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The onset of two-dimensional tricritical behavior in N X oo strips of spins in an Ising-like
model is investigated. This is done through numerical computation of the largest eigenvalue of
the single-spin advance transfer matrix. Primary attention is paid to the specific heat at constant
nonordering field. The usual phase diagram, in zero ordering field, locates the tricritical point at
the intersection of a first-order line and a X line; it is found here that a curve of large-field,
rounded and bounded specific-heat peaks also seems to intersect this point. This curve, when it
exists, may be helpful in experimentally locating tricritical points in any dimension. Evidence is
also presented, at zero nonordering field, for the validity of the Onsager specific-heat tempera-

ture shift N~2InN in the model.

I. INTRODUCTION

This is the first of a two-part study of tricritical
behavior in two dimensions; here we are concerned
with the phase diagram of a particular simple model
thought to have a tricritical point. In Paper II, we are
concerned with the universal behavior, which we ap-
proach via the e =3 —d expansion.

A large variety of real two-dimensional or pseudo-
two-dimensional critical systems are known; it is an
interesting experimental question as to whether one
may find a two-dimensional tricritical system.! As far
as the author is aware, however, no such systems
have been discovered to date.

Theoretically, two-dimensional tricritical systems
are interesting because they represent one of the sim-
plest examples of multicritical behavior that is (i)
qualitatively different from ordinary critical behavior,
and (ii) fluctuation dominated? so that non-mean-
field behavior is expected. Thus, a better under-
standing of how mean-field theory is incorrect in
two-dimensional tricritical systems can only add to
our understanding of the corresponding situation in
critical systems in three and two dimensions. A
number of questions in this regard come to mind.
For example, one of the basic measures of deviations
from the classical Ornstein-Zernike theory of correla-
tions is the exponent m, which measures the
anomalous behavior of the relevant operator associat-
ed with the order parameter. In Ising-like critical sys-
tems n is thought to be quite small in three dimen-
sions (~310—), but known to be exactly % in two di-

mensions. Thus, by this measure, we may say that
three dimensions is quite "close" to the upper border-
line dimension of four (where 7 is thought to be
zero), whereas two dimensions is much farther away.
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What should we expect of the tricritical n in two di-
mensions; i.e., is two dimensions close or far from
the upper borderline dimension? of three? Other,
more general questions involve the validity of
phenomenological scaling theories® in two dimen-
sions; multicritical scaling functions, in general, and
tricritical scaling functions, in particular, must have a
very rich structure* in order to describe the variety
present in the scaling regime. How much of this
structure is accessible to the € =3 — d expansion?

There are also some interesting puzzles with regard
to the model-dependent properties of specific Hamil-
tonians. For example, tricritical mean-field theory®
yields definite predictions about the qualitative varia-
tion of the phase diagram with parameters in the
Hamiltonian. By "qualitative" we mean things like
the existence or absence of a tricritical point. These
predictions are in contradiction, sometimes, with
one’s intuitive notions and approximate lattice
renormalization-group calculations.® Thus, even the
crude behavior of the phase diagram in some simple
models is in doubt.

A number of authors have investigated tricritical
systems in three dimensions or higher; let us men-
tion those who have done computations that
specifically relate to two dimensions. Stephen and
McCauley, and Chang, Tuthill, and Stanley have cal-
culated the tricritical exponents n,, y,, and ¢,
through leading nontrivial order’ in e. Nienhuis and
Nauenberg, and Berker and Wortis have considered
two-dimensional tricritical systems with approximate
lattice renormalization-group calculations.® These
two sets of calculations raise the question: is the
value of the tricritical crossover exponent ¢, in two
dimensions, larger or smaller than the mean-field
value of %? The lowest-order € expansion heads in
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one direction (larger) and the finite lattice calcula-
tions tend toward the other direction.

