on A. One finds Eq. (4)
to describe the correct leading power for any path; if
one changes paths, the only things that change in Eq.
(4) are (i) the amplitude bp depends on A, and (ii)
the surviving correction, when g3 =0, depends on the
type of path. However, to summarize, the leading
power is path independent when written in terms of
m, as long as m )0. This, of course, is manifest in
the fact that the leading power only depends on q„
whose definition does not require mention of a path,
whereas the correction involves an exponent (y,)
that requires one to specify a type of path. For the
moment we shall restrict ourselves to the nonexcep-
tional path u4= u4, .

Ignoring irrelevant eigenvalues there are only three
independent tricritical exponents, which may be tak-
en to be g„y„and @, All the ot.hers may be deter-
mined via the tricritical scaling laws. Once one fixes
u4, the leading power-law behavior in Eq. (4) may be
used to determine u6'and then q, with %'ilson's
method in the standard way', as one sees, $, may
also be determined by looking at the leading correc-
tion to the leading power in any vertex function. In
fact, although we have checked that this method
works through leading order, it is not convenient for
determining $, through next-leading order. One
wants to only look at leading powers; for this purpose
we use an alternate scaling law, which we now derive
from Eq. (2).

Near the tricritical point, we have gI = (u2 —u2, )
—s;(u4 —u4, ), i =1,2, where s~ is the slope of the
phase boundary, and s2 has no special geometric
significance. Now, consider an infinitesimal path of

2 ~tconstant m =g~ '42(x), where x =g2/g~ ' and ignore
all other scaling fields, as we are interested in a lead-
ing power. Along such a path dm =0, which implies
dgi/gi = 4g2f(x)lg2, where

f(x) =x 42'/(4x 42' —y4). Thus,
(Bgg/Bu4) 2)„, „, -x, and

(Bg2/Bu4) 2(„„—const, as the tricritical point is

approached along the--nonexceptional path u4 = u4, .
The scaling expression for I'4 and the above relations
may then be used to show that

(5)
Qg4 2

"4 "4t
, m

Equation (5) was used to obtain the crossover ex-

ponent; .one sees that it is very convenient because
I'4 is given directly by a power series in u4 and u6.

Thus the differentiation is trivial and just reproduces
the series with a factor u4

' wherever there was a u4

originally. For a computation through ~', we need
Stephen and McCauley's result

y, =1+5(n +2)(n +4) e2/8(3n +22)2

which we also check independently in Appendix A as
a special case of order 6 critical points.

For our computations, then, we need diagrams
contributing to I'6(p; =0;m), I'4(p; =0;m), and
I'2(p;m =0). The relevant diagrams, combinatoric
factors, and integrals are shown in Figs. 2—4 and
Table I. Every four-point vertex comes with a fac-
tor, ' not included in the tabulations,
u4+3(n +4) u6G(x =0;m), where G is the free pro-

pagator. This leads to' u4, = 3(n —+4) u6G(0, 0)
+O(u62). Any diagrams omitted from Figs. 2 and 3

are either (i) not singular enough as m/A 0 or (ii)
in the case of I 4 diagrams, contain no four-point ver-
tices (since we only need BI'4/Bu4). Certain
geometric factors have been removed so that one ob-
tains the vertex functions. by summing over graphs,
with a factor u6( —u6)" ' when there are exclusively
(n) six-point vertices, and a factor

[uq+3(n +4) u6G(x =0;m)] ' ( u6)—
when there are n6 six-point vertices and n total ver-
tices. The new coupling u6 is

[I'(—' d —I)]2/(d —2)

The constants that appear in Table I and Fig. 4 are

A = J2(101n2 —6ln3)

C = —
2

ln2+ln3+CE5

J =ln3+CE ~

where CE is Euler's constant. Of these constants, J
and E are universal, while A and C depend on the
specific form of the large momentum cutoff. A tedi-
ous amount of algebra then yields the results

u6'(a) =2 33 '(3n +22) '

x e {I+ e[Q (n) +2C]] + 0 (e ), (8)
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COMBINATORIC FACTOR DIAGRAM COMBINATORIC FACTOR

6! 22 3 (n+ 14)

612 3 (3n+ 22)

6!2' 32 (n2 + 14n + 60)

41

4! 2' (n + 8)

4! 25 3 (n+4)

4! 27 3 (n+4) (n+ 8)

