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Phase diagram for the cubic model in the Kikuchi approximation
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A variant of the three-state Potts model known as the cubic model has been used to
describe the critical behavior of some rare-earth pnictides. In the mean-field (MF) approxima-

tion this model has a tricritical-like phase transition, while in the Bethe-Peierls-Weiss (BPW)
approximation the transition is first order. To obtain a better estimate of the phase diagram of
this model we have used the Kikuchi cluster variational method with a tetrahedron as the basic

cluster. By using the symmetry properties of the cubic model we were able to reduce the 36
coupled equations with 1296 variational parameters to 12 coupled equations and 58 distinct vari-

ational parameters. We were able to solve these equations and find the surfaces in the phase di-

agram where transitions occurred. The qualitative features of the phase diagram for the cubic

model do not change too much in going from the BPW to the Kikuchi approximation. Howev-

er, there are quantitative changes which become large for certain points and along symmetry

directions in the phase diagram, i.e., for those values of the anisotropy (D) for which several

components of the spin become simultaneously critical. . For these points the Kikuchi

tetrahedron approximation takes much better account of the correlations between spins than the
MF and BPW approximations. It follows that the estimates of the critical fields D, and quadru-

polar coupling q, necessary to drive the transition tricritical are substantially better in the Kiku-

chi tetrahedron approximation. At the origin D =0 we find a first-order phase transition occurs
at a temperature 13% lower than that found with the MF approximation and 5% lower than the
BPW approximation.

I. INTRODUCTION

To study the phase transitions in a series of cubic
rare-earth compounds we recently introduced the
model Hamiltonian'

H = 4 X rrr 0'l5~ ~
(IJ)

i J

where o- takes on the value +1 and a =x, y, and z.

This Hamiltonian is a variant of the three-state Potts
model [which is Eq. (I) without the Ising-like vari-
ables rr;rTJ] and is called the cubic model. It was ar-
rived at by projecting a bilinear isotropic spin interac-
tion on to the sixfold-degenerate ground-state mani-
fold of rare-earth ions in appropriate cubic crystal
fields. The reader is advised to look at Refs. 1 and 2

to acquaint himself with the previous studies of the
thermodynamic behavior of the cubic model.

In the mean-field (MF) approximation we found
that the cubic model has a continuous phase transi-
tion with tricritical-like exponents. To determine
whether this is a property of the model or owing to
the MF approximation, we used the Bethe-Peierls-
Weiss (BPW) approximation. We found that the
phase transition for the cubic model is first order,
i.e., discontinuous. ' However, by applying small
single-ion anisotropy fields or by including suitable

I

quadrupolar pair interactions we did find that the sys-
tem can be made to undergo a continuous transition.
This change from a discontinuous to a continuous
transition is expected since for large enough anisotro-
pies the cubic model reduces to an Ising model. '

Therefore, in the temperature —single-ion-anisotropy,
T-D, space there exist lines of tricritical points about
the temperature (D =0) axis which form the boun-
dary between regions of first-order and continuous
transitions. We will use the term tricritical in this pa-
per to mean the change from a first-order to continu-
ous phase transition; indeed, the transition may be a
multicritical one. We have previously used the BPW
approximation to determine the magnitudes of the
single-ion anisotropies and the quadrupolar pair in-
teraction to drive the phase transition tricritical. '

To obtain a better idea of the nature of the phase
diagram of the cubic model we have now determined
it by using the Kikuchi cluster variational method.
With this method we obtain a sequence of approxi-
mate results from which we extrapolate reliable infor-
mation about the transition region. As the size of
the basic cluster used in these approximations in-

creases, the results become increasingly accurate, i.e.,
approach those obtained from exact series analysis. '

The Hamiltonian for the cubic model in the pres-
ence of external fields and an isotropic quadrupolar
pair interaction is given as'
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where the i and j go over the
2

zN nearest-neighbor

pairs and we have written the quadrupolar coupling ~
as gJ. The first term is equivalent to Eq. (I). To see
this recall that the spin operator S has eigenvalues
+1 when the spin points in the +0. directions and
zero otherwise.