We do not claim to resolve all of these matters
here, but we do touch on some of them. Let us
briefly summarize the results of our investigation
here, and in Paper II. Here, we consider a specific
Ising-like system. Unfortunately, there is no exactly
solvable tricritical analog of the two-dimensional Ising
model. Thus, even the existence of a tricritical point
in this model and other simple models is not
rigorously known, and the evidence for such a point
is necessarily indirect. So, we try to discover how a
standard tricritical phase diagram® may arise out of
the thermodynamics of N X oo strips of spins, which
we can calculate "exactly" (to eight figures, anyway).
As long as N is finite, no true tricritical behavior can
exist; yet there must be a precursor in large specific
heats, for example, and that is what we look for. We
find that, indeed, the expected precursor to the A line
is well resolved at small N, but there is less evidence
for the first-order line in these specific heats. One
thing that we find is that once one adds a coupling to
the Hamiltonian that can induce tricritical behavior,
the precursor to the A line ceases to extend down to
zero temperature. This is certainly evidence sugges-
tive of a first-order line. On the other hand, we
might have expected a clear precursor to 8 function
specific heats on the first-order line; this we do not
see. The reason for this may be that the first-order
line is very nearly parallel to the temperature axis in
the model.

Also, we find that a curve of specific-heat peaks, as
a result of paramagnetic disordering at large nonord-
ering field, tends to intersect the A line in the tricriti-
cal region. This curve, of course, is not a precursor
to a phase boundary, but if it is drawn on the usual
phase diagram, we conjecture that it also intersects
the tricritical point. This would produce a diagram
looking rather like the spin flop or bicritical system.?
This additional curve might be useful experimentally
in more accurately locating tricritical points via
calorimetry measurements in any dimension, since
one could now identify this point as the intersection
of three special lines in zero-ordering field, as op-
posed to the usual two.

Moreover, we consider quantitatively how the pre-
cursor to the A line approaches the true A line as
N — oo. A natural guess, away from the tricritical
point, is the Onsager result,” N~2InN, and we find
good evidence for this at zero nonordering field by
comparing with high-temperature-series estimates. In
general, finite size scaling theory!® predicts that this
temperature shift should be AN~'*, where the ampli-
tude A4 is known to vanish in a variety of situations
for the Ising model, leaving the N2InN correction.
Our result here suggests that this resulting leading
correction is, in fact, universal. It would be interest-
ing to know what, if any, exponent is associated with
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this correction. :

In the following paper,!! we consider the effect of
the second nontrivial order in € on the calculations of
tricritical exponents and we calculate a spin-spin
correlation function also. Our series, evaluated at
d =2, yield the estimate n,=0.027 in the Ising case;
this is still quite small, but it does represent an order
of magnitude increase from the lowest-order term
alone. Thus, one wonders if the exact result could
be an order of magnitude larger still or should we be-
lieve this estimate? In any event, one is led to the

‘ conclusion that the lowest order term alone is

misleadingly small. The question raised earlier about
@, is answered in a sense; the series is very ill
behaved, producing a negative estimate at this new
order. Presumably, this is incorrect because it leads
formally to the conclusion that no crossover occurs;
however, one possible interpretation of this result is
that the series has "overcorrected" and that the exact
@, is indeed less than % and positive. We also find

that, beginning at his new order in ¢, the spherical
model limit fails to exist, in sharp contrast to the si-
tuation at critical points where not only does this lim-
it exist, but the expansion is convergent in the limit.
This is a not unreasonable result, considering the
work of Emery,'? who demonstrated that no tricritical
point exists in this limit (in a closely related model)
for any d < 3. These results, and various others, are
discussed in detail in the following paper.

In Sec. II of this work we introduce our model and
discuss the general approach that we take. In Sec. 111
we discuss some details of our numerical methods;
the reader interested only in our results will find
these in Sec. IV. We conclude with a very brief sum-
mary in Sec. V.

II. MODEL

One of the simplest models thought®® to exhibit a
standard tricritical phase diagram® is defined by the
Ising type Hamiltonian (o; =%1)

H=J220'i0'i+a‘K E 2 0045~ h EU',' ,
P8, i 8y i

¢Y)

where the sums range over the sites i of an N X oo
square lattice with nearest-neighbor vectors §,, and
next-nearest-neighbor vectors 3,,,. The boundary
conditions we use are discussed below. We are in-
terested in the sector of positive J, K, and h and the
limit ¥ — oo. This sector generates antiferromagnetic
ordering at small fields # and low temperatures; thus
we will refer to h as either the magnetic field or the
nonordering field. By considering what spin
configurations minimize H, where we count each
bond once, one sees that the ground state (7' =0)
energy per spin is given by —2J —2K for h <4J, and
2J —2K —hfor h =4J. There is an abrupt step in



the ground-state magnetization and sublattice (sites
generated by i +3,,,) magnetization, as a function
of h, at h =4J; the energy is continuous (as a func-
tion of A) at this point.