612 3 (n+4)(n+ 14)
OQQC 4!2' 3' ( +41( ' ~ 8 +36)

6! 2 33 (n+ 4) {n + 10n+64)
4l 28 32 (n + 4)2

6! 2' 3 {3n +30n+92)

6! 2 3 {n+4)(n+ 14)
4l 27 3 (n + 4) (n + 8)

6l ~ 3' {n + 36n+ 188)

4! 2 3 (n+ 4) (7n+ 38)

6!2 3" (n+4) {3n+22)
9a 4! 28 3& (n+ 4)2

6! 2' 3 (5n'+78n+292)
3 5 (n + 4) (n + 8)

I0 6!2' 3 {n3 + 34n' + 620n + 2720)

IO 4l 2s 32 (n + 4) (n + ]8n + ] ]6)

FIG. 2. Diagrams contributing to 16 with their combina-

toric factors.
FIG. 3. Diagrams contributing to 14 with their combing-

toric factors.

g, (.e) [(n +2) (n +4)/12(3n +22)']

x e2(l+2s[Q(n) ——,']].+O(a')

where

Q(n) [m (n'+34n +620n +2720)

+8(53n'+858n +3304)]

x [16(3n +22)'] '

and

( ) 1 (6 —n)s + (n+4)s
2 2(3n +22) 16(3n +22)

(10)

In two dimensions (s- 1), Eq. (9) yields
0.027, 0.034, and 0.040 for n -1,2, and 3,

respectively. The lowest-order term alone accounts

Dl AGRAM CQMBINATORIC FACTOR AND INTEGRAL

3 {n+2)(n+4)

[—(]n p+ -'- -C) -K j + e [:-& 1n' p + {4K—9) ]n pl

2 3 (n+ 2)(n+ 4)(3n+ 22)

x [~'(n'+ Sn' —496n —2SSS)
I ln'p+ (] C+ 2K) ]n p

—8(19n2+50Sn +2428)] + O(& ) FIG. 4. Propagator diagrams with a factor of p2 removed.
Constants are de6ned in the text; in logarithms p should be
read as p/A.
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TABLE I. Leading sigularities of the diagrams in Figs. 2

and 3. In logarithms m should be read as m/A. Various

constants arerdefined in the text.

Diagram Integral

I

1/2m —~ lnm/m

(—lnm + C —J) + ~(ln m +2J lnm)
—lnm/2m

A/m +2 lnm

ln~m +2(J —C) lnm
—lnm/2m

5
3/m +—lnm

2
1—ln2m + (J —C —1) lnm
2

——m 1nm
l

4

for less than a tenth of these values. Because of the
three-loop graph (diagram 10), both q, and @,—+n
for large n In fa. ct, Eq. (8) reveals that even at
lowest order in ~, the spherical-model limit is ill

behaved: u6'is proportional to n ' for large n,
whereas the free-energy density has a reasonable
large nlimit o-nly if'3 u6 —n 2. The series for P, pro-
duces a negative estimate for the Ising case, which is
presumably not correct since it would imply, formal-
ly, that no crossover occurs. The primary source of
the large negative contribution in second order is
again the highly irreducible diagram 10. A not un-
reasonable speculation is that the second-order term
has "overcorrected" the wrong sign of the first-order
term, and that the exact value of $, is indeed less

1
than 2, although positive.

After one finishes the algebra that leads to the
results of Eqs. (9) and (ll), one cannot help noting
certain remarkable cancellations among the various
diagrams in Figs. 2 and 3. Specifically, one discovers
that in Fig. 2, diagrams 4a, 4b, 7a, and 7b, which po-
tentially contribute to q„ in fact do not, but rather
caricel a similar contribution at order e' from diagram
2 in the same figure. An analogous cancellation oc-
curs with diagrams 4 and 7 in Fig. 3. These diagrams
are all distinguished by having four-point vertices;
contributing diagrams are distinguished by having ex-
clusively six-point vertices (taking into account the
differentiation of I'4). As we anticipated earlier,
there is an optimal choice of path of approach which
manifestly eliminates these noncontributing diagrams
right away. As we also mentioned, the leading power
in Eq. (4) is path independent; similarly, Eq. (5) is
also path independent, as may be seen by the follow-
ing argument. Along, the path u4 = u4„one may re-

place m' by g~
' and rewrite Eq. (5) in terms of g~.