The symmetry of the phase diagram of the cubic

HPW

model with quadrupolar pair interactions in T-H-D
space follows from the invariance of the free energy
under a group of symmetry transformations of the
Hamiltonian Eq. (2). It is difficult to portray the
phase diagram in the six-dimensional space T-H-D,
and we have limited our preliminary studies to the
subspace H =0.4 The phase diagram for H =0 and for
fixed temperature displays C3„symmetry, that is, for
each point (D~,D2) there are five other equivalent
points with identical free energies. The various
statistical mechanical approximations used to deter-
mine the nature of the phase transition, i.e., whether
it is continuous or discontinuous, do not change the
symmetry of the diagram.

For the case of no quadrupolar pair interactions
(q =0) we found in the MF approximation that the
transitions are continuous for all values of D, includ-
ing zero. For a fcc lattice in the BPW approximation,
we found for q =0 that there is a triangular patch
about the origin D 0 for which the transitions are
discontinuous, while outside the patch the transitions
are continuous, see Fig. 1. In this paper we show
that when we use successively larger clusters in the
Kikuchi variational method the first-order patch be-
comes larger, particularly along the negative D~ and
symmetry related directions (see Fig. 2).

KIKOCHI

D, jg

KIKUCHI

FIG. 1. Phase diagram for the cubic model in T-D space
in the BP%' and Kikuchi approximations. There is a surface
of first-order phase transitions about the origin D =0. Out-

side the line of tricritical points the surface consists of criti-
cal points. The regions below these surfaces are volumes
where two phases exist in zero magnetic field H =0. These
volumes are separated by three vertical planes along which

four phases coexist.

FIG. 2. Single-ion anisotropy fields D, necessary to
drive the phase transition tricritical in the SP% and Kikuchi
approximations for a system described by Eq. (2) with

q =H =0. Points inside a curve represent first-order phase
transitions; those outside represent continuous transitions.
In this figure the anisotropy fields D are measured in units

of the coupling constant„'j.
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We have also studied the phase diagram of the
model Hamiltonian Eq. (2) in T Ds-pace as a func-
tion of the quadrupolar coupling parameter q. For
positive rt (ferroquadrupolar coupling) the region
about the origin in T-D space where first-order phase
transitions occur is enlarged, while for antiferroqua-
drupolar interactions (q (0) this region shrinks until
one reaches a critical value q, for which phase transi-
tions for all: regions in T-D space are continuous. In
the MF approximation we found g, =0, i.e., the cu-
bic model (rt =0) has a tricritical-like phase transition
for D =0. For a fcc lattice we found q, =—0.092 in
the BPW approximation, while with a tetrahedron as
a basic cluster in the Kikuchi method, we find it is
much larger, q, =—0.452.

The discrete-spin three-state Potts model is a spe-
cial case of the cubic model Eq. (1) in which one re-
moves the Ising variables cr;cr&. This is equivalent to
letting in Eq. (2) 8 go to zero while keeping rid finit.
Having developed the procedures and algorithms
necessary to determine the phase behavior of the cu-
bic model in the Kikuchi approximation, it was a sim-
ple extension to determine the phase diagram of the
three-state Potts model in this approximation. Our
results are presented elsewhere [Ref. (5)]. Here let
us just mention that, in contrast to the behavior of
the cubic model, we find that the region of first-order
phase transition for the three-state Potts model
shrinks considerably on going from the mean-field to
the Kikuchi tetrahedron approximations; in fact it

nearly disappears.
In Secs. II—IV we describe the application of the

Kikuchi cluster variational approximation to the cubic
model, then we present our results and a discussion
of them.

II. KIKUCHI APPROXIMATION

F =E —TS (3)

where the energy, see Eq. (2), to within a constant is

given as

The basic tenet behind the Kikuchi approximation
is that as the size of the cluster used to determine the
entropy increases, the free energy becomes increas-
ingly more accurate. This has been substantiated by
Kikuchi and others' by expanding the free energy
and its derivatives about the high-temperature limit
(1/T =0) and comparing the results of the various
cluster approximations with the "exact" high-
temperature series expansions. One finds that as the
size of the cluster increases, more terms in the ex-
pansion obtained from the Kikuchi approximation to
the free energy agree with the "exact" expansion. ' In
the following calculations we consider a fcc lattice;
this is the lattice of magnetic ions for real systems to
which the cubic model applies.