Unfortunately, no exact solution exists for the par-
tition function of the Hamiltonian of Eq. (1), or, for
that matter, any other similar short-range Ising-like
system (in the interesting limit N — oo) so as to exhi-
bit the presumed tricritical behavior directly. Howev-
er, for finite N we can calculate the free energy from
the largest eigenvalue of a finite size matrix, the
transfer matrix Vy. This we do numerically; densi-
ties, such as the energy and the magnetization per
spin, and response functions, such as the specific
heat, may be obtained by differentiation.

When constructing a transfer matrix, one has the
two natural choices (among others) of adding either
an entire row of N spins each "time," or adding a sin-
gle spin. In the simple nearest-neighbor Ising case
(when K =h =0 in our Hamiltonian) these two
choices correspond to the different approaches of On-
sager’ and Kramers and Wannier!? to the same prob-
lem. In that case, as is well known, the first choice
proved much more analytically tractable. Here, we
add a single spin because our numerical approach is
more in the spirit of the work of Kramers and Wan-
nier; we want to obtain an extremely sparse matrix.
The boundary conditions, then, appropriate for this
approach, are that when one reaches the last (Nth)
spin in a row, the next neighbor along that same row
is taken to be the first spin in the next row. See Fig.
1 for an illustration of how the spins are built up.

Inspection of the partition function sum reveals
that for the Hamiltonian of Eq. (1), the single spin
advance transfer matrix requires a basis of 2V *!
states. This basis is taken to be all the possible as-
signments of +1 to any "consecutive" N +1 spins,
thinking of the spins as uniformly spaced on the
threads of a screw (a helix), N spins per pitch. Let
us denote by C one such assignment of *1; i.e.,

C = |oy, o3,..., N, on +1), for particular values of the
o, (see Fig. 1). Each configuration C may be
thought of as an old configuration, which is acted
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FIG. 1. Labeling of old and new configurations C and C'
is shown. The spin being added introduces four new bonds.
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upon by the transfer matrix via matrix multiplication
to generate all possible new configurations
C'={a{, o),..., on', oy +1' with certain (relative)
probabilities which we specify below. Each new
configuration is related to two old configurations and
vice versa. The relation is obtained by rotating the
old configuration forward along the screw by one spin
(2w/N), dropping one spin from the list, and replac-
ing it by a new spin that may be up or down.

It is convenient to explicitly define this operation
of rotation and replacement by introducing two
operators R + defined by

Riloy, o0 ... on ONns1)

={tl,0,00...,0xv-1,0n8} . (2)

Then, in terms of these operators, the transfer matrix
has matrix elements which may be read off from Fig.
1as

' S ERICIIRET AN T CAE N S
Vn(C',C) =x y z

x (8g Lcctdr o) 3)

where x =e™#/, y =ePK z=¢P" and 6¢c ¢ is a
Kronecker & for two configurations C' and C. That
is,

8¢ =8s1,080,0, " oy oy
Thus, one sees from Eq. (3) that Vy has only two
nonzero entries for each row and column. As one
sees from the construction, this is solely a result of
having Ising spins (two spin states) and adding one at
a time. It would occur for an arbitrary Ising Hamil-
tonian in any number of dimensions. On the other
hand, the enlarged basis (2¥ *! vs 2%) is a result of
including the next-nearest-neighbor interaction and
insisting on adding one spin at a time. The systemat-
ic repetitive structure of Vy, for a particular ordering
of the basis states, is shown in Fig. 2. The pseudodi-
agonal nature of these matrices is deceptively simple,
and it is interesting to compare Vy with the transfer
matrix of Ref. 11.