However, one may show that along an exceptional
path of approach one obtains the correct power by re-

placing g~ by g2 ', but since along an exceptional

III. SPIN-SPIN CORRELATION FUNCTION

If we are deep within the tricritical scaling region
we can ignore corrections due to irrelevant scaling
fields. Then, one has the scaling form for the spin-

spin correlation function in the disordered phase, '
At V(

G(p;u2, u4) =gi 'D(pg& ',g2gi ') (12)

where p is the momentum variable, so that at the tri-
7/ 2

critical point G =p ' . If we set u4 = u4„and then
approach the tricritical point by letting m2 0, we

have seen that the second argument vanishes in the
limit. Let us adopt the notation of Fisher and Aharo-
ny5 and call this resulting function

D(x ) =—D(pgt 't, 0), with the usual normalization

D (0) = dD (0)/dx' =1 and x—=pgt
Then, a simple computation in position space, fol-

lowing the method of Fisher and Aharony, yields

path m —g2
' ', the power of m is invariant. Thus,

the subscript u4 = u4, is superfluous in both Eqs. (4)
and (5).

The optimal path is the exceptional path
I'4(p; =0;m) =0. Thjs equation may be solved for
the curvilinear path of approach 'u4 = u4(m), order by
order in u6. Through second order this path is

u4(m) =—3(n +4) u6G(0;m)

+2 3 (n +4)(n +14)u'

x
~

d"x G'(x, m) +O(u6)

Note that this is different from choosing u4 = u4„a
constant independent of m. So, in the perturbation
series for I'6, everywhere a factor of u4 appears, the
value u4(m) is substituted; similarly, after differ-
entiating the series for 14 one substitutes u4(m)
Now one sees why the third-order diagrams with
four-point vertices do not contribute: they are im-

mediately eliminated by the first term of u4(m).
Also, one sees that the only role of diagram 2 in
Figs. 2 and 3 is to provide a subtraction for diagram 8
once u4(m) is substituted. Once the perturbation
series is entirely in terms of u6, one proceeds in the
standard way to reproduce the results of Eqs.
(8)—(11) with much less work.

Although we have not calculated y, through next
order, one may anticipate similar cancellations to
those discussed above along the path u4= u4, . This
phenomenon seems to occur in general; at critical
points where 6 coexisting phases become critical,
only portions of diagrams made up exclusively of 26
point vertices seem to contribute to the exponents;
the only role of the other diagrams is to provide sub-
tractions for the former. A further example of this is
discussed in the Appendix.
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D(x2) =(I +x2) '+6 [x /(I+x2)]2Q(x2) +O(e )

where Q is determined by the two self-energy graphs with three and five lines. Namely,

Q( 2) (n+2)(n+4) 4 d y 3[ -Sy+( +4) 2 —3y] sinxy —1+ x
2(3n +22)~ «xy 6

(13)

At critical points one obtains a similar integral representation (see Appendix A); here, however, the integral is
easy to evaluate in terms of simple functions and yields the final result

(,) (n +2)(n +4)
2(3n +22)2

1 25 x2 5 125 x ll 25
ln 1+ + — arctan —— +

412x2 4x4 25 2x' 6x' 36x2 6x4

1 x 3 x 1 1—(n +4) ln 1+—+—arctan —+ +-
2x4 9 x 3 54x x!

(14)

+D(e)x '+O(x '+')] (15)

where r is the order e. The coeScient C(e) of the
term not present at critical points begins at order ~.
%hen this term is included, the expansion of Eq.
(15) is consistent with the expansion of Eq. (14).

Thus, small- and large-momentum expansions" are
immediately obtained. Similarly to the situation at
critical points Q (0) is very small and indicates only
very small corrections to the Ornstein Zernike line
shape. Of course, we know that the scale here is set
by q„and since there is an order of magnitude
change in next order, one can expect similar numeri-
cal changes in D from contributions at order e'.