In the Kikuchi approximation the free energy of
the cubic model is written as

E/N = 6~1$(o;crj+ rt)8 Xj $[H o;+ ) j3DIS, +
2 Dp(8~ „8~j)]PI (4)

The sums are over the six states of a site which we

label one through six, and we use the following nota-
tion

S/kW =6 XXj lnXj

—2 x Wjl,lln Wjgl 5$P;lnP;
ijk( I

and

ZJ

AI=. ' Xr

i =1,2

i =3,4
i =5, 6

1, i =1,3, 5

I

—1, i =2, 4, 6 (5) P;= QXtl= x g Wtlgl
J~1 J 1,kl 1

(8)

I'; is the probability of finding a site in state i, i.e.,
o-;n;. X& is the probability of finding nearest-
neighbor sites in states i and j. W~kI is the probability
of finding a tetrahedron in the configuration ijkl. The
probabilities P; and X& are related to the Wljk~ as fol-
lows

6 6 6

This notation implies i = o-;o.;, e.g. , for i =2 =—z.

The entropy depends on the cluster size. In the MF
approximation where we consider a site as our clus-
ter, the entropy is given as

S/kW =—g P; lnP;

With a tetrahedron as our basic cluster for a fcc lat-

tice, we find

We find the equilibrium values of these probabili-
ties by minimizing the free energy, Eq. (3), with

respect to variations of the tetrahedron probabilities
8',&kI. The variations are subject to the constraints of
Eq. (8) and g,. P; =1. By using the symmetry pro-

perties of the cubic model we relate the 1,296
different tetrahedron probabilities (four spin sites,
each with six possible orientations: 6 sites) to 58



18 PHASE DIAGRAM FOR THE CUBIC MODKI, IN THE KIKUCHI ~ . . 5081

TABLE I. Anisotropy fields arid antiferroquadrupolar pair coupling necessary to drive the cubic
model tricritical in various approximations.

Di &0
Di, /4 kr, /a

Di &0
Di, / j

D=O

Mean-field

Bethe-Peierls-gneiss

Kikuchi tetrahedron

4

3.90
3.77

0
0.38
0.44

4
3.90
4.07

0
—0.82
—2.70

4

3.64
3.12

0
—0.092
—0.4S2

distinct ones, and we reduce the 36 coupled equa-
tions to a set of 12 equations. These are solved self-
consistently by the natural iteration process
developed by Kikuchi. With this procedure we find
the energy, entropy, free energy, the order parameter
(S,) —= Pj —P2, and expectation values

(S,2 ——,) =—(P, +P,) —
—, and
1

(S„'—S,') —= P, +P4 P5 —P6 —By rep. eating these cal-
culations over a range of temperatures we find the
above properties as a function of temperature and lo-
cate the phase transition. In addition we obtain the
specific heat by numerically differentiating the entro-

py
To study the phase diagram of the three-state Potts

model we have taken the limit of the cubic model in
which 8 tends to zero (zero bilinear interaction),
while holding qJ finite. Details on the application of
the Kikuchi approximation to these models and the
solutions of the ensuing coupled equation by the na-
tural iteration process are found elsewhere. Here we
summarize our results and draw some co'nclusions
about the phase diagram for the cubic model.

tion. In Fig. 2 we show the projection of the tricriti-
cal lines on the Di-D2 plane. While the anisotropy
field necessary to reach tricriticality does not change
much along the positive D~ axis (see Table I), there
is a large change along the negative Di axis. Also, as
seen from Table I and Fig. 3, the tricritical value of
the quadrupolar pair interaction q, for D =0 is con-
siderably larger in the Kikuchi than in the BPW ap-
proximation.

A cross section of the cubic model's phase diagram
in the Di- T plane is shown in Fig. 4. We note that as
we go to successively better approximations the tran-
sition temperature T(D~) decreases. To ascertain the
accuracy of the transition temperatures in the Kiku-
chi approximation, we took the Ising spin-

2
limit of

the cubic model, i.e., we let Di ~ and found
kT, /.J =10.02. This compares rather well with best
estimates from series expansions of the transition
temperature kT, /'J =9.76. In the Bethe-Peierls-Weiss
approximation we found kT, /I =10.97 for D~
while in the MF approximation it was kT, /„j =12.