As usual, the free energy per spin fis determined
in the N X oo system by —Bf =In\g, where Ay is the
largest eigenvalue of Vy. Throughout, we will
suppress the dependence of Ay on its parameters
N, x, y, and z.

It is very convenient to compute not only Ag but its
associated left and right eigenvectors, which we
denote by ¢, and yz. This is because densities may
be obtained from the inner product Ao’ = (¥, Vx'Wr),
where the prime denotes differentiation with respect
to a parameter. As an example, the magnetization
per spin m is obtained by dividing the eigenvectors
into upper (+) and lower (—) components, each a
vector of 2" components; that is, one writes
Yr = (Y#;¥x) and similarly for .- Then one finds
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FIG. 2. Repetitive block structure of V) for a particular
ordering of the basis; every element of block 1 and 2 should
be multiplied by z; multiply blocks 3 and 4 by z7!. The ord-
ering is as follows: the first configuration is all spins up;
denote this by (0,0,...,0). Then generate all remaining
configurations by counting in binary from the left. The next
few configurations are
1,0,0,...,0),(0,1,0,...,0),(1,1,0,...,0), etc. Down spins

are a 1. Blank entries in the blocks are zeros.

that m = (¢f, vg) — (YL, Yz). Because Vy' may al-
ways be obtained analytically, densities are obtained
to the same numerical accuracy (or greater) as the
eigenvalue and vectors. However, response functions
require a numerical differentiation.

III. NUMERICAL METHODS

We obtain the eigenvalue and vectors in the fol-
lowing standard way. We start with an arbitrary right
vector and successively multiply by Vy, rescaling
each time, until the vector has become the right
eigenvector to a given accuracy (as indicated by its
lack of change under multiplication). One final mul-
tiplication yields Ao. Next, we repeat the process for
an arbitrary left vector, obtaining the left eigenvector
and Ao again. This provides a consistency check on
the eigenvalue.

This can be done for larger and larger widths N un-
til one runs out of computer storage or time. The ul-
timate computer storage requirements are, basically,
twice the length of a vector with 2" *! entries. (The
matrix Vy is, of course, never stored because it is
practically all zeroes; only the multiplication rule is
stored.) The basic limitations in computing time with
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this method depend on N in two distinct ways. First,
there is just the usual increase because larger systems
(column and row vectors) require more elementary
multiplications per single iteration of the transfer ma-
trix. This effect is completely independent of the
underlying thermodynamics. Secondly, one must
consider the number of iterations (multiplications by
Vx) needed to obtain the eigenvalue and vectors to a
given, fixed, accuracy. This number is quite sensitive
to the values of the parameters because an arbitrary
vector turns into the leading eigenvector with an er-
ror of const X (A;/Xo)! after j multiplications, where
the constant is independent of j, and A, is the second
largest eigenvalue (assuming it is real). From
Onsager’s work,? one expects at least two-fold degen-
eracy of the largest eigenvalue in the ordered phase
(in the limit N — o), and infinite degeneracy along
the \ line. Thus, one may anticipate, for a fixed
finite N where there is no degeneracy, slower conver-
gence at low temperatures as compared with high
temperatures. Also, for the same reason, one ex-
pects worse convergence as N increases at a fixed low
temperature. This troublesome effect may be
lessened significantly by a standard trick known as
Aitken’s 8% process,'* !5 which we describe now.
Suppose, for a moment, that after j iterations the
only error is the leading error (A;/Ag)’. Then, we
have precisely geometric convergence; but a
geometric series can be summed by a knowledge of
only three successive terms. This summation of
three successive terms is the 82 extrapolation; it is
carried out on the components of the vectors at con-
venient intervals in the multiplication procedure.

The extrapolation has the effect of removing one’s
best guess for the leading correction. Further correc-
tions, due to other eigenvalues, are responsible, then,
for the ultimate convergence rate. Decreases in com-
puting time by factors as large as 6 have been ob-
served with this technique applied here.