The large-momentum expansion of Eq. (14) is
more interesting. At critical points, ' the first correc-
tions to the leading power include an energy singular-
ity ~g~' t and a regular term ~g~, these powers do
not coincide for d =3 (unlike the corresponding
powers at critical points for d =4). If Eq. (14) is ex-
panded for large x far enough to observe the regular
term, one finds that anc'. her term besides the ones
present at critical points must appear in the expansion
in order for the calculation expression to agree with
it. The form of this term can be obtained by the field
theoretic method. Because the mthod has been
described in the literature by its originators" and ap-
plied to an exhaustive discussion of the critical-point
correlation function by the Saclay group, ' we present
in Appendix B only those details of the derivation
which differ significantly from the critical case. The
result of this calculation for the path u4 = u4, in the
disordered phase is

D(x') —x" [A(e)+8(e)x ' '+C(a)x

IV. SUMMARY

%e have calculated the tricritical exponents q, and
qh, through two nontrivial orders in e, and a portion
of the spin-spin correlation function through leading
nontrivial order. Deviations from mean-field theory,
in the case of q, and the correlation function, are nu-
merically small and comparable to corresponding de-
viations found at critical points in three dimensions.
With respect to P„ the situation is rather ambiguous.
The weak dependence of exponents on the symmetry
index n, characteristic of critical points in three di-
mensions or higher, is lost at sufticiently large n,
although the variation for 1 ~ n ~ 3 is still quite
small.
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APPENDIX A: ORDER-8 CRITICAL POINTS
(ISING CASE)

For those universal quantities, such as qe and ye
which exist at all critical points where 6 coexisting
phases become critical, it is possible to calculate all of
them at once6 as a function of 6. This is possible be-
cause of the similar structure of the infrared diver-
gences in the appropriate vertex functions near each
upper borderline dimension Q =26/(8 —1). Here
we will outline the calculation for ye through e62, qe
through ee, and consider briefly the spin-spin correla-



A. L. LEWIS AND F. %. ADAMS 18

Then, in terms of these vertices and regular vertices,
the sum of graphs is

1(m) = X „'u2„,[G(o,m)]"(2k +2)!
k 1

6-~
—X (2j+2)!u2J(m, e) u2&+2(m, s) Fq&(m, e)

J 2

6
—X (2j)(2j)!uq~(m, e)F2J ~(m, 6). ,

J 2 (A2)

where the Feynman integral is Fj =& d"x [G(x;m)P.
Note that the first sum in Eq. (2) contains only regu-
lar vertices.

By using the scaling law6 for I'26, one determines
the order-8 point coordinates u2J'and the special
value u26'. These values are, through leading order,

tion function. In all cases, ~8 = de —d and we will

often drop the subscript on ee.
In Wilson's method, '

yo is determined by the
m' x (powers of lnm) singularities in self-energy
(mass counterterm) diagrams generated by the per-

turbation XJ,J d'x ufo-p If we approach the
order-8 critical point along a nonexceptional path, we
find (see below) that these singularities do not begin
until order e if 6 «3. Thus, writing
y=l+y2a +6(s ) and
I'2(p =0;m) -m2=m2+[(mg —m ) +1(m)], where
1(m) may be taken to be a sum of graphs through
second order in the perturbation, one has

y2 = 2 '[1(m)]
~ 2 2. .. where the notation means

abstract the coeEcient of the singularity.
We make use of the generalized vertex, for

2Mj Me

u2j(m f) X k u2J+2k[G (x =0;m)]
' ' (2j+2k)! k

2j !k!2"

(Al)

(28)![G(o,m) —G(0, 0)]~,
( 5)

2~j!(26 —2j)!
The free propagator G(x, m) is the Fourier transform
of (m +q +q /2) '. This may be written

G(x, m) =2x' "(c2 —c)2) '[W(c(x) —W(c2x)] (A6)

where c~(m) and c2(m) tend toward m and J2
respectively, as m 0, and W(x) is the free propaga-
tor scaling function (proportional to x"K„),given by, .

for 6 «3,
v

W(x) -r(v)r(I -v)4-'~-'~' X~ m!I'(1 —v+m)

(x/2) 2m+2 v

~ m!I'(1+v+m)

From the above, one finds that, for 6 «3,
1

[G(o,m)l ( 2, =eke ~

I'(v) I'(1 —v)
m 1nm ' 4~tfl21

x 4 '(8 —1)(—1)ee . (A8)

Because of Eq. (8) and the fact that the couplings are
of order e one indeed finds the coorrection to y = 1

beginning at order e'. When 6 =2, there are addi-
tional lnx terms present in the power series for W(x)
and this causes the first correction to begin at order ~

in that case. ' In this respect, d~ =4 is quite special.
Let us implicitly define three constants W(0), R~,
and R2 by rewriting Eq. (7) for small x as
W(x) = W(0)(1+Rtx 2+R2x2+ ). Then,
analysis of the Feynman integrals in de yields, for
O~j ~6,