III. RESULTS

The qualitative features of the phase diagram for
the cubic model do not change much as one goes
from the BPW to the Kikuchi tetrahedron approxima-

BP'w

0.2---

0, / &

KNUCHI

i

/

/

3.4 ——

FIG. 3. Plot of the anisotropy fields Di, necessary to
achieve tricriticality as a function of the quadrupolar cou-
pling q in the BPW and Kikuchi approximations.

FIG. 4. Cross section of Fig. I with the single-ion aniso-

tropy D2 =0. This shows the variation of the transition tem-

perature with anisotropy' Di for the cubic model with q =0
in the mean-field, BPW, and Kikuchi approximations. The
temperature and anisotropy are measured in terms of the

coupling constant 4. Solid lines represent continuous phase
transitions; dashed lines, first-order phase transitions. The
tricritical values of kr/Pand Di/fare given in Table I.
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FIG. 5. Variation with temperature (kTg) of the thermodynamic properties of the model system Eq. (I) in the Kikuchi ap-

proximation: (a) magnetization M —= (S,), (b) entropy S, (c) the quadrupolar density (S, ), and (d) specific heat. All the densi-

ties display discontinuities at the transition point which indicates that the transition is first order. The discontinuity of the mag-

netization is h(S, ) =0.53.

Upon comparing the various estimates of T, in the
Ising limit, we conclude that the Kikuchi approxima-
tion is much closer than the others.

In Figs. 5—7 we have plotted the variations of the
thermodynamic parameters with temperature and an-

isotropy, In zero field D =0, all the densities demon-
strate sizable discontinuities which are the signatures

of a first-order phase transition (see Fig. 5). As one
applies an anisotropy field D, the discontinuities de-
crease and eventually disappear. We plot the size of
the discontinuities as a function of anisotropy for
D& )0 and D2 =0 in Fig. 6 and along the ray

Di = J3D&(D» 0) in Fig. 7. The value at which the
discontinuities disappear is the tricritical point. By re-
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F16. 6. Discontinuities of the densities at the first-order

phase transition for the cubic model, Eq. (2), with

q =H = D2=0, as a function of the anisotropy Di/4 in the

Kikuchi approximation: {a) magnetization b, M, (b} entropy

4S, and (c) quadrupolar density 5{Sr2). These curves have

been extrapolated to yield the value D i,jJ =0.444 + 0.003,
where the discontinuities disappear. This is the anisotropy
needed to drive the system tricritical.

0-
0 0.25 D /g 0.60

peating the calculations for different directions in the
Dj-D2 plane we have been able to determine the line
of tricritical points shown in Fig. 2. Owing to the
threefold symmetry of the phase diagram' it is only
necessary to investigate 6 of the entire space, e.g.,
those directions with Di & 0 and between D2 =0 and
D2 = J3Dt.' In Fig. 8 we show how the discontinui-
ties of the densities decrease as one introduces anti-
ferroquadrupolar coupling between the spins. ~hen
the ratio rt reaches the value rt, =—0.452(D =0) the
discontinuities disappear and the phase transition is
continuous. In Fig. 3 we show how the critical value
of the ratio q, changes as one applies anisotropy.

The trend that emerges from our analysis of the
cubic model by using the mean-field, Bethe-Peierls-
%eiss, and Kikuchi approximations is as follows. As
we increase the number of components of the spin
which become simultaneously critical those approxi-
mations which do not take proper account of correla-
tions between spin sites become increasingly poorer.
This is substantiated from our work as can be seen
from Fig. 2 and Table I. Along the positive Di axis
ordering is favored along two directions +z; it is
along these directions that critical Auctuations occur
when the transition is critical or near tricriticality.
The field D~, necessary to obtain tricriticality along
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FIG. 7. Discontinuities of the densities at the first-order phase transition for the cubic model Eq. (2) with q H =0 and
D2 =J3Dt, as a function of the anisotropy Dt/g in the Kikuchi approximation: (a) magnetization 6 M, (b) entropy hS, (c) quad-
rupolar density 6 ($2), and (d) the biaxial density 6 (S„~—Sr2). From these curves we extrapolate the tricritical value of
Dl c)0= 1.35 + 0.02