Finally, for this section, we mention certain alter-
nate numerical approaches. The simple multiplication
is rather crude in the sense that it develops the parti-
tion function by, essentially, adding up all the terms
until the free-energy density settles down to a desired
accuracy. One may argue that it might be better to
exploit other special properties of the largest eigen-
value. Specifically, there are a variety of variational
techniques for very large symmetric (sparse) ma-
trices.!> One simple generalization of one of these
techniques to the nonsymmetric matrix Vy is the fol-
lowing. Begin with arbitrary positive trial vectors y/
and ¢;. Then "relax" these vectors one component
at a time in order to make N'= (¢f, Vawhk)/ (Wi, vk)
stationary. That is, let the gth component of %, call
it a,, become a, + «, and the gth component of
¥i,b,, become b, + B. Then, one has a new estimate
Mew. Requiring 8,(Aiew) = 05(Alew) =0 results in a
determination of « and B8 from quadratic equations.

’
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This scheme has been found to converge, but on re-
latively small matrices (say, 128 x 128 or less) the
simple multiplication was faster. However, due to a
change in computer, the relaxation scheme was never
pursued to very large matrices (say, 4096 x 4096 or
larger), and so the optimum method is not known.
For completeness, we should mention that for very
small matrices (small enough to be stored), both of
the above methods are inferior to generating V,&’
directly by j matrix multiplications and taking the
trace for large enough .

For all such methods, one may obtain successive
lesser eigenvalues (some may be complex) and vec-
tors, if desired, by appropriate orthogonalization.
Thus, investigations of the spectrum and hence,
correlation functions, are possible in principle.

IV. RESULTS

Essential for the generation of tricritical behavior is
the next-nearest-neighbor coupling K in the Hamil-
tonian of Eq. (1). Thus, it is instructive to first con-
sider the case when this coupling is absent. As men-
tioned, we shall deal with the behavior of Cy, the
specific heat.

Shown in Fig. 3 are points in the #/J-T/J plane
where C, peaks along lines of constant #/J. In the
computation K =0, Jis fixed and positive, and
N =3. As one sees from Fig. 2, N =3 represents the
smallest possible realization of the transfer matrix
(N =2 is possible in zero field). In Fig. 3, the curve
that extends to zero magnetic field is the precursor to
the phase boundary (A line) for a simple antifer-
romagnet in a magnetic field. From the figure one
sees certain "smooth" behavior' that one can expect
to persist as N — oo. In particular, one expects a
quadratic approach to the # =0 axis, which is certain-
ly a reasonable guess from the figure also. One also
sees the precursor to the phase boundary approaching
the T =0 axis in an approximately linear fashion, so
that smoothness is lost at this point. Also intersect-
ing the T =0 axis at h/J =4.0 is an asymptotically
linear curve characterizing disordering in the
paramagnetic phase at fields #/J =4.0. These
paramagnetic specific-heat peaks represent the same
process that causes specific-heat peaks in the one-
dimensional Ising model. Hence, this curve is not a
precursor to a phase boundary and one expects Cj to
remain bounded and rounded on this curve as
N — . Finally, one sees other maxima in C, out at
relatively large temperatures and intermediate fields
for which we have no particular interpretation. As N
increases one expects, and finds, little change in this
basic picture: the precursor to the phase boundary
shifts to slightly higher temperatures and the magni-
tude of the specific heat on this line grows slowly [say
A (h) InN] with N. Because one can generate exactly
solvable models of simple two-dimensional antifer-
romagnets in a field,!” there is little point in pursuing
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FIG. 3. Points in the h/J-T/J plane where the specific
heat C, peaks along lines of constant #/J. For these results
the width N =3 and the next-nearest-neighbor coupling
K =0.

this case via the approach here. ‘

Next, consider the same size system, N =3, but
with the addition of a nonzero next-nearest-neighbor
coupling K =J/2. This is shown in Fig. 4. Now one
sees that the large magnetic field and A-line curves
are still intersecting around #/J =4.0 but at a
nonzero temperature and with a complicated behavior
in this region, which we identify as the tricritical re-
gion. This complicated transient behavior, an artifact
of small ¥, is shown with an increased scale in Fig. 5
for N=3, 5, and 7. Only odd N is considered in ord-
er to avoid any effects due to antiferromagnetic
"mismatch" in the ground state. One sees simple
smooth curves arising as N increases, although it is
not at all obvious just exactly what is developing.
The points are plotted for equal intervals of 4/J, thus
any apparent "gap" should be interpreted as rapid, but
analytic behavior that one would see with an
infinitely fine mesh of points.