Fe~j~ (g g)J,
=—fte[W(0)]

and

(-I) (26).[G(O, O)]
2jj!(26 —2j)! (A3)'

26+j
R i + (28 —1)R 28J e i

~ L 2

(A9)

26
u2e"=[4n ' r/( )v] e-2&/ 8 8! (A4)

where v = —,d —1, and it is to be understood that d

may be replaced by de wherever appropriate. Substi-
tuting these values in Eq. (Al) results in

where 06 is the area of the unit sphere in de. Ulti-
mately, one finds that y2 is determined exclusively by
the second term in Eq. (9). All the ingredients
necessary for the evaluation of the e m lnm piece of
1(m) are now present in Eqs. (3)—(5), (8), and (9).
Thus, putting everything into Eq. (2) yields

'6—1

+( 1)e I (1 v)
I'(1+ v)

26
2 '[I(m)]~ 2 2, , =(28)(28 —1)(6 —1) /(6 —2)

v

26 266!(8—1)/ 8 Sy+S2 —
8 /(8 —1)!2e

t 2

(Alo)



TRICRITICAL BEHAVIOR IN T%0 DIMENSIONS. II ~

where the sums S~ and S2 are, with [x] the greatest
integer in x,

[6/2]
S, = X [(8 —2j)!2»-~j!(j—1)!]-I

i~1

(Al 1)

[(6—1)/2]

S2= $ [(8 —2j —1)!22~(j!)2] '

j~
Now, a remarkable combinatoric cancellation occurs
because, apparently the entire second line of Eq. (10)
vanishes, i.e.,

28
Si + S2 = 8 /[(6 —1)!2 ]

when 8 «3. We do not have a proof of this amus-

ing identity, but it is easy to check for every 8 that
one might try. Hence, one obtains the final very
simple result

'261'
ye -1+ (28)(26 —1)(6 —1)2/(8 —2)

t

although we have confidence in the final result. The
weakness of the calculation is that the evaluation of
diagram 5 in the figure required an assumption about
the singularity structure that could be explicitly
checked when 8 = 2 and 3, but we were not able to
prove it in general. This is probably not very serious
because, in the context of Wilson's method, this di-
agram seems to contribute only "old" information to-
ward the evaluation of q. If our assumption is
wrong, it will mean that there are additional terms in
the final result when 8 «4. Thus, the result of this
section must be taken to be a conjecture when
8 «4. We calculate along the exceptional path
determined by setting all of the intermediate vertices
to zero, leaving only I"2 and I'26., contributing di-
agrams are shown in Table II and Fig. 5. All vertices
are 28-point vertices. As usual, one obtains I 26 by
the sum over diagrams

u2e X (combinatoric) && (integral)

x( g )n —I

when there are n vertices, with a new coupling

x «$ +8 (ee) (A12)
g g A 622-26~-d(0-1)/2
Q2y = 026

x [r(—,'d —1)]e-'/(d —2) . (A13)
And, of course, Wilson's result applies when 8 =2.
When 8 =3, one finds y, =1+3e'/200, in agreement
with Stephen and McCauley's result4 at n =1. The
above cancellation has the effect that y is determined
solely by a portion of the m lnm singularity in. the
single second-order self-energy graph with 28 —1

internal lines; this is the only graph, through this
order, made up entirely of 28-point vertices. One
can expect this cancellation to occur not only in the
Ising case, but in the n-component case also.

Next, we consider the calculation of q, this calcula-
tion, being in third order, is more complicated than
the one just outlined, and not entirely airtight,

X(e+1)/(6-1)
g 0 dx (x2+ 1)e/(e-l)

J =
J~ dx lnx — [ +'(x)]

0 dx
p oo dE = dxlnx-

dx
1

h cos8
d8(si 8)'~te t& e —1

4p X-

(A14)

The generalization of the constants, that appeared in
the triritical case is

TABLE II. Combinatoric factors and leading singularities in the diagrams in Fig. 5.

Diagram Integral

(28).'
2(8!)3

(—lnm+C —J) +~(8 —1)(-ln m+ J 1nm)
2

(28)!
2(8t)'

ln2m +2(J —C) 1nm

(28)!»
I t2I t2I t2

(28) (28)!