the positive D~ axis does not change much in going
from the BPW to the Kikuchi approximation. How-
ever, as we noted before, along the negative D~ axis
as well as along the equivalent rays Dz =+J3Dt, the
fields necessary for tricriticality D, change consider-
ably on going from the BPW to the Kikuchi approxi-
mation, (see Fig. 2). The reason for this is that
along these rays the cubic model spins can order in

any of the four directions +x, +y, and there are twice
as many directions along which critical fluctuations
occur. Finally at the origin D 0, critical fluctuations
build up along six directions +x, +y, and +z as we in-
crease the size of the antiferroquadrupolar pair in-
teraction q & 0. For this extreme case, we find the
cr&tical value of the antiferroquadrupolar interaction
q, is much larger in the Kikuchi approximation than
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FIG, 8. Discontinuities of the densities at the first-order

phase transition of the cubic model Eq. (2) with H =D =0
as a function of the quadrupolar coupling q in the Kikuchi

approximation: (a) magnetization hM, (b) entropy AS, and

(c) quadrupoiar density 5 (SP). From these curves we ex-

trapolate the amount of antiferroquadrupolar coupling need-

ed to drive the system tricritical to be q, ~—0.452+ 0.002.

0
0 —p4 -p.8

in the BP%. As there are three times as many direc-
tions along which fluctuations build up at the origin,
we readily understand why the MF and BP% approxi-
mations grossly underestimate the value of q, . The
Kikuchi approximation using a tetrahedron as the
basic cluster provides a much better estimate of g, in
this case.

These results on the discrete-spin cubic model are
in agreement with the results on n-component
continuous-spin models. For the continuous-spin
models it has been shown that those with com-
ponents n ~ 3 undergo continuous phase transitions
while those with n ~ 4 do not, the conjecture being
that they have discontinuous phase transitions. Near
the origin D =0, the cubic model has six components

which undergo critical fluctuations, and we expect a
region of first-order phase transitions. As one goes
out from the origin along the negative D~ axis or
along the rays Dq =+J3Dt(Dt )0), two of the six
fluctuating components of the spin are suppressed,
and one expects a continuous transition as one ap-
proaches an effective rt =4 model (which for the
discrete-spin model reduces to two spin-

2
Ising

models). If one goes out from the origin along the
positive Dt axis or along the rays D2 =+J3Dt
(Dt (0), four components of the fluctuating spina
are suppressed, and past a point the model system
has effectively n =2. In this case one expects, and
finds in all the approximations used, a continuous
phase transition.
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When one includes an antiferroquadrupolar pair in-
teraction and keeps D =0, there is eventually a cross-
over from a discontinuous to a continuous phase
transition at q, . In this case the changeover is not
caused by a reduction in the number of Auctuating
components but rather by the competition between
the ferromagnetic bilinear interaction which produces
the ferromagnetically ordered phase and the
antiferroquadrupolar pair interaction, which, if large
enough, stabilizes an antiferroquadrupolar ordered
state. 9

IV. SUMMARY

We have seen that although the qualitative features
of the phase diagrams do not drastically change on
going from the BPW to the Kikuchi approximation,
the details do. Most striking are the changes in an-
isotropy fields and biquadratic coupling energy neces-
sary to drive the first-order phase transition of the
cubic model to tricriticality. As we have shown, the
size of the change is proportional to the number of
components of the spin undergoing critical fluctua-
tions. More detailed information about the phase
transition and critical properties of the cubic model
can be obtained from a real-space renormalization-
group analysis of the model. Up to the present, this
has been done only for one- and two-dimensional lat-
tices. ' For three dimensions the analysis is indeed
diScult.

The three-state Potts model can be viewed as the
cubic model in the limit 4 0, while holding K ='gJ

finite. On comparing the phase transition behavior of
these two models, it is interesting to note that for the
cubic model the region of first-order phase transitions
(coexistence volume) increases as one goes to better
approximations, while for the three-state Potts model
it decreases. '

Finally, the cubic model was developed to study
. the phase transitions in a series of rare-earth com-
pounds. ' These compounds have rather unique
single-ion ground states which are nearly sixfold de-
generate. In addition these compounds have type-II
antiferromagnetic order' on a fcc lattice. Our investi-
gations up to the present have only dwelt on the
unique nature of the single-ion states and have not
considered the additional complication of the antifer-
romagnetic ordering. We are presently studying the
cubic model on the fcc lattice with antiferromagnetic
interactions.
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