Let us assume, for the moment, that a tricritical
point emerges in the region shown as N — o. One
of the things that we do not understand is the role
played by the first-order line in the specific-heat data
for finite N. Presumably, the energy density under-
goes a jump discontinuity across the first-order line in
the limit. The amplitude of the jump must vanish as
T —0, if the energy is to be continuous at h/J =4.0.
This implies, by the usual Clausius-Clapeyron equa-
tion argument that the first-order line is horizontal at
this point if it is differentiable there. However, there
is no reason to expect the first-order line to continue
to be horizontal for T/J greater than zero and thus
one must anticipate 8-function singularities in Cy;
nevertheless we see little evidence (however, see
below) for this at finite N. This may just be due to
the first-order line being very nearly horizontal ex-
cept when very close to the tricritical point.

In any event, we would like to conjecture the fol-

. lowing about those curves that we do see in Figs. 4
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FIG. 4. Same type of data as in Fig. 3, but now K =J/2.
The presumed tricritical region is shown with a rectangle.

and 5. We suggest that the upper curve of specific-
heat peaks persists in the limit of large N and inter-
sects the ultimate phase boundary at the tricritical
point. It may even intersect with zero slope. The
lower curve should develop into the A line in the ex-
pected way. If this conjecture is correct, it provides
an additional signature for the tricritical point in addi-
tion to being at the intersection of the first-order line
and the X line. This could be of possible value in
pinning down a tricritical point experimentally with
specific heat data. For example, these high-field
peaks are reported in the work on dysprosium alumi-
num garnet (DyAIG) by Landau and coworkers,®
but their relation to the tricritical point in that materi-
al is not clear. The diagrams in Figs. 4 and 5 are
very similar to spin flop or bicritical phase diagrams,
although we emphasize again that the upper curve is
not a precursor to a phase boundary, in contrast to
what one would observe in an actual bicritical system.

Roughly then, within the context of our conjec-
ture, these upper specific-heat curves are "pointing" at
what eventually becomes the tricritical point. A

8

crude extrapolation (see below) of the data shown to
N = oo provides an estimate for the location of the
tricritical point. Similar data when K =J also has
been obtained. These estimates are:

T./J h/J K/J
1.05 +£0.05 3.98 +0.01
2.15+0.05 3.96 +0.01

(4)

L
2
1

The errors are basically subjective and rely on the to-
pology discussed above. The outstanding characteris-
tic of the trend of these estimates would be the ex-
treme flatness of a smooth curve drawn from the tri-
critical point to (k/J =4.0,T/J =0). This is possible
evidence for a crossover exponent ¢, that is quite
small in two dimensions.

‘We have considered how the maxima in C, on the
curves in Figs. 4 and 5 grow with N for fixed h.
Specifically, for the case K/J =% we have plotted

(not shown) Cp.(N) versus various simple func-
tions of N for the field h/J =3.99. We tried

N2, N3 N* eV and eM* roughly, the best "fit"
seems to be somewhere between the last two func-
tions. That is, we see growth faster than a small
power of N. What should we expect? If this value
of the field were less than the tricritical field, one
would expect'®!” an asymptotic rise of InN (and it is
easy to generate data consistent with this at small
fields). If the field were exactly the tricritical field,
one would expect a rise of N%, where finite size scal-
ing!® predicts & = a,/v,=2a,/(2 —a,). Thus, one has
a bound, within scaling, & < 2. Since C,,y is ob-
served to increase faster than this, we conclude that
this particular value of the field is larger than h,/J,
which is (barely) consistent with the estimate in Eq.
(4). One may also want to interpret this fast increase
as real evidence for the first-order line in the specific
heats. The point of this example though is that one
sees a problem, in principle, of determining the ex-
ponent «, with transfer matrix methods, if the tricrit-