8(28)!3
~3

Sl 6[—ln2m+(J —C) lnmj —A lnm
2

—lnp+ —C —
6 +a — ln2p+ 4E —— lnp

1 1 2K 1 2 2

t

— 61n p+ 8+ 8 1np (conjecture when8~4)1 2 C 4K
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8
o PQ4~

FIG. 5. Diagrams necessary for the computation of rte through ag with constants defined in the Appendix. All vertices are

26 point vertices and numbers next to the cross-hatched blobs indicate. the number of lines running between the vertices or the
number of external lines.

where lT'(x) = W(x)/W(0), and the normalized an-
gular variable is given by d8 = dt!/o3, where

P 7f

co = d8 (sin!02 te '3. We have taken the liberty ofJp
changing propagators to G(x, m) = (x'+ A ')" "'I2

x 8'(mx). Only the relevant singular terms of the
diagrams, which are not cancelled by the path condi-
tion, are shown. This is in contrast to Table I, which
contains all the leading singular terms, so one should
be careful when comparing. The numbers next to
the blobs indicate the number of lines running
between the vertices. For the "triangle" shaped
graphs there are two additional numbers in the figure
that must be specified. For these graphs all of the

following expressions and the expressions in the
figure only hold when 11+I2+I3=26and
I1 ~ I2 ~ I3 ~ 1 which labels all these graphs once. In
the combingtoric factors for these graphs there is the
symmetry factor s, defined by

r

1/3!, It = I2 = I3

s= 1/2!, It ——I2&I3 or It ——I2 ——I,
1, otherwise

Then, in the Feynman integral, there is the
coeScient of the relevant part of the lnm divergence,
A (It I2 I3) and we find

3

8 —1 I3 !3 1 8 —lt 8 28 —It —1

2(8 —I) 8 —1'8 —1 8 —1 8 —1 8 —1

6 —1 I3 I, —1 8 -I, 8 28-t, -1
2(8 —I2) 8 —'1'8 —1' 8 —1 '8 —1' 8 —1

(A16)

( )(&)
l1 «l2~«l3«1 1 2; 3.I 'I2I I2/ 'I2

l1 +l2+l3-26

(A17)

Then, in terms of B, one obtains the simple result
(conjecture)

where 3F2 is the hypergeometric function with three
numerator (a, b, c) and two denominator (d, e) argu-
ments. Equation (A16) is not as bad as it looks, be-
cause note that e = c +1, so that when each hyper-
geometric sum is written out in terms of I" functions
there are really only three instead of five. It is a
matter of taste as to whether (A16) or the explicit
sums provide more compact expressions. It is also
worth noting that the 3F2 functions above contribute
only a 1, their first term of their power series, when
l3 =1.

To obtain the final answer one has to sum over all

triangle graphs. Let us call this sum

4(8 -1)' 4(8 —1)'ne= 3 e +
28 28
6 8

8(B —8) (8 —1)
26

8

x ee3+ 8(eg4) (A18)
Let us illustrate that this is a viable formula by recov-
ering previous results at 8 =2, 3. First, consider
8 =2; the sum defining B will admit only one triple
(2,1,1); the hypergeometric sums contribute only a 1

because I3 =1 and so B = (2)4! Subsitution of this

.into (Alg) yields agreement with Wilson. Next, let
8 =3; the sum for B admist three triples: two are
trivial because I3 =1 and one is nontrivial and gen-
erates the sum g„"~(2n +1) ' = rr2/8. Thus, one
obtains

6l2(2 —93-1rr2 +.2
—43 —2 2

—83—2)

and substitution yields agreement with Eq. (9) in the
text when n =1. In general, one obtains infinite
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sums that must be evaluated numerically. These
small 8 results indicate that 8 may increase as fast as
8!as 8 ~, resulting in large estimates at
sufficiently large 6 in two dimensions.

The single-argument spin-spin correlation function
may also be generalized. Rather than do this com-
pletely, however, let us only consider the contribu-
tion of diagram 4 in the figure at this function. With
this result, we will see how Fisher and Aharony's
result' at critical points and the result in the text are
part of the same general, yet simple expression.
Moreover, this will provide a new integral representa-
tion for this function at critical points.

In the order-8 case we have, as before,

D (x2) (1 +x2) —1 + o2 [X2/(I +X2)]2(26)2i Q (x2. 6)

(Al, 9) agrees with the appropriate part of Eq. (13) in

the text.

APPENDIX B: LARGE-ARGUMENT EXPANSION
oF D(x2)

The basic method' " is to 'combine Wilson
operator-product expansions with the Callan-
Symanzik equation. Zimmermann'6 has discussed
Wilson expansions in perturbation theory using his
normal product formalism which is general enough to
apply immediately to the present case. Through this
method (defining normal products by making all sub-
tractions required for the case d = 3) one can obtain
the following expansion:

where we have now removed a factor (equal to 42! at
critical points) in order to conform as closely as pos-
sible to Fisher and Aharony's notation. The function

Q is given by a sum of graphs

Q = X~~ Q2e —2J—'1(x', 6), where the subscript
26 —2j —1 is the number of internal lines. Let us
only consider the graph with 28 —1 lines; we find,
with v=(6 —1) ',

2. V 4
22/I —I

Q2e —1(x &6) =
]1 2(

X

rMOl 1 1
2I+2 11 ~ ~ ~ 72I 2PO+k 2PO k Pl ~ ~ ~ PM)

~1(k) G2I ( I 1 q2I PO ~ ~ ~ PM)

+ ~2(k) G2™l (II 1 ~ q2l pl ' PM p0)

+ JI 2I(k, II1 ~ ~ ~ pM)

where for large k (by power counting with d =3),

hg(k) —k J, 7J —6 (o), j =1,2

(Bl)

(B2)

dyyv
—1[A& ( )]I+2/v

ap

x I'(1+v)2"x "y "J„(xy)

and, unless I =0 and M & 2,

JiM(k; . )-k-'", .—g(.) . (B3)

XP
4(I + v)

(A19)

The appropriate limit that leads to (A19) is quite
trivial in position space, in contrast to the situation in
momentum space. '

Now specializing to 8 =2, one may expand the
Bessel function Jl(xy) about the origin to yield the
expansion of Q2(u;2) about the origin,

kx2 2'" 'k!(k+1)! (A20)

f+ oo

Q (x 2) =2X i dy fbi & 2yJ1(y) —1+~
cp X 8

(A21)

In a similar way, one can verify that for 6 =3, Eq.

where a 2k = dy y'"[Jt I (y) ]'. These integrals may
~I p

be evaluated numerically to show that Q2(u;2) agrees
with Fisher and Aharony's result for their function

Q (u). One can also check the large momentum ex-
pansion from the expression

In Eq. (Bl), the connected Green's function of 2l
spins, M insertions of X& (o J)', and N insertions of
[XJ (o ~)']' is denoted 621'"', and the spin indices as-
sociated with the momenta

2 pp+k, 2 pp —k are set
equal and summed (no other case is required in the
disordered phase). We do not require the explicit ex-
pressions for the b& which can be obtained through
the normal product method. It should be noted that
Eq. (Bl) is not written for the. one particle irreducible
vertices I'2MI". When translating (Bl) into a
corresponding expansion for the I"s it will be neces-
sary in all but the simplest cases to include extra, ex-
plicit terms, comparable to the h2 term, in order that
the remainder remain negligible. The necessity of
the extra terms is easily understood by contemplating
the expansion for D, which is generated from Eq.
(15) of the text by the binomial theorem; it also con-
tains an extra term proportional to [B(o)],which is
comparable, near d =3, to the terms involving C (e)
and D(o). The extra terms in the expansion of the
I"s are resIlonsible for this extra term in the expan-
sion of D

Besides Eq. (Bl), the other ingredients of the
method are the field theoretic renormalization-group
equations"
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[g2 +d+ l(2i —d —2) —Mv ']G2MI (Sql, . . . , SpM) =0

[~+d+I(&—d —2) —Afv ' 4—v ']G2I (s'ql, spM+I) =o .

and the precursor of the Callan-Symanzik equation,

~M+1,N(
GM' ( . . . ;, . . . , ;k, , . . . , k ) =- C (q . q2I pl 'PM, 0;kl. , kI)

(84)

(85)

(86)

The notation G in Eq. (BS) stands for

pM, 1( ~M, 1 j M+1, 0r
2I 'ql 'q2I Pl ~ PM POI 2I (ql q2I Pl PM;POI +G2I ('ql ~ q2I Po ~ PM)