A |
423 42 a2} ,
h/ b /s h /
J ] hy 0 4- /
413 J a1 / ) o4l /
40 40 \ 401 ~
397 39+ 391
] [v=3 (n=5] vo| 7
38 384 87
37 J T 1 T T [ T T LAY Al 3.7 LEEALS LSS I L 1] T T : 3.7 T T 1.1 r T T T T —
05 10 L 15 05 10 ¢ 15 05 o ¢ 15
“ ) J

FIG. 5. Closer look at the tricritical region in Fig. 4, and additional results for N =5,7. Note the movement of the precursor

to the X line toward higher temperatures.



ical field is not known precisely.!® This is because one
can only hope to measure, for finite N, an effective
exponent &g in the sense of Riedel and Wegner.2

If indeed C, increases faster than any power of N
along the first-order line, then one sees that the
effective exponent varies from zero to infinity in the
tricritical region! Very similar troubles seem to occur
when one attempts to determine tricritical exponents
via high-temperature series,?! where another effective
exponent (y,, usually) seems to vary through a con-
siderable range in the tricritical region. So, we will
not attempt to make tricritical exponent estimates
here, due to the uncertainties in Eq. (4).

As a final application of these specific-heat data, we
want to explore the possible validity of the Onsager
specific-heat temperature shift® N=21nN in our model
here. Our boundary conditions are not exactly those
that Onsager used,’ but this should be irrelevant; the
essential point is that we have an N X oo Ising-like
system with some sort of periodicity at the edges.
Shown in Fig. 6 is a plot of temperatures where the
specific heat peaks, Tmax(N)/J vs N"2InN when h =0
and K/J=1. We have allowed both odd and even N.
Extrapolation, by drawing a straight line through the
last two points, to N = oo, yields the estimate .

T,/J =5.25, as compared with the Dalton and Wood
high-temperature series estimate?? of 5.260. We con-
clude that the N~2InN shift is probably valid for this
case. More generally, one knows from finite size
scaling theory!? that the leading temperature shift is
predicted to be AN~Y*; thus it is governed by a
power characteristic of the universality class. We
suggest that when the amplitude A4 vanishes, as it
does here, that the resulting power is also universal.
If this is true, it would be interesting to know the re-
lation of the exponent to other aspects of the critical -
behavior.

As one might expect, plots similar to Fig. 6, but
for nonzero magnetic fields, exhibit considerable cur-
vature in the tricritical region. These curved plots,
together with the assumption about the curve of
high-field peaks intersecting the tricritical point, pro-
vided the basis for the estimates of Eq. (4). From
Eq. (4) and data for small values of K/J one has,
roughly, that 7, = K for fixed J and small K. More-
over, the characteristic shape of Fig. 4, in contrast to
Fig. 3, seems to occur for arbitrarily small KX > 0, in
agreement with the approximate lattice renormaliza-
tion group calculations of Nienhuis and Nauenberg,
and, as pointed out by them, in contrast to the result
of mean-field theory.’® If the asymptotic K =0 phase
diagram remains like Fig. 3, then one has an abrupt
jump in the slope of the phase boundary at #/J =4.0
from a negative value to zero, as K increases from
zero. With the estimates of Eq. (4) in mind, and
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FIG. 6. Temperature at which the specific-heat peaks
Tmax(N)/J plotted vs N=2InN, when the magnetic field
h=0and K =J. A straight line drawn between the last two
points is extended to N = oo; an arrow indicates high-
temperature series.

the behavior seen in the figures, the reader can then
picture the general qualitative evolution of the phase
diagram, as a function of K/J for the range

0 < K/J =1.0. This qualitative behavior seems to
bear little contact with the prediction of mean-field
theory.’

V. SUMMARY

We have investigated the small-N behavior of a
model on N X oo strips of spins thought to exhibit a
tricritical phase diagram in the two-dimensional limit.
We have discovered that if one attempts to locate a
tricritical point in real systems with specific-heat data,
it may be interesting to follow a curve of specific-heat
peaks at large nonordering ﬁ_eld down into the tricriti-
cal region. We also suggested, and provided evidence
for, the universality of the N~2InN temperature shift
in models where the boundary conditions make this
the leading correction.
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