(87)

where

K Go, (00"0)/G2' (00',0) (88)

Now applying (84), (85), and (86) to (Bll) and us-

ing G2' (00;;0) =0, we obtain

(u+2i+v ' —2 —d)&l(sk)

and the quantities q, v, $, wq, and wo are dimension-

less functions of A ' 'u4, A 'Ilo, and m/A (with

Greek letters assigned to agree with the standard no-

tation for tricritical exponents). These functions may

be determined order by order in e by imposing Eqs.
(84) and (BS) on the perturbation series. A discus-

sion of the facts which lead to (84) and (BS) can be

found in Ref. 17. As for why it is G and not G that

appears in Eq. (BS), we note that

M, OlG21' (ql& i 'q2I&Poly ' ' ' i PM)
gu4

)m

~M, 1= G2I (ql. , q2I Pl ~ ~ ~ PM 0)

[compare Eq. (5) of the text]. The right-hand sides

of Eqs. (84) and (85) are not strictly zero but can be
neglected" whenever quantities of the order
A '(lnA) '""are negligible in the renormalized

theory, i.e., when m and all momenta are small com-

pared to A, order by order in o. Equation (86) is

easily obtained by differentiating Gqi with respect to

u2 at fixed u4 and u6, and applying the definition of
m2 as the inverse susceptibility; m 2 = G2 (p =0).

In order to obtain equations for 41 and 42, we

define

bl(k) =Al(k) +KA2(k) (810)

with Kas in Eq. (Bg). Then Eq. (81) can be rewrit-

ten

G2MI+o, (k k . . ) = 3„(k)G2MI+l, o(. . . )

+ A (k) G '
( ) + 0 (k ')

(811)

is chosen so that G2' (00;;0) =0. X) stands for the

differential operator,

& =(2i —2)m
2

—s—+w4A ' +woA '2 ~ ~ 1+~ ~ 2q

Qm 9$ BQ4 8Q6

(89)

=(S +2+iItlv ' —2 —d)A2(sk) = 6(k ')

(812)

b l(k) —E'/22(k) = A2(k) = 6 (k 5)
Bm 9m2

(813)

where II."'=BE/Bm2 We no. w have enough informa-

tion to determine the asymptotic expansion of Q
through terms of order k 4.

The tricritical point is identified with the fixed point
of Eqs. (84) and (BS).located at u4= II4, uo = lIO such
that

w4(u4, Iio, m =0) = wo(u4, IIo, m =0) =0 . (814)

It is easy to show that if Eq. (814) is satisfied, then

Q4 = u4, and Q6 = u6' ~here u4, and u6' are deter-
mined by applying the scaling law to the perturbation
series as discussed in Sec. II of the text. For when

(814) holds, we can replace & by
&, =(2i, —2)m (0/Bm ) —s(fi/Bs) and use

2i, =7i(u4, uo, m =0), etc. in (84) and (85). This
turns (84) and (85) into the scaling laws

[&,+d+I(~, d 2) —mv ]—-
x G2 ' (sql, . . . , $PM) 0 i (815)

[&,+d+l(2i, —d —2) —Mv, ' —$,v, ']

x G, I (sql, . . . , SpM+I) =0 . (816)

Now Eqs. (815) and (816) suIIIce to determine ri„
v„@„and u4, = I24, and uo" = uo order by order in o,

as discussed in Sec. II. Thus (815) and (816) are the
appropriate equations for the path u4= u4„u6 = u6'.
Replacing (84) and (816) eliminates corrections to
the leading powers depending on deviations u4 —u4„
uo —uo

' and nonleading powers of m/A, while retain-

ing corrections in different powers of momenta.
Now, (812) and (813) can be used to give
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(k) =cik ' ' r ~ 6(k 5)

( )
pi+ i/ —2-

Gio, o(k k) k"i '(A+Bx ' '+Cx ' '

+ax ') + 6(k-') (B18)
x [1+can'(km ' ) ' ']+6(k ')

(B17)

Applying (Bl) with (B17) to G22 0(k, —k;00) and in-

tegrating (B6) twice gives

2/(7) -2)
where we have set x =km ' . The definition Eq.
(12) of the text of D and the identification m2 —gi '

turn Eq. (B18) into the expansion of D given in Eq.
(15).
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